//
// Copyright 2012 Josh Blum
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with io_sig program. If not, see .
#include "element_impl.hpp"
#include
#include
#include
#define REALLY_BIG size_t(1 << 30)
using namespace gnuradio;
void ElementImpl::mark_done(const tsbe::TaskInterface &task_iface)
{
if (this->block_state == BLOCK_STATE_DONE) return; //can re-enter checking done first
//flush partial output buffers to the downstream
for (size_t i = 0; i < task_iface.get_num_outputs(); i++)
{
if (not this->output_queues.ready(i)) continue;
SBuffer &buff = this->output_queues.front(i);
if (buff.length == 0) continue;
task_iface.post_downstream(i, buff);
this->output_queues.pop(i);
}
this->interruptible_thread.reset();
//mark down the new state
this->block_state = BLOCK_STATE_DONE;
//release upstream, downstream, and executor tokens
this->token_pool.clear();
//release allocator tokens, buffers can now call deleters
this->output_buffer_tokens.clear();
//release all buffers in queues
this->input_queues.flush_all();
this->output_queues.flush_all();
//tell the upstream and downstram to re-check their tokens
//this is how the other blocks know who is interested,
//and can decide based on interest to set done or not
for (size_t i = 0; i < task_iface.get_num_inputs(); i++)
{
task_iface.post_upstream(i, CheckTokensMessage());
}
for (size_t i = 0; i < task_iface.get_num_outputs(); i++)
{
task_iface.post_downstream(i, CheckTokensMessage());
}
if (ARMAGEDDON) std::cerr
<< "==================================================\n"
<< "== The " << name << " is done...\n"
<< "==================================================\n"
<< std::flush;
}
void ElementImpl::handle_task(const tsbe::TaskInterface &task_iface)
{
#ifdef WORK_DEBUG
WorkDebugPrinter(this->name);
#endif
//------------------------------------------------------------------
//-- Decide if its possible to continue any processing:
//-- Handle task may get called for incoming buffers,
//-- however, not all ports may have available buffers.
//------------------------------------------------------------------
if (not(
this->block_state == BLOCK_STATE_LIVE and
this->input_queues.all_ready() and
this->output_queues.all_ready()
)) return;
const size_t num_inputs = task_iface.get_num_inputs();
const size_t num_outputs = task_iface.get_num_outputs();
//const bool is_source = (num_inputs == 0);
//const bool is_sink = (num_outputs == 0);
this->work_io_ptr_mask = 0; //reset
//------------------------------------------------------------------
//-- sort the input tags before working
//------------------------------------------------------------------
for (size_t i = 0; i < num_inputs; i++)
{
if (not this->input_tags_changed[i]) continue;
std::vector &tags_i = this->input_tags[i];
std::sort(tags_i.begin(), tags_i.end(), Tag::offset_compare);
this->input_tags_changed[i] = false;
}
//------------------------------------------------------------------
//-- initialize input buffers before work
//------------------------------------------------------------------
size_t num_input_items = REALLY_BIG; //so big that it must std::min
bool inputs_done = false;
size_t output_inline_index = 0;
for (size_t i = 0; i < num_inputs; i++)
{
inputs_done = inputs_done or this->input_tokens[i].unique();
ASSERT(this->input_queues.ready(i));
bool potential_inline;
const SBuffer buff = this->input_queues.front(i, potential_inline);
void *mem = buff.get();
const size_t items = buff.length/this->input_items_sizes[i];
this->work_io_ptr_mask |= ptrdiff_t(mem);
this->input_items[i]._mem = mem;
this->input_items[i]._len = items;
this->work_input_items[i] = mem;
this->work_ninput_items[i] = items;
num_input_items = std::min(num_input_items, items);
this->consume_called[i] = false;
//inline dealings, how and when input buffers can be inlined into output buffers
//continue;
if (
potential_inline and
input_inline_enables[i] and
output_inline_index < num_outputs and
buff.get_affinity() == this->buffer_affinity
){
//copy buffer reference but push with zero length, same offset
SBuffer new_obuff = buff;
new_obuff.length = 0;
this->output_queues.push_front(i, new_obuff); //you got inlined!
output_inline_index++; //done do this output port again
}
}
//------------------------------------------------------------------
//-- initialize output buffers before work
//------------------------------------------------------------------
size_t num_output_items = REALLY_BIG; //so big that it must std::min
bool outputs_done = false;
for (size_t i = 0; i < num_outputs; i++)
{
outputs_done = outputs_done or this->output_tokens[i].unique();
ASSERT(this->output_queues.ready(i));
const SBuffer &buff = this->output_queues.front(i);
void *mem = buff.get(buff.length);
const size_t bytes = buff.get_actual_length() - buff.length - buff.offset;
const size_t items = bytes/this->output_items_sizes[i];
this->work_io_ptr_mask |= ptrdiff_t(mem);
this->output_items[i]._mem = mem;
this->output_items[i]._len = items;
this->work_output_items[i] = mem;
num_output_items = std::min(num_output_items, items);
}
//if we have outputs and at least one port has no downstream subscibers, mark done
if (outputs_done)
{
this->mark_done(task_iface);
return;
}
//------------------------------------------------------------------
//-- forecast
//------------------------------------------------------------------
if (this->forecast_enable)
{
forecast_again_you_jerk:
fcast_ninput_items = work_ninput_items;
block_ptr->forecast(num_output_items, fcast_ninput_items);
for (size_t i = 0; i < num_inputs; i++)
{
if (fcast_ninput_items[i] <= work_ninput_items[i]) continue;
num_output_items = num_output_items/2; //backoff regime
if (num_output_items) goto forecast_again_you_jerk;
this->forecast_fail = true;
this->conclusion(task_iface, inputs_done);
return;
}
}
this->forecast_fail = false;
//------------------------------------------------------------------
//-- the work
//------------------------------------------------------------------
work_noutput_items = num_output_items;
if (this->enable_fixed_rate) work_noutput_items = std::min(
work_noutput_items, myulround((num_input_items)*this->relative_rate));
this->work_task_iface = task_iface;
this->work_ret = -1;
if (this->interruptible_thread)
{
this->interruptible_thread->call();
}
else
{
this->task_work();
}
this->work_task_iface.reset();
const size_t noutput_items = size_t(work_ret);
if (work_ret == Block::WORK_DONE)
{
this->mark_done(task_iface);
return;
}
//------------------------------------------------------------------
//-- process input consumption
//------------------------------------------------------------------
bool input_allows_flush = true;
for (size_t i = 0; i < num_inputs; i++)
{
ASSERT(enable_fixed_rate or work_ret != Block::WORK_CALLED_PRODUCE);
const size_t items = (this->consume_called[i])? this->consume_items[i] : (myulround((noutput_items/this->relative_rate)));
this->consume_items[i] = 0;
this->items_consumed[i] += items;
const size_t bytes = items*this->input_items_sizes[i];
input_allows_flush = input_allows_flush and this->input_queues.consume(i, bytes);
}
//------------------------------------------------------------------
//-- process output production
//------------------------------------------------------------------
for (size_t i = 0; i < num_outputs; i++)
{
const size_t items = (work_ret == Block::WORK_CALLED_PRODUCE)? this->produce_items[i] : noutput_items;
this->produce_items[i] = 0;
if (items == 0) continue;
SBuffer &buff = this->output_queues.front(i);
this->items_produced[i] += items;
const size_t bytes = items*this->output_items_sizes[i];
buff.length += bytes;
//only pass output buffer downstream when the input is fully consumed...
//Reasoning: For the sake of dealling with history, we can process the mini history input buffer,
//and then call work again on the real input buffer, but still yield one output buffer per input buffer.
if (input_allows_flush)
{
task_iface.post_downstream(i, buff);
this->output_queues.pop(i);
}
}
//------------------------------------------------------------------
//-- trim the input tags that are past the consumption zone
//-- and post trimmed tags to the downstream based on policy
//------------------------------------------------------------------
for (size_t i = 0; i < num_inputs; i++)
{
std::vector &tags_i = this->input_tags[i];
const size_t items_consumed_i = this->items_consumed[i];
size_t last = 0;
while (last < tags_i.size() and tags_i[last].offset < items_consumed_i)
{
last++;
}
//follow the tag propagation policy before erasure
switch (this->tag_prop_policy)
{
case Block::TPP_DONT: break; //well that was ez
case Block::TPP_ALL_TO_ALL:
for (size_t out_i = 0; out_i < num_outputs; out_i++)
{
for (size_t tag_i = 0; tag_i < last; tag_i++)
{
Tag t = tags_i[tag_i];
t.offset = myullround(t.offset * this->relative_rate);
task_iface.post_downstream(out_i, t);
}
}
break;
case Block::TPP_ONE_TO_ONE:
if (i < num_outputs)
{
for (size_t tag_i = 0; tag_i < last; tag_i++)
{
Tag t = tags_i[tag_i];
t.offset = myullround(t.offset * this->relative_rate);
task_iface.post_downstream(i, t);
}
}
break;
};
//now its safe to perform the erasure
if (last != 0) tags_i.erase(tags_i.begin(), tags_i.begin()+last);
}
//------------------------------------------------------------------
//-- Message self based on post-work conditions
//------------------------------------------------------------------
this->conclusion(task_iface, inputs_done);
}
inline void ElementImpl::conclusion(const tsbe::TaskInterface &task_iface, const bool inputs_done)
{
//if there are inputs, and not all are provided for,
//tell the block to check input queues and handle done
if (inputs_done)
{
this->block.post_msg(CheckTokensMessage());
return;
}
//still have IO ready? kick off another task
if (this->input_queues.all_ready() and this->output_queues.all_ready())
{
this->block.post_msg(SelfKickMessage());
return;
}
}