Dual Degree Project

Virtual Chemical Engineering Labs through Aakash

Aviral Chandra (09D02030)

Guide: Prof. Kannan Moudgalya

Ty
")

DEPARTMENT OF CHEMICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY

MUMBALI, 400076
23" October 2013

ACCEPTANCE CERTIFICATE

The project report on “Virtual Chemical Engineering Labs through Aakash” submitted by
Mr. Aviral Chandra (Roll No. 09D02030) may be accepted for evaluation.

Place:

Department of Chemical Engineering

")
IIT Bombay

Date:

Prof. Kannan Moudgalya

DECLARATION OF AUTHORSHIP

I, Aviral Chandra, declare that this thesis titled, 'Virtual Chemical Engineering Labs through
Aakash' and the work presented in it are in my own words. | have cited and referenced the
work which | referred to while development. | confirm that I have abided by all the principles
of academic honesty and that any finding opposite to my claims could evoke disciplinary
actions. This work was done mainly towards the requirement of M. Tech degree in Chemical
Engineering at I.1.T Bombay, | further clarify that

The references contain the research papers , that were consulted

All sources of help have been acknowledged

Signature

Aviral Chandra
Roll No. 09D02030

ACKNOWLEDGEMENTS

| take this opportunity to express my gratitude to my project guide, Professor Kannan M
Moudgalya under whose esteemed guidance | got an opportunity to learn quite a lot about the
field of remote labs and their great utility in the field of Chemical Engineering.

The submission made under this report is a result of many discussions with my guide which
motivated me to undertake programming and development with a lot of zeal . Under his able
guidance, | have been able to develop developmental skills for which I am extremely grateful.

I would also like to thank Kannan sir for linking me with the FOSSEE team at IIT Bombay.
He has been a great mentor, motivator and always provided the right resources and guidance
to overcome the roadblocks faced in the project.

I would take this opportunity to also thank Mr. Manoj Gudi who has always been a great co-
developer. The development has been a collaborative effort with Manoj who has been a
phenomenal support as his knowledge of hardware and low-level implementation is
outstanding.

SYMBOLS AND CONSTANTS USED

Gc : Denotes the controller transfer function
G: Denotes the plants transfer function

p: denotes the proportional controller gain

i: denotes the integral mode time constant

d: denotes the derivative mode time constant

a: represents the coefficient of ‘s’ in the numerator in the definition of plants transfer function
of first degree

b: represents the constant in the numerator in the definition of plants transfer function of first
degree

dO: represents the coefficient of ‘s’ in the denominator in the definition of plants transfer
function of first degree

d1: represents the constant in the denominator in the definition of plants transfer function of
first degree

f: a constant that specifies the window size
s: a symbolic variable available in scilab

a: denotes the version of Sandhi ready to be released

ABSTRACT

Virtual Labs aims at providing remote access to physical laboratories. Ease of access, ability
to learn at one’s own pace and the possibility of reuse make it a very attractive proposition.
With the aforementioned benefits remote labs can clearly improve learning objectives.

While the idea of remote labs seems promising, it poses various challenges from the
implementation standpoint. Remote labs include experiments which need data acquisition
from remote hardware, running algorithms on a remote hardware and performing simulations.

There are various software tools that perform data acquisition, run algorithms on a remote
hardware and can run simulations. Most of these are proprietary and hence come at a huge
one-time cost and recurring license costs. The use of proprietary technology sounds quite
unpromising especially when planning an initiative like remote labs for the masses. It makes
the infrastructure unsustainable as the volumes increase.

The NMEICT initiative on virtual labs relies heavily on LabVIEW a proprietary data
acquisition tool, also known for its visual programming editor.

This thesis lays down a framework to systematically develop an open source functional clone
to LabVIEW. It has been named SANDHI, which comes from Devnagri and means to add or
connect. In essence SANDHI is an in-house visual programming editor built exclusively for
control system application. SANDHI has been developed in around 20 weeks. This thesis
exposes the development cycle which eventually led to SANDHI.

The thesis also mentions that SANDHI is aimed to functionally replace LabVIEW in certain
applications in the next development cycle.

Keywords: Virtual Labs, NMEICT, LabVIEW, SANDHI, proprietary, open-source

Table of Chapters

1 SLP REVIEBW ...ttt bbbttt 1
2 DEVEIOPIMENTS. ...ttt b e bbb ettt et b e b renae 2
2.1 GNU RAMIO ...ttt b s 2
2.2 BIOCKIY ..t 2
2.3 XCOS ettt sttt bbb bbbt Rt b e e bbbt b re e nes 2
2.4 SCISCIPY -everreerertenteteteieeit et st et st s bt et e e e st s e b s bt s b b et e s e et st bt bbb e b e bt et n e bt n e b e nen 2
2.5 GRAS for Feedback SOIULIONccoiiiiiiiiiicieceece e 3
2.6 SANAN..c.cuiitiiie bbbttt neenes 3

3 GNU RAIO 10 SANGNT ...ceetiniiiiciiiciiecstc ettt 5
3.1 Identified Scilab function for implementation in python using SCIiSCIPYccceeeeervennene. 5
3.2 ADSEFACTION ..ottt bbbt 8
321 A brief on development with the appropriate code SNIPPEtS.......ccceveererererenennens 9

3.3 GENErating the VIBWccue ittt sttt st aa et st s beeaesreeneens 11
3.4 Open loop testing of the csim and dSimul BIOCKSc..ccoieirinininiccesene 12
34.1 CSIimM DIOCK : INPUL VECTOE SOUFCE ...veveeiiceieiesteeeecte ettt st eanens 12
3.4.2 CSIM DIOCK: SIGNAI SOUICEc.eiiiiiieieieie e 13
3.4.3 dSim DIOCK: SIGNAI SOUICE.......ocveeieeieceeteeeete ettt sreeanens 14

35 GRAS and the fEEADACKcceiriiiriiiicie e 14

A SANANI ettt h bbb et e bt ne b bt ae b e 17
4.1 WY SANANI? oot ettt s b et e s teeba e e sreea e reenes 17
4.2 Implementation of csim in Sandhi in a feedback mode...........ccoovvveeevivceciesecee 18
4.3 Implementation of dsimul in SANANT ..o 21

5 Sandhi 0N ABKASH ..o e 22
6 CUSTOMIZING SANANI ..ottt e be et esbeere e besreens 24
6.1 How can one write a block on their OWN?..........ccoeviviiiiiiiieees 24
6.2 Methods of IMPIEMENTALION........ccceiuiiieiececece et e beernens 24
6.2.1 C++ based iIMpPIEMENTALION........cccvvieeeieiee et eeeens 24
6.2.2 Python based implementation............cceoieieieieecececeee e 24

7 Importance of Sandhi to Chemical ENQINEETS........ccccivvieierineeierie et 25
8 Comparison of LabVIEW and Sandhi..........cccooiiieiiiineieeeeee e e 26
LS 0T Lo 1 0 T o RSP 27
9.1 Where do we stand? And Proposed Future WOorK..........ccccoeveieiinienenieeenceeseeeene 27
0.2 PIOLING DAY ..ottt sttt s re et e s reesaesreereens 27
9.3 Developing the network communication protocols and remote lab for the users......... 27

10 RETEIEINCES ... ettt ettt ettt e s ettt e s sttt e e s saabeeessaabeeessssbeeessssaseesssarseesssaseeessnnes 29

LIST OF APPENDICES

APPENDIIX L.ttt ettt s b e s bttt s bt e ae bt e e e s bt et e sh e e se e R sae e reeanes 32
APPENDIX 2.ttt st h e bt e e e bt et h e e re e Rt s ae e reeanes 34
APPENDIX 3.ttt 36
APPENDIX 4.ttt e h e bt e e bt s h e e n e e n e reeanes 37
APPENDIX 5.ttt et h e bt r e bt et h e e s e n e sae e reeanes 38
APPENDIX Bt 39

LIST OF FIGURES

Figure 1: Proposed remote 1ahs arChiteCUIE..........ccveviiiieeiiecieeeeeeee st 1
Figure 2:SCisCIPY IMPIEMENTALIONc.ecviiieeeie sttt ettt re e s re e e beeraesesreessesreeneens 3
Figure 3: csim implementation in SCHAD ..o 6
Figure 4: csim implementation iN PYtNONooueeieii ettt 7
Figure 5: Creating csim blocks(csim.py left partition) out of csim implementation in
python(csim_SCi.py Fght PArtition)........c.cciiieiiiieiece ettt re e sre b e s beeaaesreennans 8
Figure 6:gras, numpy and CSIM DIOCKS.........coiiiriiiiieiesreeee e 9
Figure 7: declaring parameters for CSim DIOCKSccoeiririnininc e 9
Figure 8:handling the iNput iteMS INthE AITAYcceviieiiiiceeeceee e e e 10
Figure 9: protocol for mapping OULPULS t0 INPULS.........ceeirireririeieieieeeit ettt 10
Figure 10:Generating the xml blocks and the view(a side by side rendering)..........cccccevveereneneneene. 11
Figure 11: python cheetah script passing the parameters P, I, D, n0, n1, d0, d1 and window length...12
Figure 12: csim taking input from a vector source, o/p vector in lower left...........ccovviveeiieiieneeneene. 12
Figure 13: csim taking input from a signal source, o/p vector in lower leftcccooeveveininencnene. 13
Figure 14: dsim taking input from a signal source, o/p vector in lower left..........cccooveiveeeieeeieenenne, 14
Figure 15: Implementation of GNU Radio stock scheduler, generated from gr-modtool. Import gr
imports the StOCK Process SCEAUIETc.ecveiiieeeeceeec ettt ettt beeanas 15
Figure 16: Implementation of gras, which is GNU-Radio Advanced Scheduler written for our program
.. 15
Figure 17:The feedback flow graph implemented for the first time in GNU Radio..........ccccceecevvennnee. 16
Figure 18: Sandhi and a few of the IMmportant BIOCKScceovviecenirieeceeee e 18
Figure 19: closed loop implementation of csim on Sandhi with a vector source..........cccccccvveveennennn. 19
Figure 20: closed loop implementation of csim on Sandhi with a signal source......ccccccceeceeriieeniennns 20
Figure 21:closed loop implementation of dsim on Sandhi with vector sourcecccoceevciiiiiieeniennns 21
Figure 22: closed loop implementation of dsim on Sandhi with signal source...........cccceeevevveeeriennne. 21
Figure 23: Compiling Sandhi 0N AaKashcoiiiiiiciiie e 22
Figure 24: Sandhi 0N AGKaShuiii ittt e e e et e e s satae e e santre e e e nreeeeas 23
Figure 25: Adapted feeback structure from a paper!® in referencesccoeeevveeeeeeeieeeceeeeeeenns 25

Figure 26: A static plot generated by dumping data in python workspace. This would be fixed by the
tIME SANANT IS TEIASEM. ... ettt ettt e et e st s bt et e te et eeesneenaeseeeneens 28

LIST OF APPENDIX FIGURES

APPENDIX Figure 1:finding the Main.py file. ..o v 32
APPENDIX Figure 2: SCSCSIPY ChANZES ..eiiiiiiiiiiiiiiee ettt eettee ettt e e sttt e e s st e e s sbae e e s sbtaeessbaeeessbeeeessnnes 36
APPENDIX Figure 3: Series of screenshots illustrating GRAS buildcccoeeiiiiiiiiiiiiiiiecceee e 37

26

Table 1: A comparison table between LabVIEW and Sandhi...............ccccoooiiiiiiinincciieeec s

1 SLP Review

This project involves development and deployment of virtual labs for mobile platform. The
SLP stage of the project consisted of literature survey, understanding and development of
some preliminary tools to help in the main project.

The proposed architecture for the virtual lab in the SLP stage is as under

Server Side
Codes
13\
Client Side
e Standalone GUI's Internet Scilab
e Browser based
GUI/Applet
HTT,
pReqUe ;
Sts GNU Radio
Hardware

Figure 1: Proposed remote labs architecture

The first problem at hand is identification and development of requisite tools which would
help accomplish the final goal.

GNU-Radio was identified as a very promising Data Acquisition tool which provided the
following benefits.

It has a massive driver library, thereby it supports a good range of hardware

It has a clean GUI, various widgets that can be used to tweak the inputs in real time
It’s possible to implement blocks entirely in python as well as C++

Its real time response to changes in calculation parameters is extraordinary.

GNU Radio appealed as a promising DAQ tool with a good driver support, clean GUI, and
the potential to become a functional visual programming editor for control system
applications.

This theses captures the development cycle of GNU Radio which could functionalize it to
perform interaction with scilab’s computation engine and work as a potential replacement to
LabVIEW.

2 Developments

This thesis captures a development cycle which led to control system blocks in GNU Radio,
it’s integration with scilab’s computation engine and implementation of feedback. Thereby
making it an open source visual programming editor for control system applications and a
potential clone to LabVIEW.

2.1 GNU Radio

It is an open source radio implementation which was supposed to be used by the Electrical
Engineering community for the purpose of digital signal processing. It has a rich module of
implemented device drivers and thereby supports a range of devices. GNURadio is a very
promising visual programming tool as it makes it very easy for the developer to abstract his
code, and provides a very easy to use framework to the developer. On top of all these
advantages it is open source and hence making it potentially very attractive alternative to
control system enthusiasts, who use SIMULINK/ LabVIEW for doing rapid prototyping of
control schemes.

2.2 Blockly
Though the development started with GNURadio in mind, it was a matter of time before it
was understood that the current build of GNU Radio was incapable of supporting feedback.

Feedback is a very vital component when we talk of Control Engineering. Working with the
stock scheduler of GNU Radio it looked almost impossible to implement feedback without
hard-coding it in the system. Hard-coding is not a good solution to any problem. If the
developmental work has to be futuristic, it has to be adaptable and dynamic. Blockly entirely
developed at MIT is a visual programming tool, using which school kids can learn
programming easily.

Since it looked very intuitive and flexible, it was surely an option to look at. It's view is
implemented entirely in Javascript and while it was a great option to work with, the
challenges associated with blockly were that it didn't look easy to integrate a computation
engine with implemented control libraries(like Scilab) with blockly.

2.3 Xcos

Xcos is a great visual programming editor. It is quite similar to SIMULINK in many aspects.
It gives the luxury of ready control libraries in scilab. The development cycle around Xcos
was planned, however it had to be stopped because of xcos's rigid framework was not
adaptable to Ul modifications in real time. It is not capable of supporting basic hardwares and
writing device drivers is a huge task. This option was dropped on account of limited
development time.

2.4 sciscipy
Sciscipy is an Application Programming Interface aimed for Inter Process
Communication with scilab when in workspace of Python programming language.

The essence of open source is to develop on the work of others. This helps save a lot of time
in the development cycle. It can be claimed that it's analogous to building cars and not trying
to re-invent the wheel. 'sciscipy' is the wrapper which helps us call scilab from python. This
APl is extremely useful as it helps us import scilab libraries directly in the python workspace.

Sandhi is a pure python implementation and hence this APl comes in handy in
implementation of control libraries of scilab.

Screenshot of how sciscipy works is given below.

aviral@aviral-Dell-System-Inspiron-N411@:~/gr-py block/python$ python
Python 2.7.3 (default, Apr 10 2013, 06:20:15)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import sciscipy

Start Stixbox
Load macros
Type "help stixbox contents" for quick start.
Type "demo gui()" and search for "Stixbox" for Demonstrations.

Start Apifun
Load macros
Type "help apifun_overview" for quick start.

>>> sciscipy.eval("a=rand(2,2)")
>>> y = sciscipy.read("a")
e }I‘
array([[2.11324865e-01, 2.21134629e-84],
[7.56043854e-01, 3.30327092e-0111)
=»> rand(2,3)
Traceback (most recent call last):
File "=stdin=", line 1, in =module=
NameError: name 'rand' is not defined
e

Figure 2:Sciscipy implementation

As can be seen here the sciscipy helped us import functions of scilab into python workspace.
It becomes clear on observing the last command. It shows that rand is not defined in python.

We have clearly taken advantage of a scilab functions to generate output in python
workspace. It's extremely convenient to work with these functions to generate plots and
connect programming blocks when in python workspace.

We identified the problems behind the broken API. The broken API was a very long-standing
issue in the python community. The APPENDIX 3 lists down the complete solution.

2.5 GRAS for Feedback solution

GRAS stands for GNU Radio Advanced Scheduler, it has been used in all the
developments. It was impossible to implement the feedback with the stock application
scheduler. Application Scheduler is responsible for threading, controlling the data flow and
managing the use of the computer resources like processor time to various processes.

2.6 Sandhi

This thesis presents development of a novel visual programming framework based on
GNURadio. It has been named Sandhi as it means connecting and conveys our idea of
connecting various blacks to come up with a robust visual program.

Sandhi is aimed to become a visual programming tool for replacing LabVIEW. It's current
form is raw, however if the control community gets excited by this tool, this tool can achieve
a lot of what LabVIEW can do. The release of o version of Sandhi is under way

The entire development cycle has been given and it's adaptability for any control library
explained. The challenges faced during development have been clearly mentioned, so that a
new developer does not face similar issues while trying to develop Sandhi on their own.

3 GNU Radio to Sandhi

This chapter exposes the development cycle which eventually led to Sandhi. It starts from
capturing the difference of implementation of same scilab libraries in scilab and python
workspace. It then goes on and eventually covers the abstraction of these functions made so
that the user has to interact with a well defined system and not get into writing the functions
all by themselves. It is very important for a good visual programming editor to be able to
implement simple view even for the most complex development. The start of the chapter and
the middle sections are just meant to focus on the complexities that arise and how they should
be handled in a development cycle.

3.1 ldentified Scilab function for implementation in python using sciscipy
a) csim - used for generating continuous time response of linear systems,

b) dsimul is used for generating discrete time response of linear systems.

For the purpose of illustration impulse and step inputs are chosen and step and impulse
response have been captured. The plots in python workspace have been generated using the
python plotting libraries. Section 3.1 has 2 snapshots which cover these implementation.

Implementation in scilab

The scilab implementation was a normal scilab code and a plot was generated. The scilab
function used for this purpose was 'syslin’. Syslin is used to define linear systems. The
symbolic computation was invoked by the first statement (s=%s). Two linear systems were
defined, for the sake of discussion one can refer to Gc as the controller and G as the plant.
We took a product of both, converted the product to state space and generated a constinuous
time step response.

The same job was imitated in python and as can be seen in the second screenshot, it was done
using the wrapper sciscipy and the plots were generated in python workspace using python's
plotting libraries. What is to be observed in the second screenshot is that once the csim is
defined in python workspace any input can be passed into the csim from the python
workspace. This gives us tremendous advantage as the visual programming editor Sandhi has
been implemented entirely in python. The source blocks of GNU Radio have been retained in
Sandhi and as can be seen in Chapter 5, a proof of concept has been given for using the
already implemented signal source blocks for the purpose of studying simulations

3.1.1 Screenshot of scilab implementation

2B &

Scilab Console

E0 B AE B B # @

Graphic window number 0

scilab-5.3.3
S:
Consortium Scilab (DIGITED)
Copyright (e} 1989-2011 (INRIA)
Copyright (c] 1989-2007 (ENPC

(000 =] O N s L0 b
[e~

T T T T T
200 400 600 800 1000 1200

I

LER @B & 64f &

response.sce [fhomefaviral{Documents/scilabiresponse. sce) - Scillotes

responsesce ¥

y = csim(u',

B0 &% &

length(ul,r)

Figure 3: csim implementation in scilab

A scilab implementation of csim, for a step input. The input had to be hard coded in here.
Even when we functionalize it, we still remain in the scilab workspace and the abstraction
like a user interface is possible but is not very stable. Even if the abstraction like a Ul were to
be implemented it would certainly not have had the advantages of advanced scheduler, and

hence feedback.

Not going ahead with xcos was due to the fact that xcos has limitations when it comes to real-
time data operations, as it's application scheduler is quite obsolete.

3.1.2 Screenshot of python implementation

-Dell- : X X R aviral@aviral-Dell-
,T) « #!/usr/bin/python
Warning : redefining function: dt . Use funcprot(@) to avo

id this message import sciscipy

inside function: csim

[e. . 6. ..., 3.2 3.2 3.2] # u is a TUPLE vector of width w
aviral@aviral-Dell-System-Inspiron-N4110:~/gr python module/dirty commits/csim$
clear def csim(P,I,D,n0,nl1,de,dl,u):

code stringl = "s=%s;"
aviral@aviral-Dell-System-Inspiron-N4110:~/gr python module/dirty commits/csim$ code string2 = "Ge=syslin('c', ("+str{P*I+D)+"*s)"+", "+str(I)+"*s);"
.Jesim sci.py code string3 = "G=syslin("

code stringd = "'c'"+","+str(n@)+"#s"+"+ +str(nl)+", "+str(de)+"#s"+"+"

- o - +str(dl)+");"
Cote,strings = *r=tf2s (6%

code string6 = "u="+str{(u))+";"
code string? = "y=csim(u,1:1length(u),r)"
35 . . . ’ ’ {}de_string = code stringl+code string2+code string3+code stringd+code
_string5+code_string6+code string?
print(code string)

3.0 . i .
import sciscipy

sciscipy.eval(code string)

y = sciscipy.read("y")

25 return y

#print "y"

import matplotlib.pyplot as plt
2.0 plt.plot(y)

plt.show()

15
[if _name_ =" main_":
u = [B]*160
ul = [1]*1060
u = list(u+ul)
out = ¢sim(2,0.5,0.6,1,1,2,1,u)
print out

10

0.5
import matplotlib.pyplot as plt
plt.plot{out)

plt.show()

0.0

0 200 200 500 800 1000 1200

Figure 4: csim implementation in python

As can be seen above the two plots are exactly similar, however they are implemented in
workspace of two different languages. The sciscipy helped us make inter process calls to
scilab only when we needed it. This wrapper helps us use the scilab's computation engine. It
is worth mentioning that at no point in time the user realizes that the scilab's computation
engine is being used.

Since Sandhi is deployed entirely in python and it uses an advanced scheduler, the above
block would come in handy when we are trying to handle real-time operations.

3.2 Abstraction

“In computer science, abstraction is the process by which data and programs are defined
with a representation similar in form to its meaning (semantics), while hiding away the

implementation details”

-Wikipedia(http://en.wikipedia.org/wiki/Abstraction_(computer_science))

It is very important to hide away the unnecessary implementation details, however this report
shows all the steps of the 5-month development cycle, which led to the software Sandhi. It
can help developers in the future to understand the steps involved while developing a

software.

From a preliminary observation one can see that the screen partition to the right has no
values. It is the first step in the abstraction of functions. Moreover it is the first step
towards synthesis of blocks from raw python implementation of scilab functions.

ol

#! /usr/bin/python
import gras
import numpy

class csim{gras.Block)

def init (self):
gras.Block. init (self,
name="csim",
in sig=[numpy.float32],
out_sig=[numpy.float32])

def set parameters(self,p,i,d,a,b,dl,e,f):

self.paraml = p

self.param2 = i

self.param3 = d

self.param4 = a #n@

self.params5 = b #nl

self.paramé = d1 #do

self.param? = e #dl

self.n = f #window

def isIntegralWin(self, input_item, window):
if (len(input_item) % window):
raise Exception("Value of Window should be an integral
value of length of input items")

def work(self, input_items, output items):

#n = min(len(input_items[€]), len(output items[8]))
in® = input_items[6]
out = output_items[@]

from csim sci import csim
#Processing
Assuming n = 1 input config(®)=1

out[:self.n] = csim(self.paraml, self.param2, self.param3, self
.paramé,
@
@

1,1 Top

B aviral@aviral-Dell-System-Inspiron-N4110: ~/gr_python_module/dirty_commits/csim 78x42
#1/usr/bin/python

import sciscipy

u is a TUPLE vector of width w

def csim(P,I,D,n0,nl,de,dl,u):

code stringl = "s=%s;"

code string2 = “"Ge=syslin('c', ("+str(P*I+D)+"#s)"+", "+str(I)+"*s);"

code string3 = "G=syslin("

code_stringd = "'c'"+", "+str(n@)+"*s"+"+"+str(nl)+", "+str(de)+"#s"+"+"
+str{dl)+");"

code string5 = "r=tf2ss(G*Gc);"

code stringé = "u="+str((u))+";"

code_string7 = "y=csim(u,1:length(u),r)"

code_string = code stringl+code string2+code string3+code stringd+code
_string5+code_string6+code_string?

print{code string)

import sciscipy
sciscipy.eval(code string)

y = sciscipy.read("y")

return y

#print "y"

import matplotlib.pyplot as plt
plt.plot(y)

plt.show()
if _name_ =="_ main_":
u = [@8]*100

ul = [1]*1088

u = list{u+ul)

out = csim(2,0.5,0.6,1,1,2,1,u)
print out

import matplotlib.pyplot as plt
plt.plot(out)

plt.show()

39,0-1 ALl

Figure 5: Creating csim blocks(csim.py left partition) out of csim implementation in python(csim_sci.py right partition)

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Program_(machine)
http://en.wikipedia.org/wiki/Representation_(mathematics)
http://en.wikipedia.org/wiki/Semantics#Computer_science
http://en.wikipedia.org/wiki/Implementation#Computer_Science
http://en.wikipedia.org/wiki/Abstraction_(computer_science)

3.2.1 A brief on development with the appropriate code snippets
#!/usr/bin/python

import gras

import numpy

class csim(gras.Block}):

def init (self):
gras.Block. init (self,
name="csim",
in sig=[numpy.float32],
out sig=[numpy.float32])

Figure 6:gras, numpy and csim blocks

The first line imports the advanced scheduler, this process scheduler is invoked and as can be
seen in the third line we explicitly specify that csim is an advanced scheduler block and hence
it can use the advanced application scheduler that comes with gras.

The second line imports a powerful python scientific package. Among other things it has a
very efficient and powerful N-dimensional array object. It would make our life much simpler
as array operations in python blocks having numpy array are extremely convenient.

The method __init__ is a python constructor which creates an empty class object. It is used
later to access various methods of the class. It also defines the input/output signature for the
numpy array that can be handled by the instances of csim class. Here they are float data
types. Self is used to convey within this class

def set parameters(self,p,i,d,a,b,dl,e, f):

self.paraml = p

self.param2 = 1

self.param3 = d

self.param4 = a #n@

self.param5 = b #nl

self.paramé = dl #d@

self.param?7 = e #dl

self.n = T #window

Figure 7: declaring parameters for csim blocks

As can be seen above set_parameters method is used to declare the parameters to be used by
the program/block that implements csim class. It would become clear in the later chapters
why the word program/block was used intentionally.

The seven parameters declared here are from the following equation
Equation:
Gc:(p+$+d*s) - Equation 1

_ axs+b
dl+s+e

- Equation 2

10

The eighth parameter ‘f” specifies the i/0 mapping. It helps map exact number of inputs to
same number of outputs. It could be one input mapped to one output or an input vector of any
finite size mapped to output vector of the same size.

def isIntegralWin(self, input item, window):
if (len(input item) % window):
raise Exception("Length of input items should be an integral multiple of the allowed window sizef)

Figure 8:handling the input items in the array

This snippet implements the logic that length of input items should only be an integral
multiple of the window size. It seems only logical to have this condition since it becomes
difficult for the application scheduler to handle exceptions which ultimately lead to process
halt/ unresponsive programs.

def work(self, input items, output items):

#n = min(len(input items[8]), len(output items[8]))
ine = input items[0]
out = output items[0]

from csim_sci import csim
#Processing
Assuming n = 1 input config(€)=1

out[:self.n] = csim(self.paraml, self.param2, self.param3, self.paramd,
self.param3, self.paramé, self.param7, in@[:self.n].tolist()) # IMP: inB[:self.n].tolist() passes a python array

print "0UT", out[:self.n]

:set nowrap 1,1

Figure 9: protocol for mapping outputs to inputs

This snippet captures the ability of python to map vector inputs to vector outputs using
numpy arrays. On a careful observation it can be seen that in the mapping step just above the
print statement, the input array has been converted to list. It was done achieved after many hit
and trials as it was unknown that scilab was incapable of handling numpy array above certain
sizes. However scilab is perfectly capable of handling lists of any size.

<l--

##
CSIM Block:
all types, 1 output, 2 to inf inputs

-

<block>
<name>csim</name>
<key>scimod csim</key>
=category=scimod</category=>

<import=import scimod</import=
<make>scimod.csim()
self.$(id).set_parameters($P, SI, $D, $n@, $nl, $d©, $d1, $window)
</make>
<param>
<name>I0 Type</name>
<key>type</key>
<type>enum</type>
<option=<name>FC32_FC32</name><key>fc32_fc32</key></option>
<option><name=F32_F32</name><key>f32_ f32</key=</option>
<option=<name>5C32_5C32</name><key>5c32_sc32</key=</option>
<option><name>532 S32</name><key>s32_s32</key></option>
<option><name>SC16_SCl6</name><key>sc16_scl6</key></option>
<option><name>516_S16</name><key>516_sl6</key></option>
<option><name>5C8 SC8</name><key>sc8 scB</key></option>
<option><name>S8_SB</name><key>s8_sB</key></option>
</param>
<param>
<name=Num Inputs</name=
<key=num_inputs</key>
<value=l</value>
<type=int</type>
</param>
<param>
<name>Vec Length</name=>
<key=vlen</key>
<value=1</value>
<type>int</type>
1,16

Top

] Showing:

*untitled - GNU Radio Companion

AET O &

st B X &

sbhs1 3 dsim_openloop % | untitled %
Options
1D: top_block
Generate Options: WX GUI
csim
Variable ntrpller Gain(P): 0
Tau_lgy: 0
ID: samp_rate =
Value: 32k WnEDEED
Jii] no:o out
nl: 0
d0: 0
dl: 0
window: 0

<<< Welcome [0 GNU Hadio Companion 3.6.4.Z >>>

Loading: "/homej/aviral/sbhs1.grc"
>>>Done

Showing: "/home/aviral/sbhs1.grc"
Loading: "/home/aviral/gr_python_module/dirty_commits/dsim/

dsim_openloop.grc”
>>>Done

Figure 10:Generating the xml blocks and the view(a side by side rendering)

11

e e -
* [Line Coding]

» [Variables]

> [Misc]

> [Sources (New)]

> [sinks (New)]

» [Math Operations (New) |
» [Boolean Operations (Ne
» [Stream Type Conversion:

* [Stream Operations (New
* [Misc (New)]

* [Digital]

> [Digital Modulators]

» [OFDM]

> [Extras]

> [FFT]

» [Vocoders]

» [USRP]

» [UHD]

» [HOWTO]

* [howto]

» [NOAA]

» [WX GUI Widgets]

> [Pager]

> [Single Board Heater Syst
» [QT GUI Widgets]

v [scimod]

dsim

The out of tree module that gets created by the gr-modtool also helps us generate a skeleton
for the xml block. The xml block defines the view. Upon completion it is included inside a

hidden file in the home folder.

Say the xml block was called csim.xml

It has to be included in /home/aviral/.grc_gnuradio/ so that it appears in the GRC when the
GRC is started using the command gnuradio-companion from the command line.

12

Z7xml version="1.8"7>
<!--

##
CSIM Block:
all types, 1 output, 2 to inf inputs

-->
<block=
<name=csim</name=
<key=scimod csim</key>
zcategory=scimod</category=

<import=import scimod</import=
=make=scimod.csim()

self.$(id).set parameters($P, $I, $D, $n@, $nl, %$d@, $dl, Swindow)
</make=

Figure 11: python cheetah script passing the parameters P, I, D, n0, n1, dO, d1 and window length

3.4 Open loop testing of the csim and dsimul blocks
The dsimul blocks were developed using the same protocol, the APPENDIX 7 can be looked
up to see its development code.

3.4.1 csim block : input vector source

- fhome/aviral/gr_python_module/dirty_commits/csim - GNU Radio Companion B E 3 = f4) 11:14PM L Aviral Chandra

s 2 A EBEO & ¥ e &> << C9I

sbhs1 3 dsim_openloop # untitled 3% | csim 3%

CV3ILU AUUIU UECUUET (RdW DICLEVEL)

CcvsD Audio Encoder (Raw Bit-Level)

CVSD Decoder
Options
ID: top_block CVSD Encoder
Generate Options: WX GUI 721 Audio Decoder

g721 Audio Encoder
g723_24 Audio Decoder

b g723_24 Audio Encoder
q723_40 Audio Decoder
Vector Source .
Vector: (0,0,0,0,0,0,0,00... csim 9723_40 Audio Encoder
Repeat: No :‘M':'I'::Ellnnm_) GSM Full-rate Audio Decoder
Vec Length: 110 Tau_I{1): 500m GSM full-rate Audio Encoder
el Sk o] Ulaw Audio Decoder
no: 1 N
nl:2 ulaw Audio Encoder
do: 3 v
Variable d1: 1 [USRP]
Comedi Source Python1

e e window: 110
Value: 32k Vector Sink v [UHD]
» # Vec Length: 110
UHD: Control Port

UHD: Status Port

¥ [HOWTO]

Square2 ff
3.75775337 2.64224648 3.75775337 2.64224648 3.75775337 2.64224648 > [howto]
3.75775337 2.64224648 3.75775337 2.64224672 3.75775337 2.64224672 » [NOAA]
3.75775337 2.64224672 3.75775337 2.64224672 3.75775337 2.64224672 » [WX GUI Widgets]
3.75775337 2.64224672 3.75775337 2.64224672 3.75775337 2.64224672 "
3.75775337 2.64224672 3.75775337 2.64224672 3.75775337 2.64224672 [Pager]
3.75775337 2.64224672 3.75775337 2.64224672 3.75775337 2.64224672 > [single Board Heater System |
3.75775337 2.64224672 3.75775337 2.64224672 3.75775337 2.64224672 » [OT GUIWidgets |
3.75775337 2.64224672 3.75775337 2.64224672 3.75775337 2.64224672
3.75775337 2.64224672 3.75775337 2.64224672 3.75775337 2.64224672 _
3.75775337 2.64224672] csim

dsim
>>>Done

Figure 12: csim taking input from a vector source, o/p vector in lower left

13

3.4.2 csim block: signal source

- fhome faviral/gr_python_module/dirty_commits/csim - GNU Radio Companion

XEBEO & % Je &> <<l ¢ 3

untitled 3¢

o o X =
sbhs1 8 dsim_openloop 3 Blocks
> [Level Controls]
> [Modulators]

¥ [Sources]

Signal Source

csim ¥

Options
1D: top_block
Generate Options: WX GUI

in.
Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k

Stream to Vector

Noise Source
Constant Source
Signal Source
Noise Source

Num Items: 110 -
csim
Vec Length: 110 Vector Source
Amplitude: 1 Contreller Gain(P): 2 Random Source
Offset: 0 Tau I{1): 500m
- GLFSR Source
Tau_D(D): 600m
no: 1 . Null Source
nl: 2 "
— File Source
ID‘“‘"‘““"t d1:1 TCP Source
R indow: 110
Value: 32k indow Vector Sink UDP Source
Vec Length: 110 Wav File Source
Message Source
Message Burst Source
h Pad Source
Virtual s
-0.38268423080444336, 0.9807875752449036, -0.19500077072143555, 1.000002384185791, 7.21919L______"b1e-00, rtustsource
0.9807876348495483, 0.19509078562259674, 0.9238817095756531, 0.3826843202114105, 0.8314715623855591, Audio Source
0.5555715560913086, 0.7071084976196289, 0.7071084380149841, 0.5555715560913086, 0.8314715623855591, Funcube Dong[e Source
0.38268446922302246, 0.9238817691802979, 0.19509077072143555, 0.9807875752449036, 0.0, 1.000002384185791, » [synchronizers |
-0.19509053230285645, 0.9807876348495483, -0.38268423080444336, 0.9238817095756531, -0.5555715560913086, Y
0.8314715623855591,-0.7071082592010498, 0.7071084976196289, -0.8314715623855591, 0.5555715560913086, > [Probes]
-0.9238817691802979, 0.38268446922302246,-0.9807875752449036, 0.19509077072143555, -1.000002384185791, 0.0, > [Sinks]

-0.9807876348495483, -0.19509053230285645, -0.9238817691802979, -0.38268423080444336, -0.8314716815948486,
-0.5555715560913086, -0.7071084976196289, -0.7071082592010498, -0.5555715560913086, -0.8314715623855591,
-0.38268423080444336, -0.9238817691802979, -0.19509077072143555, -0.9807875752449036, 7.219194575469601e-09,

> [Message Tools]
¥ [Operators]

-1.000002384185791, 0.19509078562259674, -0.9807876348495483, 0.3826843202114105, -0.9238817691802979,
0.5555715560913086, -0.8314716815948486, 0.7071084380149841, -0.7071084976196289, 0.8314715623855591,
-0.5555715560913086, 0.9238817691802979, -0.38268423080444336, 0.9807875752449036, -0.19509077072143555,

4_AAAAAAINAAACTAL T AAAAAACTIC ASASAL A AN A AOATATEIAOAACANT A AACAAATACSAACASTA A AAIANATAACTCErSa

Add
Add

Figure 13: csim taking input from a signal source, o/p vector in lower left

Note: This is the first time we've actually seen the advantage of having a visual programming
language rich in source blocks. This perfectly justifies why an Electrical Engineering project
was forked and moulded for a control system application.

3.4.3 dsim block: signal source

14

= |

e

AEBO & % G

untitled 3%

& e X =
sbhs1 3 | dsim_openloop %

dsim

Vec Length: 10
Contreller Gain{P): 2
Tau_I{1): 1
Tau_D{D): 100m

Options
1D: top_block
G b WX GUl

LPP
Variable
1D: samp_rate

Value: 320

Signal Source
Sample Rate: 320
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0

Stream to Vector
Num Items: 10

-0.13374519-1.01626384 0.47195339-0.48858207] [-7.07511187e-01 7.06703186e-01 -1.00000060e+00 -5.71966171e-04
-7.06702709e-01 -7.07511663e-01 5.72437595e-04 -1.00000060e+00

7.07512140e-01 -7.06702471e-01]

[1.05000067 0.26310182 0.67656237 0.9447661 0.13465026 1.01603687

-0.47189742 0.4885667 -0.80112398-0.32532212] [1.00000060e+00 5.72999357e-04 7.06701875e-01 7.07512558e-01
-5.73635101e-04 1.00000060e+00 -7.07512856e-01 7.06701517e-01

-1.00000060e+00 -5.74111938e-04]

[-0.7420361 -0.92839801-0.13874157 -1.01501358 0.47164249-0.48850176

0.80110812 0.32532728 0.66100538 0.94865614] [-7.06701040e-01 -7.07513332e-01 5.74684644e-04 -1.00000060e+00
7.07513750e-01 -7.06700802e-01 1.00000060e+00 5.75246406e-04

7.06700206e-01 7.07514167e-01]

[-6.04820263e-04 1.04984939e+00 -4.80352044e-01 4.90677983e-01

-8.01652610e-01 -3.25192213e-01 -6.61038816e-01 -9.48648214e-01

c3

T LIgitdu vivuuiaLurs |
> [OFDM]
¥ [Extras]

Ex:
Ex:

Signal Source
Noise Source

Ex: Add
Ex: Add Const

Subtract
Multiply
Multiply Const
Divide

Socket Msg
DGram2Skream
Stream2DGram
Stream Selector

Ex: Time Align

Ex:

Packet Framer
Packet Deframer
Burst Tagger
Serializer
Deserializer
Scrambler
Descrambler
Query Server
OpencCL Block
ORCBlock
Clang Block

» [FFT]

Add

Figure 14: dsim taking input from a signal source, o/p vector in lower left

The dsiml function of scilab has been used to create the dsim block shown here. It gives an
option to specify the plant-controller parameters and step size required to simulate it in an

open loop mode.

3.5 GRAS and the feedback

Stock Scheduler and Advanced Scheduler implementations have been illustrated below. It
becomes clear from inspection of the screenshots that the blocks use an application scheduler
which is imported in the second line in the first program and first line of the second program.

The stock scheduler fails as the hyper-threading library that's used by the program is not
equipped to release threads pertaining to feedback situations. Feedback was made possible by
collaborative development with a US-based developer Josh Blum, who re-wrote the threading

library for our use-case.

import numpy
from gnuradio import gr

class square3 ff(gr.sync block):

docstring for block square3 ff

def init (self):
gr.sync_block. init (self,
name="square3 ff",
in_sig=[numpy.float],
out sig=[numpy.float])

def work(self, input items, output items):
in@ = input items[0]
out = output items[@]
=+signal processing here+=
out[:] = in@
return len{output items[@])

Figure 15: Implementation of GNU Radio stock scheduler, generated from gr-modtool. Import gr imports the stock
process scheduler

ng
#!/usr/bin/python
import gras
import numpy

class csim(gras.Block):

def init (self):
gras.Block. init (self,
name="csim",
in sig=[numpy.float32],
out sig=[numpy.float32])

Figure 16: Implementation of gras, which is GNU-Radio Advanced Scheduler written for our program

Josh Blum, understood the roadblock which was stopping GNURadio from becoming a

feedback-enabled control systems visual programming editor. Josh wrote a new application
scheduler GRAS and handed it over for this application.

The compilation and build logic of this scheduler from the source code has been given in the
APPENDIX 4

15

3.5.1 The Feedback flow-graph

The feedback flowgraph is generated by using the subtract block with

16

preload setto 1. It

works for the given scheduler and generates output as can be seen in the screenshot given
below. It's worth mentioning that this flow-graph can never work with the stock scheduler
since the stock scheduler's application scheduling can't understand feedback.

ol - v - o o P
o R = & F 0 & O &9 A= €9
sbhs1 3 dsim_openloop 3 | csim_closedloop %
Options
1D: top_block
Generate Options: WX GUI
csim
Vec Length: 20
Controller Gain{P): 2
Tau_I(I): 1
Tau_D(D): 100m
nl; 2 .
nl: 1
Variable do: 3
ID: samp_rate dl: 4
Value: 32k window: 20
Vector Sink

> Vec Length: 20

Vector Source
Vector: (0,0,0,0,0,0,0,0,0...
Repeat: No
Vec Length: 20

Ex: Subtract
Vec Length: 20

inside function: csim

OUT[0.0.0.0.0.0.0.0.0.0.0.0.0. 0. 0. 0. 0. 0.
0. 0.]
s=%s;Ge=syslin('c’',(2.1%s),1%s);G=syslin('c’,2*s+1,3*s+4);r=tF2ss5(G*Gc);u=[-1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0,
0.0,-1.0, 0.0,-1.0, 0.0, -1.0, 0.0, -1.0, 0.0];y=csim(u, 1:length(u),r)
Warning : redefining function: dt . Use Funcprot(0) to avoid this message
inside Function: csim

OUT[-1.39999998 0.25261688 -0.94167531 0.37342995-0.90982932 0.38182446
-0.90761656 0.38240775-0.50746278 0.38244829-0.90745211 0.38245109
-0.90745139 0.3824513 -0.90745133 0.3824513 -0.90745133 0.3824513
-0.90745133 0.3824513]

Figure 17:The feedback flow graph implemented for the first time in GNU Radio

> [Synchronizers]

» [Probes]

> [Sinks]

> [Message Tools |

> [Operators |

> [Type Conversions]

> [Stream Conversions]
> [Misc Conversions]

> [Filters]

> [Error Correction]
» [Line Coding]
> [Variables]
> [Misc]
> [Sources (New)]
> [Sinks (New)]
> [Math Operations (New)]
> [Boolean Operations (New)]
> [Stream Type Conversions (New)]
> [Stream Operations (New)]
> [Misc (New)]
> [Digital]
> [Digital Modulators]
» [OFDM]
¥ [Extras]
Ex: Signal Source
Ex: Noise Source
Ex: Add
Ex: Add Const
Ex: Subtract

|[— Add

17

4 Sandhi

Connecting blocks

4.1 Why Sandhi?

GNU Radio has a plethora of blocks which are of no use to us. They are appropriate only for
electrical engineering applications. It made sense to remove these blocks and clean up the
User Interface.

« Sandhi implements only the control relevant blocks developed so far.

» Sandhi has access to scilab's computation engine and scilab's control libraries via
sciscipy

« Sandbhi is feedback ready as the advanced scheduler has been made available for
Sandhi.

+ Sandhi has the conventional driver support available to GNU Radio and still carries
the various sources, sinks and math operation blocks, that can be used efficiently to
carry out simulations.

The commands that are followed for installing the software using CMake are as under:
a) mkdir build

b) cd build/
c) cmake ../
d) make

e) make install

Clean Ul, only control relevant blocks were retained by editing the CMake rules. CMake is a
configuration file which is used to organize the software and its dependencies in the root file
system It sets all the necessary file paths and makes the software compile ready. It also takes
care of the hardware architecture on which the software is to be built. The CMake rules were
edited with the help of Manoj and it was made appropriate to run on a 64-bit device as well
as arm device.

Applications
x
File Edit View Build Help

Tue Oct 22 12:31 AM

Sandhi.grc - /home/aviral - GNU Radio Companion

W) T 3 mM 2O

18

Ex: Subtract

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0

| X = & O « — € > = =2
testd x| test3 x ‘Sandhi x ‘
|
Options
1D: top_block dsim
Generate Options: WX GUI csim Controller Gain(P): 0
Controller Gain(P): 0 Tau_I(1): 0
Tau_I(1): 0 Tau_D(D): 0 e
Tau_D(D): 0 n0: 0 or Source
.no:o [out] ."1:0 Vector:0,0,0 Bl
BT step: 0 Repeat: Yes
do: 0 do0: 0
dl: 0 d1: 0
Variable window: 0 window: 0
1D: samp rate
Value: 32k

Loading: "/home/aviral/development/G/testd.grc"
>>> Done

Showing: "/home/aviral/development/G/testd.grc"

Loading: "/home/aviral/development/G/test3.grc"
>>> Done

Showing: ""

Showing: "/home/aviral/development/G/test3.grc"

Showing: "

Float To Int
Float To Short
Float To UChar
Int To Float
IShort To Complex
Short To Char
Short To Float
UChar To Float

¥ [Stream Operations (New)]
Delay
Packed to Unpacked
Unpacked to Packed
Deinterleave
Interleave
KeepMinN
Keep1inN
Repeat
Stream Mux
Stream to Streams
Stream to Vector
Streams to Stream
Vector to Stream
Vector to Streams
Peak Detector2
Regenerate
Stretch
Threshold

> [Misc (New)]

> [FFT]
Add

Figure 18: Sandhi and a few of the important blocks

4.2 Implementation of csim in Sandhi in a feedback mode
csim was implemented in Sandhi in the feedback mode and it was tested with two different

signal source blocks in the feedback mode. The feedback is implemented by adding the

subtract block as we work under the assumption that an error is fed to the plant-controller
block whose dynamics have been coupled in csim.

The subtract block was initialized with a preload equal to 1 and the vector size was kept same

as that of the signal source block. It would become clear in the next few screenshots.

19

Applications Tue Oct 22 12:26 AM) = % @ 10
X testd.grc - /home/aviral/development/G - GNU Radio Companion A
File Edit View Build Help

— : v @
IE E x Ll;.‘l] A4 - 6. [T LI c

untitled |test4 X

tost3 % ‘ Blocks
¥ [Sources]

Options Constant Source
1D: top_block Signal Source
Generate Options: WX GUI

ot csim Noise Source
ControlrGai | vecorsouree |
Vector Source
Controller Gain{P): 2 s
Tau_I{1): 500m Randam Source
Tau_D{D): 500m . GLFSR Source
Vector Source "':’; Null Source
nl:
Vector: 0,0, 00011111 i
— — a0 1 File Source
Vec Length: 10 dl: 4 TCP Source
1D: samp_rate . indon=10
Value: 32k ' UDP Source
Wav File Source

Message Source
Message Burst Source

| PadSource
Vector Sink g i
4’@ Virtual Source
B [Sinks]

P [Message Tools]

Ex: Subtract
Vec Length: 10

k- P [Operators]
) > [Type Conversions]

[| |

OUT[0.0.0.0.0.0.0.0.0.0] LR, [Stream Conversions]
OUT[-3.77734526e+24 1.36356531e+24 -1,31027338e+24 -5.91841734e+23 P [Misc Conversions]
-6.31755372e+23 -2.15233872e+23 -1.88865134e+23 -3,14619331+22 b | Synchronizers]
1.97996803e+21 -4.01093820e+21]
OUT[0. 0. 0.0.0.0.0.0.0.0] P [Level Controls]
OUT[-1.98310615e+25 7.15895425e+24 -6.87901972e+24 -3.10731830e+24 > [Filters]
-3.31692923e+24 -1.13025593e+24 -9.91884527e+23 -1,65582208+23 b [Modultors]
9.92328884e+21 -2.02011641e+22]
OUT[0. 0. 0. 0. 0. 0. 0. 0.0. 0] P [Error Correction]
OUT[-1.04113073e+26 3.75850082e+25 -3.61152661e+25 -1,63141425e+25 b [Line Coding]
-1.74149093e+25 -5.93518284e+24 -520904117e+24 -8.71262925¢+23

4.98322984e+22 -1.01640812e+23] P [Probes]

OUT[0.0.0.0.0.0.0.0.0.0]

OUT[-5.46593629e+26 1.97322331e+26 -1.89606870e+26 -8.56525400e+25 Add

Figure 19: closed loop implementation of csim on Sandhi with a vector source

Applications

Tue Oct 22 12:22 AM

x testd.grc - fhome/aviral/development/G - GNU Radio Companion

File Edit View Build Help

dEm X EH e O oW € A=l
untitled » |test4 ‘ Ex: Noise Source
EBx: Add
Options Ex: Add Const
1D: top_block X
Generate Options: WX GUI esim Ex: Subtract
Ex: Multiply
Vec Length: 5 A
Controller Gain(P): 2 Ex: Multiply Const
Tau_l{1): B0Om Ex: Divide

Variable
ID: samp rate
Value: 32k

Ex: Signal Source
Waveform: Cosine
Sample Rate (Sps): 32k
Wave Freq (Hz): 1k
Offset: 0
Scalar: 1

Num Items: 5

Tau_D{D): 500m
nl: 2 .
nl: 3
do: 1
dl: 4

window: 5

Stream to Vector

Ex: Subtract
Vec Length: 5

Vector Sink
Vec Length: 5

Ex: Socket Msg

Ex: DGram25tream
Ex: Stream2DGram
Ex: Stream Selector
Ex: Delay

Ex: TUN/TAP

Ex: Time Align

Ex: Packet Framer

z| ExPacket Deframer

Ex: Burst Tagger
Ex: Serializer

Ex: Deserializer
Ex: Scrambler
Ex: Descrambler

;
[0.0.0.0.0][0.0.0.0.0]

[0.00000000+00 -9,067466756+09 8.33412147+10 -5,31754123e+11

2.42944128e+12] [0.00000000e+00 -1.36011954e+09 122677484e+10 -6.80287519e+10
2.92079731e+11]

[0.0.0.0.0][0.0.0.0.0]

[0.00000000+00 -6.04497797e+10 6.459829138+11 -4.10853383e+12
1.99018068e+13] [0.00000000e+00 -9.06746675e+09 8.93412147e+10 -5.31754123e+11
2.42944128e412]

[0.0.0.0.0][0.0.0.0.0]

[0.00000000e+00 -4.02998526e+11 4.642384648+12 -3.14267958e+13

1,60886002e+14] [0.00000000e+00 -6.04497797e+10 6.45982913e+11 -4,10853389e+12
1.99018068e+13]

[0.0.0.0.0][0. 0.0 0 0]

0.00000000+00 -2.68665671e+12 3.31881120+13 -2.38288175e+14

Ex: Query Server
Ex: OpenCL Block
Ex: ORC Block
Ex: Clang Block

v [

[controls]

id dsim
> [WX GUI Widgets]
> [QT GUI Widgets]

| Add

Figure 20: closed loop implementation of csim on Sandhi with a signal source

We used an additional stream to vector block with number of items equal to the vector length
the blocks are capable of handling in this situation. It converts the constant stream of data
into chunks of vectors of length = vector length. It has to be specified while connecting this

block.

It is important to set the preload condition of the subtract block equal to one in order to

execute this flow-graph.

21

4.3 Implementation of dsimul in Sandhi

Applications Tue Oct 22 12:18 AM
x test3.grc - fhome/aviral/development/G - GNU Radio Companion -"
File Edit View Build Help
. 3 &
[&= = . O | = — I % c N
Tour TVEnT T
untitled |ren3 X > [sinks (New) |
¥ [Math Operations (New)]
Options
1D: top_block dsim Add
Generate Options: WX GUI Vec Length: 5 Add Const
Controller Gain{P): 1 Divide
Tau_I{1): 100m Multiply
Tau_D{D}: 300m
nD: 2 Multiply Const
nl: 1l Multiply Conjugate
step: 200m Subtract
Variable z: Complex Conjugate
ID: samp _rate window: 5 Integrate
Value: 32k Logl0
Ex: Signal Source
Waveform: Cosine RMS
Sample Rate (Sps): 32k Transcendental
[) S = [Boolean Operations (New)]
Offset: 0 z
Scalar: 1 ® [Stream Type Conversions (New|
Stream to Vector ¥ [Stream Operations (New)]
Num Items: 5 Delay
Packed to Unpacked
Unpacked to Packed
m Deinterleave
T8868765e+34 7.27644200e+35 -1. 62559e+. 15774288 e+
-inf] [-2.18B68765e+34 7.27644200e+35 -1.27886259e+37 1.57742881e+38 Interleave
-inf] Keep Min N
[-2.18868765e+34 7.27644200e+35 -1.27886259e+37 1.57742881e+38 Keep 1in N
-inf] [-2.18868765e+34 7.27644200e+35 -1.27886259e+37 1.57742881e+38 P
-inf] Repeat
[-2.18868765e+34 7.27644200e+35 -1.2788625%e+37 1.57742881e+38 Stream Mux
-inf] [-2.18868765e+34 7.27644200e+35 -1.27886259e+37 1.57742881e+38
-inf] Stream to Streams
[-2.18868765e+34 7.27644200e+35 -1.27886259e+37 1.57742881e+38 Stream to Vector
:gg [-2.18B68765e+34 7.27644200e+35 -1.27886259e+37 1.57742881e+38 Streams to Stream
\ireams to Vector
>>> Done Add

Figure 21:closed loop implementation of dsim on Sandhi with vector source

Applications Tue Oct 22 12:34

x test2.gre - /home/aviral/development/G - GNU Radie Companion
File Edit Vview Build Help

[d &= ® = G e Q — € > == 73

tesid < [tests x| Sandhi |rert2 x | Blocks
> [Sources]
Options B [Sinks]
Leelnn Tas dsim P [Message Tools]
Generate Options: WX GUI Vec Length: 5 > [Operators]
Controller Gain(P): 1
Tau_I(1): 100m > [Type Conversions]
Tau_D(D): 900m > [Stream Conversions]
no: 2 - ® [Misc Conversions]
nl: 1
steps 200m P [Synchronizers]
d0: 3 B [Level Controls]
m“mahlet dl: 4 > [Filters]
. samp_rate .
Value: 32k window: 3 > [Modulators]
> [Error Correction]
P [Line Coding]
> [Probes]
_> [Variables]
P [Misc]
- Ex: Subtract A > [Sources (New)]
> Vec Length: 5 = B [Sinks (New)]
P [Math Operations (New)]
P [Boolean Operations (New)]
[0.00000000e+00 -4.72876952e+34 1.64811533e+36 -2.02822993e+37 (> [Stream Type Canversions (New
inf][0.00000000e+00 -7.09315441e+33 2.41306344e+35 -4.33337516e+36 > [Stream Operations (New)]
5.454655408+37] o [Misc (New)]
[0.0.0.0.0][0.0.0.0.0]
[0.0.0.0.0][0.00000000e+00 -4.72876952e+34 1.64811533e+36 -3.02822993e+37 > [FFT]
inf] P [GREX]
[0.0.0.0.0][0.0.0.0.0] b | controls]
[o. -6.66666651 5.55555534 -14.07407379 15.43209839][0.-1. 0.-1. 0]
[0.0.0.0.0][0.0.0. 0.0] - [WX GUI Widgets]
[0 -51.11111069 79.62963104 -188.14814758 303.4979248]1[0. -7.66666651 5.55555534 -15.07407379 15.43209839] > [QT GUI Widgets]
[0.0.0.0.0][0.0.0.0.0]
k P [scigen]
b>> Done) \ Add

Figure 22: closed loop implementation of dsim on Sandhi with signal source

22

5 Sandhi on Aakash

The following screen shot captures the process of compilation and installation of Sandhi on
Aakash. It would be available for test by the panel on the presentation day.

ol

A

S e ter_swi
- 4 - -
53] B et D w filter <wi
SOl T DNERE i = . 0 2420
1 — 2 S o
33 nte
3y
% Y
39 v
S0X]]
wird)
DX - - - NdS
b, = ¢ .
it S Py 133
BIN) € { oV {s { tils_ s « 0 a0t3
184 L DO j2¢
or 4
e thon_92¢
“ad 1 o o {
a4 iy B
<4 T RS PS
4 § T) DC
t
] »
[CKS]
4 larg D Cl]
4 » g CXX 0D jel f) gr-010CH Si |3 es DIO g D10 U D

Figure 23: Compiling Sandhi on Aakash

Aakash tablet is an arm device, so Sandhi has to be compiled and installed in its environment.
The normal compile and install time of Sandhi for arm devices stands at around 8 hours. The
screenshot shown below shows Sandhi on Aakash.

Compiling Sandhi for Aakash completes the development cycle full circle. It enables the user
to execute all the previously shown flow graphs from Aakash.

23

Figure 24: Sandhi on Aakash

24
6 Customizing Sandhi

6.1 How can one write a block on their own?

One can start writing a block in Sandhi using the gr-modtool. It serves as a great guideline to
implement the blocks in GRC (GNU Radio Companion — the Ul of GNU Radio). It is very
important to look at the steps given in the chapters 2 and 3 to understand the development
cycle. It captures a development cycle of around 20 weeks.

This documentation is also aimed at cutting short the development time of a new developer as
the limitations of GNU Radio from control standpoint got exposed at a much later stage.

It is highly recommended that a new developer should stick to the protocol followed in
APPENDIX 5 and Chapter 3.

The GUI can be modified and further improved by the developer if the developer takes keen
interest in design aspects of User Interface

6.2 Methods of implementation
There are two ways of implementing blocks in Sandhi. The two techniques mentioned below
have their own pros and cons.

6.2.1 C++ based implementation

If the user is striving for performance the blocks should be implemented in C++. C++isa
compiled language, thereby it converts the code directly into a native code of the particular
machine. This makes C++ faster.

However with C++ the development time increases multifold. In the C++ implementation the
swig wrapper generate python objects at runtime to be used by the python-cheetah script used
to pass values to the functions from the GRC.

6.2.2 Python based implementation
Python is an interpreted language. At runtime byte code are generated which are converted to
native machine code by some other language.

However python has a very rapid development cycle. With a little performance tradeoff, it
gives the user a very rapid development cycle to prototype their ideas. However it is highly
recommended that performance critical systems should be written in C++.

25

7 Importance of Sandhi to Chemical Engineers

The use of feedback is to improve the performance of scientific and industrial equipment.
The fundamental premise of feedback loops is to take into account the actual measurements
and hence compute the actuations in order to meet the operational specifications. This finds a
lot of applications in areas like Process Control.

Control solutions require hardware interfacing, such as sending and receiving data from
sensors, actuators. The transmission and reception of information is carried out using DAQ
tools like LabVIEW.

The real-time control the output is made available to the system and the deviation is
calculated from the desired o/p specifications. This error is systematically reduced and hence
the output specifications are achieved.

Appropriate actuators and amplifiers allow the user to control the physical systems. A flow
diagram of one such control system is given below

4
1 2 Control 5 Physical Measurement
A/D

Algorithms D/A Systems

Figure 25: Adapted feeback structure from a paperl¢l in references

(1) The measurement is converted into a digital signal a number here (2) it is then compared
with a reference value (3) in the control algorithm block. The resulting command (4) is
converted to an analog signal (5) and then applied to the physical system

Instrumentation and control are a very important part of setting up any chemical unit. The
installation cost of these systems could be quite high.

Sandbhi is being projected as an open source alternative to LabVIEW, and has the potential to
substantially reduce the cost of setting up a remote lab for process control. A very holistic
development approach is being taken and by the next phase a few LabVIEW applications
would be functionally replaced by LabVIEW.

8 Comparison of LabVIEW and Sandhi

26

LabVIEW

Sandhi

LADBVIEW or Laboratory Virtual Instrument
Engineering Workbench is a proprietary
software for visual programming from
National Instruments(NI)

Sandhi is an open source software built on
GNU Radio; Sandhi can be used primarily
for system simulation.

Provides built in hardware interfacing and
DAQ tools, drivers for all NI DAQ
cards(which are also proprietary in nature)

Inherits drivers from GNU Radio’s
UHD(Universal Software Radio Peripheral
Hardware Driver) module and COMEDI

Contains signal processing blocks,
controller blocks, blocks for solving linear
algebraic equation, advanced calculus etc.
which are abstracted by simple intuitive
blocks

Inherits advanced signal processing blocks
from GNU Radio, contains basic control
system simulation blocks as of yet, along
with basic mathematics blocks.

Only LabVIEW Full and Professional
Development systems can be interfaced
with MATLAB using ActiveX technology

Sandhi can harness various computational
engines; currently it can be interfaced with
Scilab (using Sciscipy), GNU Octave, and
Python libraries.

LabVIEW runs only on MS Windows as
well as Linux for X86 and X64 architecture

Sandhi can be compiled on Windows and
Linux for X86, X64 as well as ARM
devices.

It offers graphical programming for many of
microcontroller and FPGA kits(Field
Programmable Gate Arrays).

Sandhi currently cannot program embedded
devices.

Table 1: A comparison table between LabVIEW and Sandhi

27

9 Roadmap

9.1 Where do we stand? And Proposed Future Work

Sandhi has taken the shape of a visual programming editor. A rapid development cycle has
been developed and it can easily be adapted to use many other control libraries available in
Scilab. It’s the combined responsibility of the control community and our team to start
functionally replacing LabVIEW applications by Sandhi.

Sandhi’s device support is explained by the fact that it supports COMEDI drivers. Moreover
it’s based on a python framework, which makes all the free and open drivers available in
python available to Sandhi.

The o version is ready and is to be released by November 1% 2013.

The future development revolves around functionally replacing a few LabVIEW
implementation in Sandhi. The plan is also to try and functionally port LabVIEW based
Virtual Lab applications by Sandhi as possible. It could be a great testing ground for our
software.

9.2 Plotting library

A plotting library is already under-way and would be fixed by the time we release the a
version of our software, which is around November 1% 2013. The conventional plot blocks
are not working with our control blocks, they are giving erroneous plots as they are taking
some erroneous pre-load condition and re-initializing after some vector length. The
debugging has already started and it would be fixed in a matter of week.

9.3 Developing the network communication protocols and remote lab for
the users

The APPENDIX 1 shows implementation of a network protocol to exchange data to and from
a server. It’s a lightweight URL based communication protocol implemented entirely in

python.

Given the premise of remote labs, it’s important for the client and the server to exchange
data. Such a data exchange has been shown and it’s implementation explained. The next
phase would be about connecting these blocks and coming up with a novel remote lab.

28

Top Block A AR A a P =) 5AM R Aviral chandra §%
b avirat-Dell System Inspiron-Ha T10: /gt python module/dirgy TopBlock el - L e - a < <

Line Coding]
Variables]
Mist

Sources (New)

Strea
Mise (New) |
Digital]

Digital Modulators]
oFoM]

Extras]

FFT

Vocoders]

Vector Sink
Vez Lenges 10

uskp]
kD)

1 \IH”W‘I‘W“M” “'” \\IHHH HM"W‘I“'\”
1)l AR

HOK wo\

Heater System]

100 120

x=107613 y=328554

Figure 26: A static plot generated by dumping data in python workspace. This would be fixed by the time Sandhi is
released

29

10 References

[YArquimedes Barrios , Stifen Panche , Mauricio Duque , Victor H. Grisales , Flavio
Prieto, Jose L. Villa, Philippe Chevrel, Michael Canu: A multi-user remote academic
laboratory system, Article, Elseveir: Computers and Education,

Article history:
Received 28 April 2012
Accepted 17 October 2012

IDjctino Chaost;*, Jes “us Chacon', Jose Antonio Lopez-Orozco? and Sebasti”an
Dormido! : Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab-
VIEW

1)Department of Computer Science and Automatic Control, UNED, Juan del Rosal
16, Madrid 28040, Spain; E-Mails: jchacon@bec.uned.es (J.C.);
sdormido@dia.uned.es (S.D.)

2)Department of Computers Architecture and Automatic Control, Complutense
University, Ciudad Universitaria, Madrid 28040, Spain; E-Mail: jalo@dacya.ucm.es

Published in Sensors — Open Access Journal sensors (ISSN 1424-8220; CODEN: SENSC9)

Article History:

Received: 28 December 2012; in revised form: 1 February 2013
Accepted: 16 February 2013

Published: 21 February 2013

[BlCarla Martin-Villalba *, Alfonso Urquia, Sebastian Dormido : Object-oriented mod-
elling of virtual-labs for education in chemical process control, Dept. Inform”atica y
Autom”atica, UNED, Juan del Rosal 16, 28040 Madrid, Spain

Article history:

Received 27 January 2006

Received in revised form 9 September 2007
Accepted: 19 may 2008

Available online: 7 July 2008

MKLEIN_and G. WOZNY: WEB BASED REMOTE EXPERIMENTS FOR CHEM-
ICAL ENGINEERING EDUCATION, Paper in IChem E, TU Berlin, Institute of Pro-
cess and Plant Technology, Berlin, Germany

Bljagdish Y. Patil, Balashish Dubey, Kannan M. Moudgalya, Rakesh Peter: GNURa-
dio, Scilab, Xcos and COMEDI for Data Acquisition and Control: An Open Source
Alternative to LabVIEW, Article, 11T Bombay, Mumbai 400076,

mailto:jalo@dacya.ucm.es

30

Article History:

Preprints of the 8th IFAC Symposium on Advanced Control of Chemical Processes
The International Federation of Automatic Control Furama Riverfront, Singapore,
July 10-13, 2012

o [lintroduction to Real-time Control using LabVIEW™ with an Application to
Distance Learning*
Authors:
Ch. SALZMANN, D. GILLET, and P. HUGUENIN, Swiss Federal Institute of
Technology Lausanne, Switzerland. E-mail: christophe.salzmann:epfi.ch

o [ICOMEDI. http://www.comedi.org/

o Blinternship Report on Graphical Programming Language LabVIEW & Xcos, GNU
Radio or Blockly as an Open Source Alternative to LabVIEW for Data Acquisition
and Control
Saruch Rathore

INTERNET RESOURCES:

o [scilab Anywhere C/S — a Client/Server system to provide remote Scilab services
See: http://scilabanywhere.sourceforge.net/

e [2virtual Labs (India)
See: http://en.wikipedia.org/wiki/Virtual_Labs_(India)

o Bl abshare
See: http://www.labshare.edu.au/

o [IRemote Laboratory
See: http://en.wikipedia.org/wiki/Remote_laboratory

o Dlaakash (tablet)
See: http://en.wikipedia.org/wiki/Aakash_(tablet)

o [laakash 2
See: http://en.wikipedia.org/wiki/Aakash_2

o [IGNU Radio
See: http://gnuradio.org/redmine/projects/gnuradio/wiki

o [ESciscipy: A Scilab API for Python
See: http://forge.scilab.org/index.php/p/sciscipy/

o [lApstraction (computer science)
See: http://en.wikipedia.org/wiki/Abstraction_(computer_science)

http://www.comedi.org/
http://scilabanywhere.sourceforge.net/
http://en.wikipedia.org/wiki/Virtual_Labs_(India)
http://www.labshare.edu.au/
http://en.wikipedia.org/wiki/Remote_laboratory
http://en.wikipedia.org/wiki/Aakash_(tablet)
http://en.wikipedia.org/wiki/Aakash_2
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://forge.scilab.org/index.php/p/sciscipy/
http://en.wikipedia.org/wiki/Abstraction_(computer_science)

31

o [IGNU Radio: Out-of-tree modules. Extending GNU radio with own functionality
and blocks
See: http://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules

o [MBJockly: A visual programming editor

See: https://code.google.com/p/blockly/

e [Google app-engine
See: https://cloud.google.com/console#/project/apps~remote-cloudlabs

o [Nl LabVIEW Full Development System for Linux,
See: http://sine.ni.com/nips/cds/view/p/lang/en/nid/2541

e [MExecuting MATLAB Scripts in LabVIEW
See: http://zone.ni.com/reference/en-XX/help/371361J-01/gmath/matlab script node/

[181]_abVIEW support for Linux
See: http://sine.ni.com/nips/cds/view/p/lang/en/nid/2541

VERSION CONTROL SYSTEM:
Repositories created, forked and contributed to:

e GIMP Tool Kit Widgets and experiment with out of tree modules
https://github.com/manojgudi/gnu Ic/commits/master

e First python module successfully implemented
https://github.com/manojgudi/gr_python_module

e Writing python blocks
https://github.com/aviralchandra/gr-py block

e Experiments with xcos Ul widgets, knob implementation
https://github.com/aviralchandra/xcos_Ul

e Complied binaries of Sandhi made available
https://github.com/manojgudi/sandhi

e GRExtras - Advanced GNU Radio Blocks forked from Josh Blum
https://github.com/aviralchandra/grextras

e GRAS: forked from Josh Blum
https://github.com/aviralchandra/gras

http://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules
https://code.google.com/p/blockly/
https://cloud.google.com/console#/project/apps~remote-cloudlabs
http://sine.ni.com/nips/cds/view/p/lang/en/nid/2541
http://zone.ni.com/reference/en-XX/help/371361J-01/gmath/matlab_script_node/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/2541
https://github.com/manojgudi/gnu_lc/commits/master
https://github.com/manojgudi/gr_python_module
https://github.com/aviralchandra/gr-py_block
https://github.com/aviralchandra/xcos_UI
https://github.com/manojgudi/sandhi
https://github.com/aviralchandra/grextras
https://github.com/aviralchandra/gras

32

APPENDICES

APPENDIX 1
Implementing a URL based communicating protocol

Developing a communication protocol for communicating data from a remote location. This
Appendix implements an URL based communication protocol.

The domain cloudlabs was registered at google appengine. It has been used for all the
communications

One should type the following URL in their respective browser to see the results:

www.remote-cloudlabs.appspot.com/hello?temp=100&heat=100&fan=100

The results are available on the following URL.:

www.remote-cloudlabs.appspot.com/display

This URL can be parsed from any programming language. JSON and Python urllib are
among popular libraries to parse this URL. The first URL is used to send values to the
database registered on the google's free cloud-service app-engine.

The second URL is used to retrieve this data.
The implementation and the exact code is given here.
Code:

The google app-engine for Ubuntu 12.04 was downloaded and installed and the main.py file
found under the remote-cloudlabs was written. The following snippet shows the exact file
path to find the main.py file to be edited.

aviral@aviral—Dell—S}stem—Insbiron—N411@:~/Documents/gougie_éppénbineﬁ 1s

151 test.apk demos lib README
LICENSE RELEASE_NOTES
remote-cloudlabs
BUGS N php

VERSION
aviral@aviral-Dell-System-Inspiron-N4110:~/Documents/google appengine$ cd remote-cloudlabs
/
aviral@aviral-Dell-System-Inspiron-N4118:~/Documents/google appengine/remote-cloudlabs$ 1s
app.yaml app.yaml~ main.py main.py~ main.pyc
aviral@aviral-Dell-System-Inspiron-N4118:~/Documents/google appengine/remote-cloudlabs$

APPENDIX Figure 1:finding the main.py file

The main.py file. The comments start with a ‘#’ and are self-explanatory
import webapp3

from google.appengine.ext import db

http://www.remote-cloudlabs.appspot.com/hello?temp=100&heat=100&fan=100
http://www.remote-cloudlabs.appspot.com/display

33

#creating a class instance of the database, google app engine allows us to do so. Whar t we
have done here is very conveniently created a db template and specified the data types it
can have for the 3 columns(temp/heat/fan)

class MyData(db.Model):
temp = db.IntegerProperty()
heat = db.IntegerProperty()
fan = db.IntegerProperty()

#/hello redirects to the class Hello world as can be seen in the URL container below
class HellowWorld(webapp2.RequestHandler):
def get(self):

temp = self.request.get('temp")

heat = self.request.get(‘heat’)

fan = self.request.get(‘fan’)

data = MyData()

data.temp = int(temp)

data.heat = int(heat)

data.fan = int(fan)

data.put()

#/display redirects to the class Fetcher as can be seen in the URL container below
class Fetcher(webapp2.RequestHandler):
def get(self):
data = db.GqlQuery("select * from MyData")

for x in data:
str = "TEMP= %d, HEAT=%d, FAN=%d
" %(x.temp,x.heat,x.fan)
self.response.write(str)

#URL container

app = webapp2.WSGIApplication([
(/hello’, HelloWorld),
(/display', Fetcher)

], debug=True)

34

APPENDIX 2
The Back End

Reusing of the driver modules to implement a backend that responds to the app-engine and
reads/writes values from the SBHS(Single Board Heater System) is implemented here.

The forked sbhs driver module on top of which the development took place
(Source: https://github.com/prashants/sbhs)

All comments begin with ‘#’. However the first line is known as shebang and is mandatory if we want
to execute the script by a command like ./pythonfilename.py

main2.py
#!/usr/bin/python -tt

the serial module is already available with python’s distributed package. It is used for establishing
data connection with the SBHS device, the time module is used to re-iterate the code automatically by
using the sleep function.

import serial
import time
from time import sleep

A data channel is opened and the communication with the device established
ser = serial.Serial('/dev/ttyUSBO', baudrate=9600, timeout=1)
ser.open()

these libraries are imported from python-dist-packages to parse/read URL
import urllib
import urllib2

this line imports everything from the sbhs.py & scan_machines.py file. It can be found on the URL
https://github.com/prashants/sbhs. It is much more convenient to clone the git repository using the
command git clone https://github.com/prashants/sbhs.git. in terminal in Ubuntu. The sbhs.py and
scan_machines.py files should be located and put in the same directory as the main2.py file being
edited.

from sbhs import *
from scan_machines import *

new_device = Sbhs()
new_device.connect(80)
new_device.connect_device(0)
while True:

new_device.setHeat(10)
new_device.setFan(80)

https://github.com/prashants/sbhs
https://github.com/prashants/sbhs
https://github.com/prashants/sbhs.git

35

f=new_device.getTemp()
print f

#writing to google app-engine, we are using the same protocol to read/write values to
the google-app engine.

data = {}

data["temp'] '30 '#float value not 1int
data['heat'] = '200'

data['fan'] = '100'

url_val = urllib.urlencode(data)

print url_val

url = 'http://remote-cloudlabs.appspot.com/hello’
full_url = url + '?" + url_val
data = urllib2.urlopen(full_url)

#reading from url
req =urllib2.Request('http://remotecloudlabs.appspot.com/display ")
response = urllib2.urlopen(req)
data = response.read()
print data
time.sleep(10)

Note:

What has been implemented in the above two sections is the middle-ware and the backend
that can respond to any front-end. The client end just has to parse the URL and exchange
values with the middle-ware which is the google app-engine in order to interact with the back
end

http://remotecloudlabs.appspot.com/display

36

APPENDIX 3
Sciscipy changes that made it usable

All the shared object files commonly known as .so files are listed in the top-right screen
partition. They are intended to be used by executable files.

The linker error as shown in the lower right window, was sorted out by including these so
files in the sci_extra_link_args. The configuration was done by running the setup.py file
included with sciscipy.

aviral@aviral-Dell-System-Inspiron-N4110: ~/Downloads/sciscipy-1.0.0 M3 = 4) 11:43PM L AviralChandra it

- aviral@aviral-Dell-System-Inspiron-N4110: ~/Downloads/sciscipy-1.0.0 79x42 F aviral@aviral-Dell-System-Inspiron-N4110: /usr/lib/scilab 78x20
@ #1/usr/bin/env python - aviral@aviral-Dell-System-Inspiron-N4110:/usr/1ib/scilabs 1s =
libsciinterpolation.so.5.3.3

from distutils.core import setup, Extension, Command

from unittest import TextTestRunner, TestLoader libmat.s0.5.3.3

from glob import glob libsciintersci.so.5.3.3
from os.path import splitext, basename, join as pjoin

import 05, sys libmex.50.5.3.3

libsciio.s0.5.3.3

This should be customized for specific instals

libmx.50.5.3.3

if 05.name == 'nt': libscijvm-disable.50.0.0.0
common_include base = r"C:\Progran Files (xBﬁ]\sciwh—s.Z.l\modules“
sci include = [libsciaction binding-disable.so.6.0.0

0s.path. join(common include base, "core", "includes"), libscijvm.s0.5.3.3 H

0s.path. join(common include base, "call scilab’, "inclu

4= K815

libsciaction binding.se.5.3.3

— 0s.path. join(common include base, "api scilab", "includ libscilab-cli.s0.0.0.0
E] libsciapi scilab.so.5.3.3
— libscilab.s0.0.8.0
sci 1ib dir = [r"C:\Program Files (x86)\scilab-5.2.1\bin"] W
a sci librairies = ['LibScilab', 'api scilab’] =
elif os.name == 'posix': s
common_include base = os.path.join("/","usr", "include', "scilab") intmon:
sci_include = [common_include base, SciErr scifrr
05.path. join(common_include base, "core"), double *cxtmp = NULL ;
[05.path. join(common include base, "call scilab") double *cx = NULL, *cx ing = NULL;
@] double *cxtmp img = NULL ;
=8 sci 1ib dir = [os.path.join("/","usr", "1ib", "scilab")] PyObject * matrix ;
- 5ci Ubralrles = [scﬂah]
S sci_extra link args = ['-#l,--no-as-needed -lpython2.7 -L/usr/lib/scila if (tisvarConplex(pvApiCtx, addr))
b -1sciapi ! scilab -lsciaction binding -1scicall scilab -lscioutput stream -1lsci
core -1scilinear algebra -lsciconsole -lscilocalization -lscipolynomials -lscii scifrr = getMatrix0fbouble(pvApiCtx, addr, &, &n, NULL) ;
é o -lscielementary functions -lscisparse -lscihistory manager -1scihistory brows 1
er -1scigraphics -lscicompletion -1scifunctions -lsciboolean -1sciwindows tools else
— -lscitime -lscifftw -1sciintersci -1scidouble -1scicommons') {
’- Pelse _ sciErr = getComplexMatrix0fDouble(pvApiCtx, addr, &, &n, NULL, NULL)
Lol! raise NotImplementedError, "Only 'nt' and 'posix' are supported" :
— }
el sC1 sources = ['sciscipy.c', 'sciconv read.c', 'sciconv write.c', 'util.c']
.
1,21 Top y 253,23 49%

APPENDIX Figure 2: scscsipy changes
Configuration was done by typing ./setup.py on terminal
The compilation was done by ./setup.py build

The installation was completion using ./setup.py build install

37

APPENDIX 4

Building GRAS from source

The steps and the command snippet are given as under.
Steps:

1) Go to the gras directory.

2) Make a build directory using mkdir build

3) Go to the build directory using cd build

4) Type cmake ../ to start the configuration process

5) Type sudo make to complete the compilation

6) Type make install to make it available to the user

APPENDIX Figure 3: Series of screenshots illustrating GRAS build

The last step after this is make install. This completes the installation process and the
Advanced Scheduler is ready to use

38

APPENDIX 5

dsimul development logic was the same as csim. Only a single python file had changes. Only
the file which had changes is given here.

#!/usr/bin/python
import sciscipy
u 1s a TUPLE vector of width w

def discrete_sim(P,I,D,n0,nl,st,do,dl,u):

code_stringl = "s=%s;"

code_string2 = "Gc=sys-
lin("+str(st)+", ("+str(P*I4+D)+"*s)"+", "+str(I)+"*s);"

code_string3 = "G=syslin("

code_stringd = str(st) +","+ str(n@)+"*s"+ "+"+str(nl)+","+
str(de)+"*s"+"+"+str(d1)+");"

code_string5 = "r=tf2ss(G*Gc);"

code_string6 = "u="+str((u))+";"

code_string7 = "y=dsimul(r,u)"

code_string =code_stringl + code_string2+ code_string3+
code_string4 + code_string5+code_string6+code_string7

Check complete code string
#print code string

import sciscipy
sciscipy.eval(code_string)
y = sciscipy.read("y")
return y

#print discrete sim(1,1,0.1,2,1, "u=zeros(1,50);u(10)=1")

if name_ == "_main_ ":
u = [0]*100
u[se] = 1
out = discrete_sim(2,0.5,0.6,1,1,0.1,2,1,u)
print out

#import matplotlib.pyplot as plt
#plt.plot(out)
#plt.show()

APPENDIX 6

Copyright terms of GNU Radio

Copyright 2013 <+YOU OR YOUR COMPANY +>.

This is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3, or (at your option)

any later version.

#

This software is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY:; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License

along with this software; see the file COPYING. If not, write to

the Free Software Foundation, Inc., 51 Franklin Street,

Boston, MA 02110-1301, USA.

39

40

