%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Tutorial slides on Python. % % Author: FOSSEE % Copyright (c) 2009-2016, FOSSEE, IIT Bombay %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[14pt,compress]{beamer} %\documentclass[draft]{beamer} %\documentclass[compress,handout]{beamer} %\usepackage{pgfpages} %\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] % Modified from: generic-ornate-15min-45min.de.tex \mode { \usetheme{Warsaw} \useoutertheme{infolines} \setbeamercovered{transparent} } \usepackage[english]{babel} \usepackage[latin1]{inputenc} %\usepackage{times} \usepackage[T1]{fontenc} \usepackage{pgf} % Taken from Fernando's slides. \usepackage{ae,aecompl} \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} \usepackage{amsmath} \definecolor{darkgreen}{rgb}{0,0.5,0} \usepackage{listings} \lstset{language=Python, basicstyle=\ttfamily\bfseries, commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, showstringspaces=false, keywordstyle=\color{blue}\bfseries} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros \setbeamercolor{emphbar}{bg=blue!20, fg=black} \newcommand{\emphbar}[1] {\begin{beamercolorbox}[rounded=true]{emphbar} {#1} \end{beamercolorbox} } \newcommand{\myemph}[1]{\structure{\emph{#1}}} \newcommand{\PythonCode}[1]{\lstinline{#1}} \newcounter{time} \setcounter{time}{0} \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} \newcommand{\typ}[1]{\lstinline{#1}} \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } %%% This is from Fernando's setup. % \usepackage{color} % \definecolor{orange}{cmyk}{0,0.4,0.8,0.2} % % Use and configure listings package for nicely formatted code % \usepackage{listings} % \lstset{ % language=Python, % basicstyle=\small\ttfamily, % commentstyle=\ttfamily\color{blue}, % stringstyle=\ttfamily\color{orange}, % showstringspaces=false, % breaklines=true, % postbreak = \space\dots % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page \title[Basic SciPy]{Introductory Scientific Computing with Python} \subtitle{Basic SciPy} \author[Prabhu] {FOSSEE} \institute[FOSSEE -- IITB] {Department of Aerospace Engineering\\IIT Bombay} \date[] { Mumbai, India } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} %\logo{\pgfuseimage{iitmlogo}} %% Delete this, if you do not want the table of contents to pop up at %% the beginning of each subsection: \AtBeginSubsection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } \AtBeginSection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: %\beamerdefaultoverlayspecification{<+->} %\includeonlyframes{current,current1,current2,current3,current4,current5,current6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DOCUMENT STARTS \begin{document} \begin{frame} \maketitle \end{frame} \section{Solving linear systems} \begin{frame}[fragile] \frametitle{Solution of equations} Consider, \begin{align*} 3x + 2y - z & = 1 \\ 2x - 2y + 4z & = -2 \\ -x + \frac{1}{2}y -z & = 0 \end{align*} Solution: \begin{align*} x & = 1 \\ y & = -2 \\ z & = -2 \end{align*} \end{frame} \begin{frame}[fragile] \frametitle{Solving using Matrices} Let us now look at how to solve this using \kwrd{matrices} \begin{lstlisting} In []: A = array([[3,2,-1], [2,-2,4], [-1, 0.5, -1]]) In []: b = array([1, -2, 0]) In []: x = solve(A, b) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Solution:} \begin{lstlisting} In []: x Out[]: array([ 1., -2., -2.]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Let's check!} \begin{small} \begin{lstlisting} In []: Ax = dot(A, x) In []: Ax Out[]: array([ 1.00000000e+00, -2.00000000e+00, -1.11022302e-16]) \end{lstlisting} \end{small} \begin{block}{} The last term in the matrix is actually \alert{0}!\\ We can use \kwrd{allclose()} to check. \end{block} \begin{lstlisting} In []: allclose(Ax, b) Out[]: True \end{lstlisting} \inctime{10} \end{frame} \begin{frame}[fragile] \frametitle{Problem} Solve the set of equations: \begin{align*} x + y + 2z -w & = 3\\ 2x + 5y - z - 9w & = -3\\ 2x + y -z + 3w & = -11 \\ x - 3y + 2z + 7w & = -5\\ \end{align*} \end{frame} \begin{frame}[fragile] \frametitle{Solution} Use \kwrd{solve()} \begin{align*} x & = -5\\ y & = 2\\ z & = 3\\ w & = 0\\ \end{align*} \inctime{5} \end{frame} \section{Finding Roots} \begin{frame}[fragile] \frametitle{SciPy: \typ{roots}} \begin{itemize} \item Calculates the roots of polynomials \item To calculate the roots of $x^2-5x+6$ \end{itemize} \begin{lstlisting} In []: coeffs = [1, -5, 6] In []: roots(coeffs) Out[]: array([3., 2.]) \end{lstlisting} \vspace*{-.2in} \begin{center} \includegraphics[height=1.6in, interpolate=true]{data/roots} \end{center} \end{frame} \begin{frame}[fragile] \frametitle{SciPy: \typ{fsolve}} Find the root of $sin(z)+cos^2(z)$ nearest to $0$ \vspace{-0.1in} \begin{center} \includegraphics[height=2.8in, interpolate=true]{data/fsolve} \end{center} \end{frame} \begin{frame}[fragile] \frametitle{\typ{fsolve}} \begin{small} \begin{lstlisting} In []: from scipy.optimize import fsolve \end{lstlisting} \end{small} \begin{itemize} \item Finds the roots of a system of non-linear equations \item Input arguments - \alert{Function} and initial estimate \item Returns the solution \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{\typ{fsolve} \ldots} \begin{lstlisting} In []: def g(z): ....: return sin(z)+cos(z)*cos(z) In []: fsolve(g, 0) Out[]: -0.66623943249251527 \end{lstlisting} \begin{center} \includegraphics[height=2in, interpolate=true]{data/fsolve} \end{center} \inctime{10} \end{frame} \begin{frame}[fragile] \frametitle{Exercise Problem} Find the root of the equation $x^2 - sin(x) + cos^2(x) = tan(x)$ nearest to $0$ \end{frame} \begin{frame}[fragile] \frametitle{Solution} \begin{small} \begin{lstlisting} def g(x): return x**2 - sin(x) + cos(x)*cos(x) - tan(x) fsolve(g, 0) \end{lstlisting} \end{small} \vspace*{-0.2in} \begin{center} \includegraphics[height=2.5in, interpolate=true]{data/fsolve_tanx} \end{center} \vspace*{-0.5in} \inctime{5} \end{frame} %% \begin{frame}[fragile] %% \frametitle{Scipy Methods \dots} %% \begin{small} %% \begin{lstlisting} %% In []: from scipy.optimize import fixed_point %% In []: from scipy.optimize import bisect %% In []: from scipy.optimize import newton %% \end{lstlisting} %% \end{small} %% \end{frame} \section{ODEs} \begin{frame} \frametitle{Solving ODEs using SciPy} \begin{itemize} \item Consider the spread of an epidemic in a population \vspace*{0.1in} \item $\frac{dy}{dt} = ky(L-y)$ gives the spread of the disease \vspace*{0.1in} \item $L$ is the total population. \item Use $L = 2.5E5, k = 3E-5, y(0) = 250$ \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Solving ODEs using SciPy} Define a function as below \small \begin{lstlisting} In []: from scipy.integrate import odeint In []: def epid(y, t): ...: k = 3.0e-5 ...: L = 2.5e5 ...: return k*y*(L-y) ...: \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Solving ODEs using SciPy \ldots} \begin{lstlisting} In []: t = linspace(0, 12, 61) In []: y = odeint(epid, 250, t) In []: plot(t, y) \end{lstlisting} %Insert Plot \end{frame} \begin{frame}[fragile] \frametitle{Result} \begin{center} \includegraphics[height=3in, interpolate=true]{data/image} \end{center} \vspace*{-0.5in} \inctime{5} \end{frame} \begin{frame}[fragile] \frametitle{ODEs - Simple Pendulum} We shall use the simple ODE of a simple pendulum. \begin{equation*} \ddot{\theta} = -\frac{g}{L}sin(\theta) \end{equation*} \begin{itemize} \item This equation can be written as a system of two first order ODEs \end{itemize} \begin{align} \dot{\theta} &= \omega \\ \dot{\omega} &= -\frac{g}{L}sin(\theta) \\ \text{At}\ t &= 0 : \nonumber \\ \theta = \theta_0(10^o)\quad & \&\quad \omega = 0\ (Initial\ values)\nonumber \end{align} \end{frame} \begin{frame}[fragile] \frametitle{ODEs - Simple Pendulum \ldots} \begin{itemize} \item Use \typ{odeint} to do the integration \end{itemize} \begin{lstlisting} In []: def pend_rhs(state, t): .... theta = state[0] .... omega = state[1] .... g = 9.81 .... L = 0.2 .... F=[omega, -(g/L)*sin(theta)] .... return F .... \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{ODEs - Simple Pendulum \ldots} \begin{itemize} \item \typ{t} is the time variable \\ \item \typ{initial} has the initial values \end{itemize} \begin{lstlisting} In []: t = linspace(0, 20, 101) In []: initial = [10*2*pi/360, 0] \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{ODEs - Simple Pendulum \ldots} %%\begin{small} \typ{In []: from scipy.integrate import odeint} %%\end{small} \begin{lstlisting} In []: pend_sol = odeint(pend_rhs, initial,t) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Result} \begin{center} \includegraphics[height=2in, interpolate=true]{data/ode} \end{center} \inctime{10} \end{frame} \section{FFTs} \begin{frame}[fragile] \frametitle{The FFT} \begin{itemize} \item We have a simple signal $y(t)$ \item Find the FFT and plot it \end{itemize} \begin{lstlisting} In []: t = linspace(0, 2*pi, 500) In []: y = sin(4*pi*t) In []: f = fft.fft(y) In []: freq = fft.fftfreq(500, ...: t[1] - t[0]) In []: plot(freq[:250], abs(f)[:250]) In []: grid() \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{FFTs cont\dots} \begin{lstlisting} In []: y1 = fft.ifft(f) # inverse FFT In []: allclose(y, y1) Out[]: True \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{FFTs cont\dots} Let us add some noise to the signal \begin{lstlisting} In []: yr = y + ...: random.random(size=500)*0.2 In []: yn = y + ...: random.normal(size=500)*0.2 In []: plot(t, yr) In []: figure() In []: plot(freq[:250], ...: abs(fft.fft(yr))[:250]) \end{lstlisting} \begin{itemize} \item \typ{random}: produces uniform deviates in $[0, 1)$ \item \typ{normal}: draws random samples from a Gaussian distribution \item Useful to create a random matrix of any shape \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{FFTs cont\dots} Filter the noisy signal: \begin{lstlisting} In []: from scipy import signal In []: yc = signal.wiener(yn, 5) In []: clf() In []: plot(t, yc) In []: figure() In []: plot(freq[:250], ...: abs(fft.fft(yc))[:250]) \end{lstlisting} Only scratched the surface here \dots \inctime{10} \end{frame} \begin{frame} \frametitle{Things we have learned} \begin{itemize} \item Solving Linear Equations \item Defining Functions \item Finding Roots \item Solving ODEs \item FFTs and basic signal processing \end{itemize} \end{frame} \begin{frame} \frametitle{Further reading} \begin{itemize} \item \url{ipython.readthedocs.io} \item \url{matplotlib.org/contents.html} \item \url{docs.scipy.org/doc/numpy/user/quickstart.html} \item \url{docs.scipy.org/doc/scipy/reference/tutorial} \end{itemize} \end{frame} \end{document}