/* autogenerated from "macros/Events/MFCLCK_f.sci" */ function MFCLCK_f() { MFCLCK_f.prototype.define = function MFCLCK_f() { this.nn = 2; this.dt = 0.1; this.model = scicos_model(); this.model.sim = new ScilabString("mfclck"); this.model.evtin = new ScilabDouble(1); this.model.evtout = [[1],[1]]; this.model.dstate = new ScilabDouble(0); this.model.rpar = new ScilabDouble(this.dt); this.model.ipar = new ScilabDouble(this.nn); this.model.blocktype = new ScilabString("d"); this.model.firing = [-1,0]; this.model.dep_ut = [false,false]; exprs = [[string(this.dt)],[string(this.nn)]]; gr_i = []; this.x = standard_define([3,2],this.model,exprs,gr_i); return new BasicBlock(this.x); } MFCLCK_f.prototype.details = function MFCLCK_f() { return this.x; } MFCLCK_f.prototype.get = function MFCLCK_f() { var options = { dt:["basic period (1/f)",this.dt], nn:["multiply by (n)",this.nn], } return options; } MFCLCK_f.prototype.set = function MFCLCK_f() { this.dt = parseFloat(arguments[0]["dt"]) this.nn = parseFloat(arguments[0]["nn"]) this.x = arg1; graphics = arg1.graphics; exprs = graphics.exprs; this.model = arg1.model; [ok,this.dt,this.nn,exprs] = scicos_getvalue("Set Multifrequency clock parameters",["basic period (1/f)","multiply by (n)"],list("vec",1,"vec",1),exprs); if (ok) { this.model.ipar = new ScilabDouble(this.nn); this.model.rpar = new ScilabDouble(this.dt); hh = this.model.firing; hh[2-1] = 0; this.model.firing = hh; graphics.exprs = exprs; this.x.graphics = graphics; this.x.model = this.model; } return new BasicBlock(this.x); } }