

Dual Degree Project

Virtual Chemical Engineering Labs through Aakash

Aviral Chandra (09D02030)

Guide: Prof. Kannan Moudgalya

DEPARTMENT OF CHEMICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY

MUMBAI, 400076

23rd October 2013

ACCEPTANCE CERTIFICATE

The project report on “Virtual Chemical Engineering Labs through Aakash” submitted by

Mr. Aviral Chandra (Roll No. 09D02030) may be accepted for evaluation.

Place:

Department of Chemical Engineering

 IIT Bombay

Date:

Prof. Kannan Moudgalya

 DECLARATION OF AUTHORSHIP

I, Aviral Chandra, declare that this thesis titled, 'Virtual Chemical Engineering Labs through

Aakash' and the work presented in it are in my own words. I have cited and referenced the

work which I referred to while development. I confirm that I have abided by all the principles

of academic honesty and that any finding opposite to my claims could evoke disciplinary

actions. This work was done mainly towards the requirement of M.Tech degree in Chemical

Engineering at I.I.T Bombay, I further clarify that

The references contain the research papers , that were consulted

All sources of help have been acknowledged

Signature

Aviral Chandra

Roll No. 09D02030

ACKNOWLEDGEMENTS

I take this opportunity to express my gratitude to my project guide, Professor Kannan M

Moudgalya under whose esteemed guidance I got an opportunity to learn quite a lot about the

field of remote labs and their great utility in the field of Chemical Engineering.

The submission made under this report is a result of many discussions with my guide which

motivated me to undertake programming and development with a lot of zeal . Under his able

guidance, I have been able to develop developmental skills for which I am extremely grateful.

I would also like to thank Kannan sir for linking me with the FOSSEE team at IIT Bombay.

He has been a great mentor, motivator and always provided the right resources and guidance

to overcome the roadblocks faced in the project.

I would take this opportunity to also thank Mr. Manoj Gudi who has always been a great co-

developer. The development has been a collaborative effort with Manoj who has been a

phenomenal support as his knowledge of hardware and low-level implementation is

outstanding.

SYMBOLS AND CONSTANTS USED

Gc : Denotes the controller transfer function

G: Denotes the plants transfer function

p: denotes the proportional controller gain

i: denotes the integral mode time constant

d: denotes the derivative mode time constant

a: represents the coefficient of ‘s’ in the numerator in the definition of plants transfer function

of first degree

b: represents the constant in the numerator in the definition of plants transfer function of first

degree

d0: represents the coefficient of ‘s’ in the denominator in the definition of plants transfer

function of first degree

d1: represents the constant in the denominator in the definition of plants transfer function of

first degree

f: a constant that specifies the window size

s: a symbolic variable available in scilab

α: denotes the version of Sandhi ready to be released

ABSTRACT

Virtual Labs aims at providing remote access to physical laboratories. Ease of access, ability

to learn at one’s own pace and the possibility of reuse make it a very attractive proposition.

With the aforementioned benefits remote labs can clearly improve learning objectives.

While the idea of remote labs seems promising, it poses various challenges from the

implementation standpoint. Remote labs include experiments which need data acquisition

from remote hardware, running algorithms on a remote hardware and performing simulations.

There are various software tools that perform data acquisition, run algorithms on a remote

hardware and can run simulations. Most of these are proprietary and hence come at a huge

one-time cost and recurring license costs. The use of proprietary technology sounds quite

unpromising especially when planning an initiative like remote labs for the masses. It makes

the infrastructure unsustainable as the volumes increase.

The NMEICT initiative on virtual labs relies heavily on LabVIEW a proprietary data

acquisition tool, also known for its visual programming editor.

This thesis lays down a framework to systematically develop an open source functional clone

to LabVIEW. It has been named SANDHI, which comes from Devnagri and means to add or

connect. In essence SANDHI is an in-house visual programming editor built exclusively for

control system application. SANDHI has been developed in around 20 weeks. This thesis

exposes the development cycle which eventually led to SANDHI.

The thesis also mentions that SANDHI is aimed to functionally replace LabVIEW in certain

applications in the next development cycle.

Keywords: Virtual Labs, NMEICT, LabVIEW, SANDHI, proprietary, open-source

Table of Chapters

1 SLP Review .. 1

2 Developments ... 2

2.1 GNU Radio .. 2

2.2 Blockly .. 2

2.3 Xcos .. 2

2.4 sciscipy ... 2

2.5 GRAS for Feedback solution ... 3

2.6 Sandhi... 3

3 GNU Radio to Sandhi ... 5

3.1 Identified Scilab function for implementation in python using sciscipy 5

3.2 Abstraction .. 8

3.2.1 A brief on development with the appropriate code snippets 9

3.3 Generating the view .. 11

3.4 Open loop testing of the csim and dsimul blocks ... 12

3.4.1 csim block : input vector source .. 12

3.4.2 csim block: signal source .. 13

3.4.3 dsim block: signal source .. 14

3.5 GRAS and the feedback ... 14

4 Sandhi... 17

4.1 Why Sandhi? ... 17

4.2 Implementation of csim in Sandhi in a feedback mode ... 18

4.3 Implementation of dsimul in Sandhi ... 21

5 Sandhi on Aakash ... 22

6 Customizing Sandhi .. 24

6.1 How can one write a block on their own? ... 24

6.2 Methods of implementation.. 24

6.2.1 C++ based implementation ... 24

6.2.2 Python based implementation .. 24

7 Importance of Sandhi to Chemical Engineers .. 25

8 Comparison of LabVIEW and Sandhi .. 26

9 Roadmap .. 27

9.1 Where do we stand? And Proposed Future Work ... 27

9.2 Plotting library .. 27

9.3 Developing the network communication protocols and remote lab for the users 27

10 References .. 29

LIST OF APPENDICES

APPENDIX 1 .. 32

APPENDIX 2 ... 34

APPENDIX 3 ... 36

APPENDIX 4 ... 37

APPENDIX 5 ... 38

APPENDIX 6 ... 39

LIST OF FIGURES

Figure 1: Proposed remote labs architecture ... 1

Figure 2:Sciscipy implementation .. 3

Figure 3: csim implementation in scilab ... 6

Figure 4: csim implementation in python ... 7

Figure 5: Creating csim blocks(csim.py left partition) out of csim implementation in

python(csim_sci.py right partition) ... 8

Figure 6:gras, numpy and csim blocks.. 9

Figure 7: declaring parameters for csim blocks .. 9

Figure 8:handling the input items in the array .. 10

Figure 9: protocol for mapping outputs to inputs.. 10

Figure 10:Generating the xml blocks and the view(a side by side rendering) 11

Figure 11: python cheetah script passing the parameters P, I, D, n0, n1, d0, d1 and window length ... 12

Figure 12: csim taking input from a vector source, o/p vector in lower left ... 12

Figure 13: csim taking input from a signal source, o/p vector in lower left ... 13

Figure 14: dsim taking input from a signal source, o/p vector in lower left ... 14

Figure 15: Implementation of GNU Radio stock scheduler, generated from gr-modtool. Import gr

imports the stock process scheduler .. 15
Figure 16: Implementation of gras, which is GNU-Radio Advanced Scheduler written for our program

 .. 15

Figure 17:The feedback flow graph implemented for the first time in GNU Radio 16

Figure 18: Sandhi and a few of the important blocks ... 18

Figure 19: closed loop implementation of csim on Sandhi with a vector source 19

Figure 20: closed loop implementation of csim on Sandhi with a signal source 20

Figure 21:closed loop implementation of dsim on Sandhi with vector source 21

Figure 22: closed loop implementation of dsim on Sandhi with signal source 21

Figure 23: Compiling Sandhi on Aakash .. 22

Figure 24: Sandhi on Aakash ... 23

Figure 25: Adapted feeback structure from a paper[6] in references ... 25

Figure 26: A static plot generated by dumping data in python workspace. This would be fixed by the

time Sandhi is released .. 28

LIST OF APPENDIX FIGURES

APPENDIX Figure 1:finding the main.py file .. 32

APPENDIX Figure 2: scscsipy changes ... 36

APPENDIX Figure 3: Series of screenshots illustrating GRAS build ... 37

Table 1: A comparison table between LabVIEW and Sandhi .. 26

1

1 SLP Review

This project involves development and deployment of virtual labs for mobile platform. The

SLP stage of the project consisted of literature survey, understanding and development of

some preliminary tools to help in the main project.

The proposed architecture for the virtual lab in the SLP stage is as under

Figure 1: Proposed remote labs architecture

The first problem at hand is identification and development of requisite tools which would

help accomplish the final goal.

GNU-Radio was identified as a very promising Data Acquisition tool which provided the

following benefits.

 It has a massive driver library, thereby it supports a good range of hardware

 It has a clean GUI, various widgets that can be used to tweak the inputs in real time

 It’s possible to implement blocks entirely in python as well as C++

 Its real time response to changes in calculation parameters is extraordinary.

GNU Radio appealed as a promising DAQ tool with a good driver support, clean GUI, and

the potential to become a functional visual programming editor for control system

applications.

This theses captures the development cycle of GNU Radio which could functionalize it to

perform interaction with scilab’s computation engine and work as a potential replacement to

LabVIEW.

Client Side

 Standalone GUI’s

 Browser based

GUI/Applet

Internet

Scilab

GNU Radio

Hardware

Codes

Server Side

2

2 Developments

This thesis captures a development cycle which led to control system blocks in GNU Radio,

it’s integration with scilab’s computation engine and implementation of feedback. Thereby

making it an open source visual programming editor for control system applications and a

potential clone to LabVIEW.

2.1 GNU Radio

It is an open source radio implementation which was supposed to be used by the Electrical

Engineering community for the purpose of digital signal processing. It has a rich module of

implemented device drivers and thereby supports a range of devices. GNURadio is a very

promising visual programming tool as it makes it very easy for the developer to abstract his

code, and provides a very easy to use framework to the developer. On top of all these

advantages it is open source and hence making it potentially very attractive alternative to

control system enthusiasts, who use SIMULINK/ LabVIEW for doing rapid prototyping of

control schemes.

2.2 Blockly
Though the development started with GNURadio in mind, it was a matter of time before it

was understood that the current build of GNU Radio was incapable of supporting feedback.

 Feedback is a very vital component when we talk of Control Engineering. Working with the

stock scheduler of GNU Radio it looked almost impossible to implement feedback without

hard-coding it in the system. Hard-coding is not a good solution to any problem. If the

developmental work has to be futuristic, it has to be adaptable and dynamic. Blockly entirely

developed at MIT is a visual programming tool, using which school kids can learn

programming easily.

Since it looked very intuitive and flexible, it was surely an option to look at. It's view is

implemented entirely in Javascript and while it was a great option to work with, the

challenges associated with blockly were that it didn't look easy to integrate a computation

engine with implemented control libraries(like Scilab) with blockly.

2.3 Xcos
Xcos is a great visual programming editor. It is quite similar to SIMULINK in many aspects.

It gives the luxury of ready control libraries in scilab. The development cycle around Xcos

was planned, however it had to be stopped because of xcos's rigid framework was not

adaptable to UI modifications in real time. It is not capable of supporting basic hardwares and

writing device drivers is a huge task. This option was dropped on account of limited

development time.

2.4 sciscipy
Sciscipy is an Application Programming Interface aimed for Inter Process

Communication with scilab when in workspace of Python programming language.

The essence of open source is to develop on the work of others. This helps save a lot of time

in the development cycle. It can be claimed that it's analogous to building cars and not trying

to re-invent the wheel. 'sciscipy' is the wrapper which helps us call scilab from python. This

API is extremely useful as it helps us import scilab libraries directly in the python workspace.

3

Sandhi is a pure python implementation and hence this API comes in handy in

implementation of control libraries of scilab.

Screenshot of how sciscipy works is given below.

Figure 2:Sciscipy implementation

As can be seen here the sciscipy helped us import functions of scilab into python workspace.

It becomes clear on observing the last command. It shows that rand is not defined in python.

We have clearly taken advantage of a scilab functions to generate output in python

workspace. It's extremely convenient to work with these functions to generate plots and

connect programming blocks when in python workspace.

We identified the problems behind the broken API. The broken API was a very long-standing

issue in the python community. The APPENDIX 3 lists down the complete solution.

2.5 GRAS for Feedback solution
GRAS stands for GNU Radio Advanced Scheduler, it has been used in all the

developments. It was impossible to implement the feedback with the stock application

scheduler. Application Scheduler is responsible for threading, controlling the data flow and

managing the use of the computer resources like processor time to various processes.

2.6 Sandhi
This thesis presents development of a novel visual programming framework based on

GNURadio. It has been named Sandhi as it means connecting and conveys our idea of

connecting various blacks to come up with a robust visual program.

4

Sandhi is aimed to become a visual programming tool for replacing LabVIEW. It's current

form is raw, however if the control community gets excited by this tool, this tool can achieve

a lot of what LabVIEW can do. The release of α version of Sandhi is under way

The entire development cycle has been given and it's adaptability for any control library

explained. The challenges faced during development have been clearly mentioned, so that a

new developer does not face similar issues while trying to develop Sandhi on their own.

5

3 GNU Radio to Sandhi

This chapter exposes the development cycle which eventually led to Sandhi. It starts from

capturing the difference of implementation of same scilab libraries in scilab and python

workspace. It then goes on and eventually covers the abstraction of these functions made so

that the user has to interact with a well defined system and not get into writing the functions

all by themselves. It is very important for a good visual programming editor to be able to

implement simple view even for the most complex development. The start of the chapter and

the middle sections are just meant to focus on the complexities that arise and how they should

be handled in a development cycle.

3.1 Identified Scilab function for implementation in python using sciscipy
a) csim - used for generating continuous time response of linear systems,

b) dsimul is used for generating discrete time response of linear systems.

For the purpose of illustration impulse and step inputs are chosen and step and impulse

response have been captured. The plots in python workspace have been generated using the

python plotting libraries. Section 3.1 has 2 snapshots which cover these implementation.

Implementation in scilab

The scilab implementation was a normal scilab code and a plot was generated. The scilab

function used for this purpose was 'syslin'. Syslin is used to define linear systems. The

symbolic computation was invoked by the first statement (s=%s). Two linear systems were

defined, for the sake of discussion one can refer to Gc as the controller and G as the plant.

We took a product of both, converted the product to state space and generated a constinuous

time step response.

The same job was imitated in python and as can be seen in the second screenshot, it was done

using the wrapper sciscipy and the plots were generated in python workspace using python's

plotting libraries. What is to be observed in the second screenshot is that once the csim is

defined in python workspace any input can be passed into the csim from the python

workspace. This gives us tremendous advantage as the visual programming editor Sandhi has

been implemented entirely in python. The source blocks of GNU Radio have been retained in

Sandhi and as can be seen in Chapter 5, a proof of concept has been given for using the

already implemented signal source blocks for the purpose of studying simulations

6

3.1.1 Screenshot of scilab implementation

Figure 3: csim implementation in scilab

A scilab implementation of csim, for a step input. The input had to be hard coded in here.

Even when we functionalize it, we still remain in the scilab workspace and the abstraction

like a user interface is possible but is not very stable. Even if the abstraction like a UI were to

be implemented it would certainly not have had the advantages of advanced scheduler, and

hence feedback.

Not going ahead with xcos was due to the fact that xcos has limitations when it comes to real-

time data operations, as it's application scheduler is quite obsolete.

7

3.1.2 Screenshot of python implementation

Figure 4: csim implementation in python

As can be seen above the two plots are exactly similar, however they are implemented in

workspace of two different languages. The sciscipy helped us make inter process calls to

scilab only when we needed it. This wrapper helps us use the scilab's computation engine. It

is worth mentioning that at no point in time the user realizes that the scilab's computation

engine is being used.

Since Sandhi is deployed entirely in python and it uses an advanced scheduler, the above

block would come in handy when we are trying to handle real-time operations.

8

3.2 Abstraction

“In computer science, abstraction is the process by which data and programs are defined

with a representation similar in form to its meaning (semantics), while hiding away the

implementation details”

-Wikipedia(http://en.wikipedia.org/wiki/Abstraction_(computer_science))

It is very important to hide away the unnecessary implementation details, however this report

shows all the steps of the 5-month development cycle, which led to the software Sandhi. It

can help developers in the future to understand the steps involved while developing a

software.

From a preliminary observation one can see that the screen partition to the right has no

values. It is the first step in the abstraction of functions. Moreover it is the first step

towards synthesis of blocks from raw python implementation of scilab functions.

Figure 5: Creating csim blocks(csim.py left partition) out of csim implementation in python(csim_sci.py right partition)

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Program_(machine)
http://en.wikipedia.org/wiki/Representation_(mathematics)
http://en.wikipedia.org/wiki/Semantics#Computer_science
http://en.wikipedia.org/wiki/Implementation#Computer_Science
http://en.wikipedia.org/wiki/Abstraction_(computer_science)

9

3.2.1 A brief on development with the appropriate code snippets

Figure 6:gras, numpy and csim blocks

The first line imports the advanced scheduler, this process scheduler is invoked and as can be

seen in the third line we explicitly specify that csim is an advanced scheduler block and hence

it can use the advanced application scheduler that comes with gras.

The second line imports a powerful python scientific package. Among other things it has a

very efficient and powerful N-dimensional array object. It would make our life much simpler

as array operations in python blocks having numpy array are extremely convenient.

The method __init__ is a python constructor which creates an empty class object. It is used

later to access various methods of the class. It also defines the input/output signature for the

numpy array that can be handled by the instances of csim class. Here they are float data

types. Self is used to convey within this class

Figure 7: declaring parameters for csim blocks

As can be seen above set_parameters method is used to declare the parameters to be used by

the program/block that implements csim class. It would become clear in the later chapters

why the word program/block was used intentionally.

The seven parameters declared here are from the following equation

Equation:

Gc = (𝒑 +
𝟏

𝒊∗𝒔
+ 𝒅 ∗ 𝒔) - Equation 1

G =
𝒂∗𝒔+𝒃

𝒅𝟏∗𝒔+𝒆
 - Equation 2

10

The eighth parameter ‘f’ specifies the i/o mapping. It helps map exact number of inputs to

same number of outputs. It could be one input mapped to one output or an input vector of any

finite size mapped to output vector of the same size.

Figure 8:handling the input items in the array

This snippet implements the logic that length of input items should only be an integral

multiple of the window size. It seems only logical to have this condition since it becomes

difficult for the application scheduler to handle exceptions which ultimately lead to process

halt/ unresponsive programs.

Figure 9: protocol for mapping outputs to inputs

This snippet captures the ability of python to map vector inputs to vector outputs using

numpy arrays. On a careful observation it can be seen that in the mapping step just above the

print statement, the input array has been converted to list. It was done achieved after many hit

and trials as it was unknown that scilab was incapable of handling numpy array above certain

sizes. However scilab is perfectly capable of handling lists of any size.

11

3.3 Generating the view

Figure 10:Generating the xml blocks and the view(a side by side rendering)

The out of tree module that gets created by the gr-modtool also helps us generate a skeleton

for the xml block. The xml block defines the view. Upon completion it is included inside a

hidden file in the home folder.

Say the xml block was called csim.xml

It has to be included in /home/aviral/.grc_gnuradio/ so that it appears in the GRC when the

GRC is started using the command gnuradio-companion from the command line.

12

Figure 11: python cheetah script passing the parameters P, I, D, n0, n1, d0, d1 and window length

3.4 Open loop testing of the csim and dsimul blocks
The dsimul blocks were developed using the same protocol, the APPENDIX 7 can be looked

up to see its development code.

3.4.1 csim block : input vector source

Figure 12: csim taking input from a vector source, o/p vector in lower left

13

3.4.2 csim block: signal source

Figure 13: csim taking input from a signal source, o/p vector in lower left

Note: This is the first time we've actually seen the advantage of having a visual programming

language rich in source blocks. This perfectly justifies why an Electrical Engineering project

was forked and moulded for a control system application.

14

3.4.3 dsim block: signal source

Figure 14: dsim taking input from a signal source, o/p vector in lower left

The dsiml function of scilab has been used to create the dsim block shown here. It gives an

option to specify the plant-controller parameters and step size required to simulate it in an

open loop mode.

3.5 GRAS and the feedback
Stock Scheduler and Advanced Scheduler implementations have been illustrated below. It

becomes clear from inspection of the screenshots that the blocks use an application scheduler

which is imported in the second line in the first program and first line of the second program.

The stock scheduler fails as the hyper-threading library that's used by the program is not

equipped to release threads pertaining to feedback situations. Feedback was made possible by

collaborative development with a US-based developer Josh Blum, who re-wrote the threading

library for our use-case.

15

Figure 15: Implementation of GNU Radio stock scheduler, generated from gr-modtool. Import gr imports the stock

process scheduler

Figure 16: Implementation of gras, which is GNU-Radio Advanced Scheduler written for our program

Josh Blum, understood the roadblock which was stopping GNURadio from becoming a

feedback-enabled control systems visual programming editor. Josh wrote a new application

scheduler GRAS and handed it over for this application.

The compilation and build logic of this scheduler from the source code has been given in the

APPENDIX 4

16

3.5.1 The Feedback flow-graph

The feedback flowgraph is generated by using the subtract block with preload set to 1. It

works for the given scheduler and generates output as can be seen in the screenshot given

below. It's worth mentioning that this flow-graph can never work with the stock scheduler

since the stock scheduler's application scheduling can't understand feedback.

Figure 17:The feedback flow graph implemented for the first time in GNU Radio

17

4 Sandhi
Connecting blocks

4.1 Why Sandhi?
GNU Radio has a plethora of blocks which are of no use to us. They are appropriate only for

electrical engineering applications. It made sense to remove these blocks and clean up the

User Interface.

• Sandhi implements only the control relevant blocks developed so far.

• Sandhi has access to scilab's computation engine and scilab's control libraries via

sciscipy

• Sandhi is feedback ready as the advanced scheduler has been made available for

Sandhi.

• Sandhi has the conventional driver support available to GNU Radio and still carries

the various sources, sinks and math operation blocks, that can be used efficiently to

carry out simulations.

The commands that are followed for installing the software using CMake are as under:

a) mkdir build

b) cd build/

c) cmake ../

d) make

e) make install

Clean UI, only control relevant blocks were retained by editing the CMake rules. CMake is a

configuration file which is used to organize the software and its dependencies in the root file

system It sets all the necessary file paths and makes the software compile ready. It also takes

care of the hardware architecture on which the software is to be built. The CMake rules were

edited with the help of Manoj and it was made appropriate to run on a 64-bit device as well

as arm device.

18

Figure 18: Sandhi and a few of the important blocks

4.2 Implementation of csim in Sandhi in a feedback mode
csim was implemented in Sandhi in the feedback mode and it was tested with two different

signal source blocks in the feedback mode. The feedback is implemented by adding the

subtract block as we work under the assumption that an error is fed to the plant-controller

block whose dynamics have been coupled in csim.

The subtract block was initialized with a preload equal to 1 and the vector size was kept same

as that of the signal source block. It would become clear in the next few screenshots.

19

Figure 19: closed loop implementation of csim on Sandhi with a vector source

20

Figure 20: closed loop implementation of csim on Sandhi with a signal source

We used an additional stream to vector block with number of items equal to the vector length

the blocks are capable of handling in this situation. It converts the constant stream of data

into chunks of vectors of length = vector length. It has to be specified while connecting this

block.

It is important to set the preload condition of the subtract block equal to one in order to

execute this flow-graph.

21

4.3 Implementation of dsimul in Sandhi

Figure 21:closed loop implementation of dsim on Sandhi with vector source

Figure 22: closed loop implementation of dsim on Sandhi with signal source

22

5 Sandhi on Aakash

The following screen shot captures the process of compilation and installation of Sandhi on

Aakash. It would be available for test by the panel on the presentation day.

Figure 23: Compiling Sandhi on Aakash

Aakash tablet is an arm device, so Sandhi has to be compiled and installed in its environment.

The normal compile and install time of Sandhi for arm devices stands at around 8 hours. The

screenshot shown below shows Sandhi on Aakash.

Compiling Sandhi for Aakash completes the development cycle full circle. It enables the user

to execute all the previously shown flow graphs from Aakash.

23

Figure 24: Sandhi on Aakash

24

6 Customizing Sandhi

6.1 How can one write a block on their own?

One can start writing a block in Sandhi using the gr-modtool. It serves as a great guideline to

implement the blocks in GRC (GNU Radio Companion – the UI of GNU Radio). It is very

important to look at the steps given in the chapters 2 and 3 to understand the development

cycle. It captures a development cycle of around 20 weeks.

This documentation is also aimed at cutting short the development time of a new developer as

the limitations of GNU Radio from control standpoint got exposed at a much later stage.

It is highly recommended that a new developer should stick to the protocol followed in

APPENDIX 5 and Chapter 3.

The GUI can be modified and further improved by the developer if the developer takes keen

interest in design aspects of User Interface

6.2 Methods of implementation

There are two ways of implementing blocks in Sandhi. The two techniques mentioned below

have their own pros and cons.

6.2.1 C++ based implementation

If the user is striving for performance the blocks should be implemented in C++. C++ is a

compiled language, thereby it converts the code directly into a native code of the particular

machine. This makes C++ faster.

However with C++ the development time increases multifold. In the C++ implementation the

swig wrapper generate python objects at runtime to be used by the python-cheetah script used

to pass values to the functions from the GRC.

6.2.2 Python based implementation

Python is an interpreted language. At runtime byte code are generated which are converted to

native machine code by some other language.

However python has a very rapid development cycle. With a little performance tradeoff, it

gives the user a very rapid development cycle to prototype their ideas. However it is highly

recommended that performance critical systems should be written in C++.

25

7 Importance of Sandhi to Chemical Engineers

The use of feedback is to improve the performance of scientific and industrial equipment.

The fundamental premise of feedback loops is to take into account the actual measurements

and hence compute the actuations in order to meet the operational specifications. This finds a

lot of applications in areas like Process Control.

Control solutions require hardware interfacing, such as sending and receiving data from

sensors, actuators. The transmission and reception of information is carried out using DAQ

tools like LabVIEW.

The real-time control the output is made available to the system and the deviation is

calculated from the desired o/p specifications. This error is systematically reduced and hence

the output specifications are achieved.

Appropriate actuators and amplifiers allow the user to control the physical systems. A flow

diagram of one such control system is given below

Figure 25: Adapted feeback structure from a paper[6] in references

(1)The measurement is converted into a digital signal a number here (2) it is then compared

with a reference value (3) in the control algorithm block. The resulting command (4) is

converted to an analog signal (5) and then applied to the physical system

Instrumentation and control are a very important part of setting up any chemical unit. The

installation cost of these systems could be quite high.

Sandhi is being projected as an open source alternative to LabVIEW, and has the potential to

substantially reduce the cost of setting up a remote lab for process control. A very holistic

development approach is being taken and by the next phase a few LabVIEW applications

would be functionally replaced by LabVIEW.

Control

Algorithms A/D D/A
Physical

Systems

1 2 4 5

3

Measurement

26

8 Comparison of LabVIEW and Sandhi

Table 1: A comparison table between LabVIEW and Sandhi

LabVIEW Sandhi

LAbVIEW or Laboratory Virtual Instrument

Engineering Workbench is a proprietary

software for visual programming from

National Instruments(NI)

Sandhi is an open source software built on

GNU Radio; Sandhi can be used primarily

for system simulation.

Provides built in hardware interfacing and

DAQ tools, drivers for all NI DAQ

cards(which are also proprietary in nature)

Inherits drivers from GNU Radio’s

UHD(Universal Software Radio Peripheral

Hardware Driver) module and COMEDI

Contains signal processing blocks,

controller blocks, blocks for solving linear

algebraic equation, advanced calculus etc.

which are abstracted by simple intuitive

blocks

Inherits advanced signal processing blocks

from GNU Radio, contains basic control

system simulation blocks as of yet, along

with basic mathematics blocks.

Only LabVIEW Full and Professional

Development systems can be interfaced

with MATLAB using ActiveX technology

Sandhi can harness various computational

engines; currently it can be interfaced with

Scilab (using Sciscipy), GNU Octave, and

Python libraries.

LabVIEW runs only on MS Windows as

well as Linux for X86 and X64 architecture

Sandhi can be compiled on Windows and

Linux for X86, X64 as well as ARM

devices.

It offers graphical programming for many of

microcontroller and FPGA kits(Field

Programmable Gate Arrays).

Sandhi currently cannot program embedded

devices.

27

9 Roadmap

9.1 Where do we stand? And Proposed Future Work
Sandhi has taken the shape of a visual programming editor. A rapid development cycle has

been developed and it can easily be adapted to use many other control libraries available in

Scilab. It’s the combined responsibility of the control community and our team to start

functionally replacing LabVIEW applications by Sandhi.

Sandhi’s device support is explained by the fact that it supports COMEDI drivers. Moreover

it’s based on a python framework, which makes all the free and open drivers available in

python available to Sandhi.

The α version is ready and is to be released by November 1st 2013.

The future development revolves around functionally replacing a few LabVIEW

implementation in Sandhi. The plan is also to try and functionally port LabVIEW based

Virtual Lab applications by Sandhi as possible. It could be a great testing ground for our

software.

9.2 Plotting library
A plotting library is already under-way and would be fixed by the time we release the α

version of our software, which is around November 1st 2013. The conventional plot blocks

are not working with our control blocks, they are giving erroneous plots as they are taking

some erroneous pre-load condition and re-initializing after some vector length. The

debugging has already started and it would be fixed in a matter of week.

9.3 Developing the network communication protocols and remote lab for

the users
The APPENDIX 1 shows implementation of a network protocol to exchange data to and from

a server. It’s a lightweight URL based communication protocol implemented entirely in

python.

Given the premise of remote labs, it’s important for the client and the server to exchange

data. Such a data exchange has been shown and it’s implementation explained. The next

phase would be about connecting these blocks and coming up with a novel remote lab.

28

Figure 26: A static plot generated by dumping data in python workspace. This would be fixed by the time Sandhi is

released

29

10 References
 [1]Arquimedes Barrios , Stifen Panche , Mauricio Duque , Victor H. Grisales , Flavio

Prieto, José L. Villa, Philippe Chevrel, Michael Canu: A multi-user remote academic

laboratory system, Article, Elseveir: Computers and Education,

Article history:

Received 28 April 2012

Accepted 17 October 2012

 [2]Dictino Chaos1;*, Jes ´us Chac´on1, Jose Antonio Lopez-Orozco2 and Sebasti´an

Dormido1 : Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab-

VIEW

1)Department of Computer Science and Automatic Control, UNED, Juan del Rosal

16, Madrid 28040, Spain; E-Mails: jchacon@bec.uned.es (J.C.);

sdormido@dia.uned.es (S.D.)

2)Department of Computers Architecture and Automatic Control, Complutense

University, Ciudad Universitaria, Madrid 28040, Spain; E-Mail: jalo@dacya.ucm.es

Published in Sensors — Open Access Journal Sensors (ISSN 1424-8220; CODEN: SENSC9)

Article History:

Received: 28 December 2012; in revised form: 1 February 2013

Accepted: 16 February 2013

Published: 21 February 2013

 [3]Carla Martin-Villalba ∗, Alfonso Urquia, Sebastian Dormido : Object-oriented mod-

elling of virtual-labs for education in chemical process control, Dept. Inform´atica y

Autom´atica, UNED, Juan del Rosal 16, 28040 Madrid, Spain

Article history:

Received 27 January 2006

Received in revised form 9 September 2007

Accepted: 19 may 2008

Available online: 7 July 2008

 [4]KLEIN_ and G. WOZNY: WEB BASED REMOTE EXPERIMENTS FOR CHEM-

ICAL ENGINEERING EDUCATION, Paper in IChem E, TU Berlin, Institute of Pro-

cess and Plant Technology, Berlin, Germany

 [5]Jagdish Y. Patil, Balashish Dubey, Kannan M. Moudgalya, Rakesh Peter: GNURa-

dio, Scilab, Xcos and COMEDI for Data Acquisition and Control: An Open Source

Alternative to LabVIEW, Article, IIT Bombay, Mumbai 400076,

mailto:jalo@dacya.ucm.es

30

Article History:

Preprints of the 8th IFAC Symposium on Advanced Control of Chemical Processes

The International Federation of Automatic Control Furama Riverfront, Singapore,

July 10-13, 2012

 [6]Introduction to Real-time Control using LabVIEWTM with an Application to

Distance Learning*

Authors:

Ch. SALZMANN, D. GILLET, and P. HUGUENIN, Swiss Federal Institute of

Technology Lausanne, Switzerland. E-mail: christophe.salzmann:epfi.ch

 [7]COMEDI. http://www.comedi.org/

 [8]Internship Report on Graphical Programming Language LabVIEW & Xcos, GNU

Radio or Blockly as an Open Source Alternative to LabVIEW for Data Acquisition

and Control

Saruch Rathore

INTERNET RESOURCES:

 [1]Scilab Anywhere C/S – a Client/Server system to provide remote Scilab services

See: http://scilabanywhere.sourceforge.net/

 [2]Virtual Labs (India)

See: http://en.wikipedia.org/wiki/Virtual_Labs_(India)

 [3[Labshare

See: http://www.labshare.edu.au/

 [4]Remote Laboratory

See: http://en.wikipedia.org/wiki/Remote_laboratory

 [5]Aakash (tablet)

See: http://en.wikipedia.org/wiki/Aakash_(tablet)

 [6]Aakash 2

See: http://en.wikipedia.org/wiki/Aakash_2

 [7]GNU Radio

See: http://gnuradio.org/redmine/projects/gnuradio/wiki

 [8]Sciscipy: A Scilab API for Python

See: http://forge.scilab.org/index.php/p/sciscipy/

 [9]Abstraction (computer science)

See: http://en.wikipedia.org/wiki/Abstraction_(computer_science)

http://www.comedi.org/
http://scilabanywhere.sourceforge.net/
http://en.wikipedia.org/wiki/Virtual_Labs_(India)
http://www.labshare.edu.au/
http://en.wikipedia.org/wiki/Remote_laboratory
http://en.wikipedia.org/wiki/Aakash_(tablet)
http://en.wikipedia.org/wiki/Aakash_2
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://forge.scilab.org/index.php/p/sciscipy/
http://en.wikipedia.org/wiki/Abstraction_(computer_science)

31

 [10]GNU Radio: Out-of-tree modules. Extending GNU radio with own functionality

and blocks

See: http://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules

 [11]Blockly: A visual programming editor

See: https://code.google.com/p/blockly/

 [12]Google app-engine

See: https://cloud.google.com/console#/project/apps~remote-cloudlabs

 [13]NI LabVIEW Full Development System for Linux,

See: http://sine.ni.com/nips/cds/view/p/lang/en/nid/2541

 [14]Executing MATLAB Scripts in LabVIEW

See: http://zone.ni.com/reference/en-XX/help/371361J-01/gmath/matlab_script_node/

 [15]LabVIEW support for Linux

See: http://sine.ni.com/nips/cds/view/p/lang/en/nid/2541

VERSION CONTROL SYSTEM:

Repositories created, forked and contributed to:

 GIMP Tool Kit Widgets and experiment with out of tree modules

https://github.com/manojgudi/gnu_lc/commits/master

 First python module successfully implemented

https://github.com/manojgudi/gr_python_module

 Writing python blocks

https://github.com/aviralchandra/gr-py_block

 Experiments with xcos UI widgets, knob implementation

https://github.com/aviralchandra/xcos_UI

 Complied binaries of Sandhi made available

https://github.com/manojgudi/sandhi

 GRExtras - Advanced GNU Radio Blocks forked from Josh Blum

https://github.com/aviralchandra/grextras

 GRAS: forked from Josh Blum

https://github.com/aviralchandra/gras

http://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules
https://code.google.com/p/blockly/
https://cloud.google.com/console#/project/apps~remote-cloudlabs
http://sine.ni.com/nips/cds/view/p/lang/en/nid/2541
http://zone.ni.com/reference/en-XX/help/371361J-01/gmath/matlab_script_node/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/2541
https://github.com/manojgudi/gnu_lc/commits/master
https://github.com/manojgudi/gr_python_module
https://github.com/aviralchandra/gr-py_block
https://github.com/aviralchandra/xcos_UI
https://github.com/manojgudi/sandhi
https://github.com/aviralchandra/grextras
https://github.com/aviralchandra/gras

32

APPENDICES

APPENDIX 1

Implementing a URL based communicating protocol

Developing a communication protocol for communicating data from a remote location. This

Appendix implements an URL based communication protocol.

The domain cloudlabs was registered at google appengine. It has been used for all the

communications

One should type the following URL in their respective browser to see the results:

 www.remote-cloudlabs.appspot.com/hello?temp=100&heat=100&fan=100

The results are available on the following URL:

 www.remote-cloudlabs.appspot.com/display

This URL can be parsed from any programming language. JSON and Python urllib are

among popular libraries to parse this URL. The first URL is used to send values to the

database registered on the google's free cloud-service app-engine.

The second URL is used to retrieve this data.

The implementation and the exact code is given here.

 Code:

The google app-engine for Ubuntu 12.04 was downloaded and installed and the main.py file

found under the remote-cloudlabs was written. The following snippet shows the exact file

path to find the main.py file to be edited.

APPENDIX Figure 1:finding the main.py file

The main.py file. The comments start with a ‘#’ and are self-explanatory

import webapp3

from google.appengine.ext import db

http://www.remote-cloudlabs.appspot.com/hello?temp=100&heat=100&fan=100
http://www.remote-cloudlabs.appspot.com/display

33

#creating a class instance of the database, google app engine allows us to do so. Whar t we

have done here is very conveniently created a db template and specified the data types it

can have for the 3 columns(temp/heat/fan)

class MyData(db.Model):

 temp = db.IntegerProperty()

 heat = db.IntegerProperty()

 fan = db.IntegerProperty()

#/hello redirects to the class Hello world as can be seen in the URL container below

class HelloWorld(webapp2.RequestHandler):

 def get(self):

 temp = self.request.get('temp')

 heat = self.request.get('heat')

 fan = self.request.get('fan')

 data = MyData()

 data.temp = int(temp)

 data.heat = int(heat)

 data.fan = int(fan)

 data.put()

#/display redirects to the class Fetcher as can be seen in the URL container below

class Fetcher(webapp2.RequestHandler):

 def get(self):

 data = db.GqlQuery("select * from MyData")

 for x in data:

 str = "TEMP= %d, HEAT=%d, FAN=%d
" %(x.temp,x.heat,x.fan)

 self.response.write(str)

#URL container

app = webapp2.WSGIApplication([

 ('/hello', HelloWorld),

 ('/display', Fetcher)

], debug=True)

34

APPENDIX 2

The Back End

Reusing of the driver modules to implement a backend that responds to the app-engine and

reads/writes values from the SBHS(Single Board Heater System) is implemented here.

The forked sbhs driver module on top of which the development took place

(Source: https://github.com/prashants/sbhs)

All comments begin with ‘#’. However the first line is known as shebang and is mandatory if we want

to execute the script by a command like ./pythonfilename.py

main2.py

#!/usr/bin/python -tt

the serial module is already available with python’s distributed package. It is used for establishing

data connection with the SBHS device, the time module is used to re-iterate the code automatically by

using the sleep function.

import serial
import time
from time import sleep

A data channel is opened and the communication with the device established

ser = serial.Serial('/dev/ttyUSB0', baudrate=9600, timeout=1)
ser.open()

these libraries are imported from python-dist-packages to parse/read URL

import urllib
import urllib2

this line imports everything from the sbhs.py & scan_machines.py file. It can be found on the URL

https://github.com/prashants/sbhs. It is much more convenient to clone the git repository using the

command git clone https://github.com/prashants/sbhs.git. in terminal in Ubuntu. The sbhs.py and

scan_machines.py files should be located and put in the same directory as the main2.py file being

edited.

from sbhs import *
from scan_machines import *

new_device = Sbhs()
new_device.connect(80)
new_device.connect_device(0)
while True:

 new_device.setHeat(10)
 new_device.setFan(80)

https://github.com/prashants/sbhs
https://github.com/prashants/sbhs
https://github.com/prashants/sbhs.git

35

 f=new_device.getTemp()
 print f

#writing to google app-engine, we are using the same protocol to read/write values to

the google-app engine.

 data = {}
 data['temp'] = '30'#float value not int
 data['heat'] = '200'
 data['fan'] = '100'
 url_val = urllib.urlencode(data)
 print url_val

 url = 'http://remote-cloudlabs.appspot.com/hello'
 full_url = url + '?' + url_val
 data = urllib2.urlopen(full_url)

#reading from url

 req =urllib2.Request('http://remotecloudlabs.appspot.com/display')
 response = urllib2.urlopen(req)
 data = response.read()
 print data
 time.sleep(10)

Note:

What has been implemented in the above two sections is the middle-ware and the backend

that can respond to any front-end. The client end just has to parse the URL and exchange

values with the middle-ware which is the google app-engine in order to interact with the back

end

http://remotecloudlabs.appspot.com/display

36

APPENDIX 3

Sciscipy changes that made it usable

All the shared object files commonly known as .so files are listed in the top-right screen

partition. They are intended to be used by executable files.

The linker error as shown in the lower right window, was sorted out by including these so

files in the sci_extra_link_args. The configuration was done by running the setup.py file

included with sciscipy.

APPENDIX Figure 2: scscsipy changes

Configuration was done by typing ./setup.py on terminal

The compilation was done by ./setup.py build

The installation was completion using ./setup.py build install

37

APPENDIX 4

Building GRAS from source

The steps and the command snippet are given as under.

Steps:

1) Go to the gras directory.

2) Make a build directory using mkdir build

3) Go to the build directory using cd build

4) Type cmake ../ to start the configuration process

5) Type sudo make to complete the compilation

6) Type make install to make it available to the user

APPENDIX Figure 3: Series of screenshots illustrating GRAS build

The last step after this is make install. This completes the installation process and the

Advanced Scheduler is ready to use

38

APPENDIX 5

dsimul development logic was the same as csim. Only a single python file had changes. Only

the file which had changes is given here.

#!/usr/bin/python

import sciscipy

u is a TUPLE vector of width w

def discrete_sim(P,I,D,n0,n1,st,d0,d1,u):
 code_string1 = "s=%s;"
 code_string2 = "Gc=sys-
lin("+str(st)+",("+str(P*I+D)+"*s)"+","+str(I)+"*s);"
 code_string3 = "G=syslin("
 code_string4 = str(st) +","+ str(n0)+"*s"+ "+"+str(n1)+","+
str(d0)+"*s"+"+"+str(d1)+");"
 code_string5 = "r=tf2ss(G*Gc);"
 code_string6 = "u="+str((u))+";"
 code_string7 = "y=dsimul(r,u)"
 code_string =code_string1 + code_string2+ code_string3+
code_string4 + code_string5+code_string6+code_string7

 # Check complete_code_string
 #print code_string

 import sciscipy
 sciscipy.eval(code_string)
 y = sciscipy.read("y")
 return y

#print discrete_sim(1,1,0.1,2,1,"u=zeros(1,50);u(10)=1")

if __name__ == "__main__":
 u = [0]*100
 u[50] = 1
 out = discrete_sim(2,0.5,0.6,1,1,0.1,2,1,u)
 print out

 #import matplotlib.pyplot as plt
 #plt.plot(out)
 #plt.show()

39

APPENDIX 6

Copyright terms of GNU Radio

Copyright 2013 <+YOU OR YOUR COMPANY+>.

This is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3, or (at your option)

any later version.

This software is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this software; see the file COPYING. If not, write to

the Free Software Foundation, Inc., 51 Franklin Street,

Boston, MA 02110-1301, USA.

40

