/* autogenerated from "macros/NonLinear/QUANT_f.sci" */ function QUANT_f() { QUANT_f.prototype.define = function QUANT_f() { this.pas = 0.1; this.meth = 1; model = scicos_model(); model.sim = "qzrnd"; model.in1 = -1; model.out = -1; model.rpar = this.pas; model.ipar = this.meth; model.blocktype = "c"; model.dep_ut = [true,false]; exprs = [[string(this.pas)],[string(this.meth)]]; gr_i = []; this.x = standard_define([2,2],model,exprs,gr_i); return new BasicBlock(this.x); } QUANT_f.prototype.details = function QUANT_f() { return this.x; } QUANT_f.prototype.get = function QUANT_f() { var options = { pas:["Step",this.pas], meth:["Quantization Type (1-4)",this.meth], } return options; } QUANT_f.prototype.set = function QUANT_f() { this.pas = parseFloat((arguments[0]["pas"])) this.meth = parseFloat((arguments[0]["meth"])) this.x = arg1; graphics = arg1.graphics; exprs = graphics.exprs; model = arg1.model; while (true) { [ok,this.pas,this.meth,exprs] = scicos_getvalue("Set parameters",["Step","Quantization Type (1-4)"],list("vec",1,"vec",1),exprs); if (!ok) { break; } if (this.meth<1||this.meth>4) { message("Quantization Type must be from 1 to 4"); } else { rpar = this.pas; model.rpar = rpar; model.ipar = this.meth; switch (this.meth) { case 1: model.sim = "qzrnd"; case 2: model.sim = "qztrn"; case 3: model.sim = "qzflr"; case 4: model.sim = "qzcel"; } graphics.exprs = exprs; this.x.graphics = graphics; this.x.model = model; break; } } return new BasicBlock(this.x); } }