/* autogenerated from "macros/NonLinear/QUANT_f.sci" */ function QUANT_f() { QUANT_f.prototype.define = function QUANT_f() { this.pas = 0.1; this.meth = 1; this.model = scicos_model(); this.model.sim = new ScilabString(["qzrnd"]); this.model.in1 = new ScilabDouble([-1]); this.model.out = new ScilabDouble([-1]); this.model.rpar = new ScilabDouble([this.pas]); this.model.ipar = new ScilabDouble([this.meth]); this.model.blocktype = new ScilabString(["c"]); this.model.dep_ut = [true,false]; exprs = [[string(this.pas)],[string(this.meth)]]; gr_i = []; this.x = standard_define([2,2],this.model,exprs,gr_i); return new BasicBlock(this.x); } QUANT_f.prototype.details = function QUANT_f() { return this.x; } QUANT_f.prototype.get = function QUANT_f() { var options = { pas:["Step",this.pas], meth:["Quantization Type (1-4)",this.meth], } return options; } QUANT_f.prototype.set = function QUANT_f() { this.pas = parseFloat(arguments[0]["pas"]) this.meth = parseFloat(arguments[0]["meth"]) this.x = arg1; graphics = arg1.graphics; exprs = graphics.exprs; this.model = arg1.model; while (true) { [ok,this.pas,this.meth,exprs] = scicos_getvalue("Set parameters",["Step","Quantization Type (1-4)"],list("vec",1,"vec",1),exprs); if (!ok) { break; } if (this.meth<1||this.meth>4) { message("Quantization Type must be from 1 to 4"); } else { rpar = this.pas; this.model.rpar = new ScilabDouble([rpar]); this.model.ipar = new ScilabDouble([this.meth]); switch (this.meth) { case 1: this.model.sim = new ScilabString(["qzrnd"]); case 2: this.model.sim = new ScilabString(["qztrn"]); case 3: this.model.sim = new ScilabString(["qzflr"]); case 4: this.model.sim = new ScilabString(["qzcel"]); } graphics.exprs = exprs; this.x.graphics = graphics; this.x.model = this.model; break; } } return new BasicBlock(this.x); } }