/* autogenerated from "macros/Electrical/NPN.sci" */ function NPN() { NPN.prototype.define = function NPN() { ModelName = "NPN"; PrametersValue = [[50],[0.1],[0],[0.02],[1.200e-10],[5.000e-09],[1.000e-12],[4.000e-13],[5.000e-13],[0.8],[0.4],[0.8],[0.333],[1.000e-15],[1.000e-15],[0.02585],[40]]; ParametersName = [["Bf"],["Br"],["Is"],["Vak"],["Tauf"],["Taur"],["Ccs"],["Cje"],["Cjc"],["Phie"],["Me"],["Phic"],["Mc"],["Gbc"],["Gbe"],["Vt"],["EMinMax"]]; model = scicos_model(); Typein = []; Typeout = []; MI = []; MO = []; P = [[100,90,-2,0],[0,50,2,0],[100,10,-2,0]]; PortName = [["C"],["B"],["E"]]; for (i=1;i<=size(P,"r");i+=1) { if (P[i-1][3-1]==1) { Typein = [[Typein],["E"]]; MI = [[MI],[PortName[i-1]]]; } if (P[i-1][3-1]==2) { Typein = [[Typein],["I"]]; MI = [[MI],[PortName[i-1]]]; } if (P[i-1][3-1]==-1) { Typeout = [[Typeout],["E"]]; MO = [[MO],[PortName[i-1]]]; } if (P[i-1][3-1]==-2) { Typeout = [[Typeout],["I"]]; MO = [[MO],[PortName[i-1]]]; } } model = scicos_model(); mo = modelica(); model.sim = ModelName; mo.inputs = MI; mo.outputs = MO; model.rpar = PrametersValue; mo.parameters = list(ParametersName,PrametersValue,zeros(ParametersName)); exprs = [["50"],["0.1"],["1.e-16"],["0.02"],["0.12e-9"],["5e-9"],["1e-12"],["0.4e-12"],["0.5e-12"],["0.8"],["0.4"],["0.8"],["0.333"],["1e-15"],["1e-15"],["0.02585"],["40"]]; gr_i = []; model.blocktype = "c"; model.dep_ut = [false,true]; mo.model = ModelName; model.equations = mo; model.in1 = ones(size(MI,"*"),1); model.out = ones(size(MO,"*"),1); this.x = standard_define([2,2],model,exprs,list(gr_i,0)); this.x.graphics.in_implicit = Typein; this.x.graphics.out_implicit = Typeout; return new BasicBlock(this.x); } NPN.prototype.details = function NPN() { return this.x; } NPN.prototype.get = function NPN() { var options = { Bf:["Bf : Forward beta",this.Bf], Br:["Br : Reverse beta",this.Br], Is:["Is : Transport saturation current",this.Is], Vak:["Vak : Early voltage (inverse), 1/Volt",this.Vak], Tauf:["Tauf: Ideal forward transit time",this.Tauf], Taur:["Taur: Ideal reverse transit time",this.Taur], Ccs:["Ccs : Collector-substrat(ground) cap.",this.Ccs], Cje:["Cje : Base-emitter zero bias depletion cap.",this.Cje], Cjc:["Cjc : Base-coll. zero bias depletion cap.",this.Cjc], Phie:["Phie: Base-emitter diffusion voltage",this.Phie], Me:["Me : Base-emitter gradation exponent",this.Me], Phic:["Phic: Base-collector diffusion voltage",this.Phic], Mc:["Mc : Base-collector gradation exponent",this.Mc], Gbc:["Gbc : Base-collector conductance",this.Gbc], Gbe:["Gbe : Base-emitter conductance",this.Gbe], Vt:["Vt : Voltage equivalent of temperature",this.Vt], EMinMax:["EMinmax: if x > EMinMax, the exp(x) is linearized",this.EMinMax], } return options; } NPN.prototype.set = function NPN() { this.Bf = parseFloat((arguments[0]["Bf"])) this.Br = parseFloat((arguments[0]["Br"])) this.Is = parseFloat((arguments[0]["Is"])) this.Vak = parseFloat((arguments[0]["Vak"])) this.Tauf = parseFloat((arguments[0]["Tauf"])) this.Taur = parseFloat((arguments[0]["Taur"])) this.Ccs = parseFloat((arguments[0]["Ccs"])) this.Cje = parseFloat((arguments[0]["Cje"])) this.Cjc = parseFloat((arguments[0]["Cjc"])) this.Phie = parseFloat((arguments[0]["Phie"])) this.Me = parseFloat((arguments[0]["Me"])) this.Phic = parseFloat((arguments[0]["Phic"])) this.Mc = parseFloat((arguments[0]["Mc"])) this.Gbc = parseFloat((arguments[0]["Gbc"])) this.Gbe = parseFloat((arguments[0]["Gbe"])) this.Vt = parseFloat((arguments[0]["Vt"])) this.EMinMax = parseFloat((arguments[0]["EMinMax"])) this.x = arg1; graphics = arg1.graphics; exprs = graphics.exprs; model = arg1.model; this.x = arg1; exprs = this.x.graphics.exprs; while (true) { [ok,this.Bf,this.Br,this.Is,this.Vak,this.Tauf,this.Taur,this.Ccs,this.Cje,this.Cjc,this.Phie,this.Me,this.Phic,this.Mc,this.Gbc,this.Gbe,this.Vt,this.EMinMax,exprs] = scicos_getvalue([["Set NPN block parameters:"],[""]],["Bf : Forward beta","Br : Reverse beta","Is : Transport saturation current","Vak : Early voltage (inverse), 1/Volt","Tauf: Ideal forward transit time","Taur: Ideal reverse transit time","Ccs : Collector-substrat(ground) cap.","Cje : Base-emitter zero bias depletion cap.","Cjc : Base-coll. zero bias depletion cap.","Phie: Base-emitter diffusion voltage","Me : Base-emitter gradation exponent","Phic: Base-collector diffusion voltage","Mc : Base-collector gradation exponent","Gbc : Base-collector conductance","Gbe : Base-emitter conductance","Vt : Voltage equivalent of temperature","EMinmax: if x > EMinMax, the exp(x) is linearized"],list("vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1),exprs); if (!ok) { break; } this.x.model.equations.parameters[2-1] = list(this.Bf,this.Br,this.Is,this.Vak,this.Tauf,this.Taur,this.Ccs,this.Cje,this.Cjc,this.Phie,this.Me,this.Phic,this.Mc,this.Gbc,this.Gbe,this.Vt,this.EMinMax); this.x.graphics.exprs = exprs; break; } return new BasicBlock(this.x); } }