From 65411d01d448ff0cd4abd14eee14cf60b5f8fc20 Mon Sep 17 00:00:00 2001
From: Nishanth Amuluru
Date: Sat, 8 Jan 2011 11:20:57 +0530
Subject: Added buildout stuff and made changes accordingly
--HG--
rename : profile/management/__init__.py => eggs/djangorecipe-0.20-py2.6.egg/EGG-INFO/dependency_links.txt
rename : profile/management/__init__.py => eggs/djangorecipe-0.20-py2.6.egg/EGG-INFO/not-zip-safe
rename : profile/management/__init__.py => eggs/infrae.subversion-1.4.5-py2.6.egg/EGG-INFO/dependency_links.txt
rename : profile/management/__init__.py => eggs/infrae.subversion-1.4.5-py2.6.egg/EGG-INFO/not-zip-safe
rename : profile/management/__init__.py => eggs/mercurial-1.7.3-py2.6-linux-x86_64.egg/EGG-INFO/dependency_links.txt
rename : profile/management/__init__.py => eggs/mercurial-1.7.3-py2.6-linux-x86_64.egg/EGG-INFO/not-zip-safe
rename : profile/management/__init__.py => eggs/py-1.4.0-py2.6.egg/EGG-INFO/dependency_links.txt
rename : profile/management/__init__.py => eggs/py-1.4.0-py2.6.egg/EGG-INFO/not-zip-safe
rename : profile/management/__init__.py => eggs/zc.buildout-1.5.2-py2.6.egg/EGG-INFO/dependency_links.txt
rename : profile/management/__init__.py => eggs/zc.buildout-1.5.2-py2.6.egg/EGG-INFO/not-zip-safe
rename : profile/management/__init__.py => eggs/zc.recipe.egg-1.3.2-py2.6.egg/EGG-INFO/dependency_links.txt
rename : profile/management/__init__.py => eggs/zc.recipe.egg-1.3.2-py2.6.egg/EGG-INFO/not-zip-safe
rename : profile/management/__init__.py => parts/django/Django.egg-info/dependency_links.txt
rename : taskapp/models.py => parts/django/django/conf/app_template/models.py
rename : taskapp/tests.py => parts/django/django/conf/app_template/tests.py
rename : taskapp/views.py => parts/django/django/conf/app_template/views.py
rename : taskapp/views.py => parts/django/django/contrib/gis/tests/geo3d/views.py
rename : profile/management/__init__.py => parts/django/tests/modeltests/delete/__init__.py
rename : profile/management/__init__.py => parts/django/tests/modeltests/files/__init__.py
rename : profile/management/__init__.py => parts/django/tests/modeltests/invalid_models/__init__.py
rename : profile/management/__init__.py => parts/django/tests/modeltests/m2m_signals/__init__.py
rename : profile/management/__init__.py => parts/django/tests/modeltests/model_package/__init__.py
rename : profile/management/__init__.py => parts/django/tests/regressiontests/bash_completion/__init__.py
rename : profile/management/__init__.py => parts/django/tests/regressiontests/bash_completion/management/__init__.py
rename : profile/management/__init__.py => parts/django/tests/regressiontests/bash_completion/management/commands/__init__.py
rename : profile/management/__init__.py => parts/django/tests/regressiontests/bash_completion/models.py
rename : profile/management/__init__.py => parts/django/tests/regressiontests/delete_regress/__init__.py
rename : profile/management/__init__.py => parts/django/tests/regressiontests/file_storage/__init__.py
rename : profile/management/__init__.py => parts/django/tests/regressiontests/max_lengths/__init__.py
rename : profile/forms.py => pytask/profile/forms.py
rename : profile/management/__init__.py => pytask/profile/management/__init__.py
rename : profile/management/commands/seed_db.py => pytask/profile/management/commands/seed_db.py
rename : profile/models.py => pytask/profile/models.py
rename : profile/templatetags/user_tags.py => pytask/profile/templatetags/user_tags.py
rename : taskapp/tests.py => pytask/profile/tests.py
rename : profile/urls.py => pytask/profile/urls.py
rename : profile/utils.py => pytask/profile/utils.py
rename : profile/views.py => pytask/profile/views.py
rename : static/css/base.css => pytask/static/css/base.css
rename : taskapp/tests.py => pytask/taskapp/tests.py
rename : taskapp/views.py => pytask/taskapp/views.py
rename : templates/base.html => pytask/templates/base.html
rename : templates/profile/browse_notifications.html => pytask/templates/profile/browse_notifications.html
rename : templates/profile/edit.html => pytask/templates/profile/edit.html
rename : templates/profile/view.html => pytask/templates/profile/view.html
rename : templates/profile/view_notification.html => pytask/templates/profile/view_notification.html
rename : templates/registration/activate.html => pytask/templates/registration/activate.html
rename : templates/registration/activation_email.txt => pytask/templates/registration/activation_email.txt
rename : templates/registration/activation_email_subject.txt => pytask/templates/registration/activation_email_subject.txt
rename : templates/registration/logged_out.html => pytask/templates/registration/logged_out.html
rename : templates/registration/login.html => pytask/templates/registration/login.html
rename : templates/registration/logout.html => pytask/templates/registration/logout.html
rename : templates/registration/password_change_done.html => pytask/templates/registration/password_change_done.html
rename : templates/registration/password_change_form.html => pytask/templates/registration/password_change_form.html
rename : templates/registration/password_reset_complete.html => pytask/templates/registration/password_reset_complete.html
rename : templates/registration/password_reset_confirm.html => pytask/templates/registration/password_reset_confirm.html
rename : templates/registration/password_reset_done.html => pytask/templates/registration/password_reset_done.html
rename : templates/registration/password_reset_email.html => pytask/templates/registration/password_reset_email.html
rename : templates/registration/password_reset_form.html => pytask/templates/registration/password_reset_form.html
rename : templates/registration/registration_complete.html => pytask/templates/registration/registration_complete.html
rename : templates/registration/registration_form.html => pytask/templates/registration/registration_form.html
rename : utils.py => pytask/utils.py
---
parts/django/docs/ref/contrib/gis/admin.txt | 72 ++
parts/django/docs/ref/contrib/gis/commands.txt | 83 ++
.../ref/contrib/gis/create_template_postgis-1.3.sh | 9 +
.../ref/contrib/gis/create_template_postgis-1.4.sh | 9 +
.../ref/contrib/gis/create_template_postgis-1.5.sh | 10 +
.../contrib/gis/create_template_postgis-debian.sh | 9 +
parts/django/docs/ref/contrib/gis/db-api.txt | 349 ++++++
parts/django/docs/ref/contrib/gis/deployment.txt | 99 ++
parts/django/docs/ref/contrib/gis/feeds.txt | 95 ++
parts/django/docs/ref/contrib/gis/gdal.txt | 1114 +++++++++++++++++
parts/django/docs/ref/contrib/gis/geoip.txt | 223 ++++
parts/django/docs/ref/contrib/gis/geoquerysets.txt | 1256 ++++++++++++++++++++
parts/django/docs/ref/contrib/gis/geos.txt | 911 ++++++++++++++
parts/django/docs/ref/contrib/gis/index.txt | 33 +
parts/django/docs/ref/contrib/gis/install.txt | 1190 +++++++++++++++++++
parts/django/docs/ref/contrib/gis/layermapping.txt | 220 ++++
parts/django/docs/ref/contrib/gis/measure.txt | 180 +++
parts/django/docs/ref/contrib/gis/model-api.txt | 265 +++++
parts/django/docs/ref/contrib/gis/ogrinspect.txt | 21 +
parts/django/docs/ref/contrib/gis/sitemaps.txt | 27 +
parts/django/docs/ref/contrib/gis/testing.txt | 268 +++++
parts/django/docs/ref/contrib/gis/tutorial.txt | 758 ++++++++++++
parts/django/docs/ref/contrib/gis/utils.txt | 32 +
23 files changed, 7233 insertions(+)
create mode 100644 parts/django/docs/ref/contrib/gis/admin.txt
create mode 100644 parts/django/docs/ref/contrib/gis/commands.txt
create mode 100755 parts/django/docs/ref/contrib/gis/create_template_postgis-1.3.sh
create mode 100755 parts/django/docs/ref/contrib/gis/create_template_postgis-1.4.sh
create mode 100755 parts/django/docs/ref/contrib/gis/create_template_postgis-1.5.sh
create mode 100755 parts/django/docs/ref/contrib/gis/create_template_postgis-debian.sh
create mode 100644 parts/django/docs/ref/contrib/gis/db-api.txt
create mode 100644 parts/django/docs/ref/contrib/gis/deployment.txt
create mode 100644 parts/django/docs/ref/contrib/gis/feeds.txt
create mode 100644 parts/django/docs/ref/contrib/gis/gdal.txt
create mode 100644 parts/django/docs/ref/contrib/gis/geoip.txt
create mode 100644 parts/django/docs/ref/contrib/gis/geoquerysets.txt
create mode 100644 parts/django/docs/ref/contrib/gis/geos.txt
create mode 100644 parts/django/docs/ref/contrib/gis/index.txt
create mode 100644 parts/django/docs/ref/contrib/gis/install.txt
create mode 100644 parts/django/docs/ref/contrib/gis/layermapping.txt
create mode 100644 parts/django/docs/ref/contrib/gis/measure.txt
create mode 100644 parts/django/docs/ref/contrib/gis/model-api.txt
create mode 100644 parts/django/docs/ref/contrib/gis/ogrinspect.txt
create mode 100644 parts/django/docs/ref/contrib/gis/sitemaps.txt
create mode 100644 parts/django/docs/ref/contrib/gis/testing.txt
create mode 100644 parts/django/docs/ref/contrib/gis/tutorial.txt
create mode 100644 parts/django/docs/ref/contrib/gis/utils.txt
(limited to 'parts/django/docs/ref/contrib/gis')
diff --git a/parts/django/docs/ref/contrib/gis/admin.txt b/parts/django/docs/ref/contrib/gis/admin.txt
new file mode 100644
index 0000000..011bb6b
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/admin.txt
@@ -0,0 +1,72 @@
+.. _ref-gis-admin:
+
+======================
+GeoDjango's admin site
+======================
+
+.. module:: django.contrib.gis.admin
+ :synopsis: GeoDjango's extensions to the admin site.
+
+
+``GeoModelAdmin``
+=================
+
+.. class:: GeoModelAdmin
+
+ .. attribute:: default_lon
+
+ The default center longitude.
+
+ .. attribute:: default_lat
+
+ The default center latitude.
+
+ .. attribute:: default_zoom
+
+ The default zoom level to use. Defaults to 18.
+
+ .. attribute:: extra_js
+
+ Sequence of URLs to any extra JavaScript to include.
+
+ .. attribute:: map_template
+
+ Override the template used to generate the JavaScript slippy map.
+ Default is ``'gis/admin/openlayers.html'``.
+
+ .. attribute:: map_width
+
+ Width of the map, in pixels. Defaults to 600.
+
+ .. attribute:: map_height
+
+ Height of the map, in pixels. Defaults to 400.
+
+ .. attribute:: openlayers_url
+
+ Link to the URL of the OpenLayers JavaScript. Defaults to
+ ``'http://openlayers.org/api/2.8/OpenLayers.js'``.
+
+
+ .. attribute:: modifiable
+
+ Defaults to ``False``. When set to to ``True``, disables editing of
+ existing geometry fields in the admin.
+
+ .. note::
+
+ This is different from adding the geometry field to
+ :attr:`~django.contrib.admin.ModelAdmin.readonly_fields`,
+ which will only display the WKT of the geometry. Setting
+ ``modifiable=False``, actually displays the geometry in a map,
+ but disables the ability to edit its vertices.
+
+``OSMGeoAdmin``
+===============
+
+.. class:: OSMGeoAdmin
+
+ A subclass of :class:`GeoModelAdmin` that uses a spherical mercator projection
+ with `OpenStreetMap `_ street data tiles.
+ See the :ref:`OSMGeoAdmin introduction `
+ in the tutorial for a usage example.
diff --git a/parts/django/docs/ref/contrib/gis/commands.txt b/parts/django/docs/ref/contrib/gis/commands.txt
new file mode 100644
index 0000000..3dd161c
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/commands.txt
@@ -0,0 +1,83 @@
+.. ref-geodjango-admin:
+
+=============================
+GeoDjango Management Commands
+=============================
+
+inspectdb
+=========
+
+.. describe:: django-admin.py inspectdb
+
+When :mod:`django.contrib.gis` is in your :setting:`INSTALLED_APPS`, the
+:djadmin:`inspectdb` management command is overridden with one from GeoDjango.
+The overridden command is spatially-aware, and places geometry fields in the
+auto-generated model definition, where appropriate.
+
+ogrinspect
+=====================================
+
+.. django-admin:: ogrinspect
+
+The ``ogrinpsect`` management command will inspect the given OGR-compatible
+:class:`~django.contrib.gis.gdal.DataSource` (e.g., a shapefile) and will
+output a GeoDjango model with the given model name. There's a detailed example
+of using ``ogrinspect`` :ref:`in the tutorial `.
+
+.. django-admin-option:: --blank
+
+ Use a comma separated list of OGR field names to add the ``blank=True``
+ keyword option to the field definition. Set with ``true`` to apply
+ to all applicable fields.
+
+.. django-admin-option:: --decimal
+
+ Use a comma separated list of OGR float fields to generate
+ :class:`~django.db.models.DecimalField` instead of the default
+ :class:`~django.db.models.FloatField`. Set to ``true`` to apply to all
+ OGR float fields.
+
+.. django-admin-option:: --geom-name
+
+ Specifies the model attribute name to use for the geometry field.
+ Defaults to ``'geom'``.
+
+.. django-admin-option:: --layer
+
+ The key for specifying which layer in the OGR
+ :class:`~django.contrib.gis.gdal.DataSource` source to use.
+ Defaults to 0 (the first layer). May be an integer or a string identifier
+ for the :class:`~django.contrib.gis.gdal.Layer`.
+
+.. django-admin-option:: --mapping
+
+ Automatically generate a mapping dictionary for use with
+ :class:`~django.contrib.gis.utils.LayerMapping`.
+
+.. django-admin-option:: --multi-geom
+
+ When generating the geometry field, treat it as a geometry collection.
+ For example, if this setting is enabled then a
+ :class:`~django.contrib.gis.db.models.MultiPolygonField` will be placed
+ in the generated model rather than
+ :class:`~django.contrib.gis.db.models.PolygonField`.
+
+.. django-admin-option:: --name-field
+
+ Generates a ``__unicode__`` routine on the model that will return the
+ the given field name.
+
+.. django-admin-option:: --no-imports
+
+ Suppresses the ``from django.contrib.gis.db import models`` import statement.
+
+.. django-admin-option:: --null
+
+ Use a comma separated list of OGR field names to add the ``null=True``
+ keyword option to the field definition. Set with ``true`` to apply to
+ all applicable fields.
+
+.. django-admin-option:: --srid
+
+ The SRID to use for the geometry field. If not set, ``ogrinspect`` attempts
+ to automatically determine of the SRID of the data source.
diff --git a/parts/django/docs/ref/contrib/gis/create_template_postgis-1.3.sh b/parts/django/docs/ref/contrib/gis/create_template_postgis-1.3.sh
new file mode 100755
index 0000000..c9ab4fc
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/create_template_postgis-1.3.sh
@@ -0,0 +1,9 @@
+#!/usr/bin/env bash
+POSTGIS_SQL_PATH=`pg_config --sharedir`
+createdb -E UTF8 template_postgis # Create the template spatial database.
+createlang -d template_postgis plpgsql # Adding PLPGSQL language support.
+psql -d postgres -c "UPDATE pg_database SET datistemplate='true' WHERE datname='template_postgis';"
+psql -d template_postgis -f $POSTGIS_SQL_PATH/lwpostgis.sql # Loading the PostGIS SQL routines
+psql -d template_postgis -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql
+psql -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;" # Enabling users to alter spatial tables.
+psql -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"
diff --git a/parts/django/docs/ref/contrib/gis/create_template_postgis-1.4.sh b/parts/django/docs/ref/contrib/gis/create_template_postgis-1.4.sh
new file mode 100755
index 0000000..57a1373
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/create_template_postgis-1.4.sh
@@ -0,0 +1,9 @@
+#!/usr/bin/env bash
+POSTGIS_SQL_PATH=`pg_config --sharedir`/contrib
+createdb -E UTF8 template_postgis # Create the template spatial database.
+createlang -d template_postgis plpgsql # Adding PLPGSQL language support.
+psql -d postgres -c "UPDATE pg_database SET datistemplate='true' WHERE datname='template_postgis';"
+psql -d template_postgis -f $POSTGIS_SQL_PATH/postgis.sql # Loading the PostGIS SQL routines
+psql -d template_postgis -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql
+psql -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;" # Enabling users to alter spatial tables.
+psql -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"
diff --git a/parts/django/docs/ref/contrib/gis/create_template_postgis-1.5.sh b/parts/django/docs/ref/contrib/gis/create_template_postgis-1.5.sh
new file mode 100755
index 0000000..081b5f2
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/create_template_postgis-1.5.sh
@@ -0,0 +1,10 @@
+#!/usr/bin/env bash
+POSTGIS_SQL_PATH=`pg_config --sharedir`/contrib/postgis-1.5
+createdb -E UTF8 template_postgis # Create the template spatial database.
+createlang -d template_postgis plpgsql # Adding PLPGSQL language support.
+psql -d postgres -c "UPDATE pg_database SET datistemplate='true' WHERE datname='template_postgis';"
+psql -d template_postgis -f $POSTGIS_SQL_PATH/postgis.sql # Loading the PostGIS SQL routines
+psql -d template_postgis -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql
+psql -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;" # Enabling users to alter spatial tables.
+psql -d template_postgis -c "GRANT ALL ON geography_columns TO PUBLIC;"
+psql -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"
diff --git a/parts/django/docs/ref/contrib/gis/create_template_postgis-debian.sh b/parts/django/docs/ref/contrib/gis/create_template_postgis-debian.sh
new file mode 100755
index 0000000..46bd074
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/create_template_postgis-debian.sh
@@ -0,0 +1,9 @@
+#!/usr/bin/env bash
+POSTGIS_SQL_PATH=/usr/share/postgresql-8.3-postgis
+createdb -E UTF8 template_postgis # Create the template spatial database.
+createlang -d template_postgis plpgsql # Adding PLPGSQL language support.
+psql -d postgres -c "UPDATE pg_database SET datistemplate='true' WHERE datname='template_postgis';"
+psql -d template_postgis -f $POSTGIS_SQL_PATH/lwpostgis.sql # Loading the PostGIS SQL routines
+psql -d template_postgis -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql
+psql -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;" # Enabling users to alter spatial tables.
+psql -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"
diff --git a/parts/django/docs/ref/contrib/gis/db-api.txt b/parts/django/docs/ref/contrib/gis/db-api.txt
new file mode 100644
index 0000000..fbced8e
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/db-api.txt
@@ -0,0 +1,349 @@
+.. _ref-gis-db-api:
+
+======================
+GeoDjango Database API
+======================
+
+.. module:: django.contrib.gis.db.models
+ :synopsis: GeoDjango's database API.
+
+.. _spatial-backends:
+
+Spatial Backends
+================
+
+.. versionadded:: 1.2
+
+In Django 1.2, support for :doc:`multiple databases ` was
+introduced. In order to support multiple databases, GeoDjango has segregated
+its functionality into full-fledged spatial database backends:
+
+* :mod:`django.contrib.gis.db.backends.postgis`
+* :mod:`django.contrib.gis.db.backends.mysql`
+* :mod:`django.contrib.gis.db.backends.oracle`
+* :mod:`django.contrib.gis.db.backends.spatialite`
+
+Database Settings Backwards-Compatibility
+-----------------------------------------
+
+In :doc:`Django 1.2 `, the way
+to :ref:`specify databases ` in your settings was changed.
+The old database settings format (e.g., the ``DATABASE_*`` settings)
+is backwards compatible with GeoDjango, and will automatically use the
+appropriate spatial backend as long as :mod:`django.contrib.gis` is in
+your :setting:`INSTALLED_APPS`. For example, if you have the following in
+your settings::
+
+ DATABASE_ENGINE='postgresql_psycopg2'
+
+ ...
+
+ INSTALLED_APPS = (
+ ...
+ 'django.contrib.gis',
+ ...
+ )
+
+Then, :mod:`django.contrib.gis.db.backends.postgis` is automatically used as your
+spatial backend.
+
+.. _mysql-spatial-limitations:
+
+MySQL Spatial Limitations
+-------------------------
+
+MySQL's spatial extensions only support bounding box operations
+(what MySQL calls minimum bounding rectangles, or MBR). Specifically,
+`MySQL does not conform to the OGC standard `_:
+
+ Currently, MySQL does not implement these functions
+ [``Contains``, ``Crosses``, ``Disjoint``, ``Intersects``, ``Overlaps``,
+ ``Touches``, ``Within``]
+ according to the specification. Those that are implemented return
+ the same result as the corresponding MBR-based functions.
+
+In other words, while spatial lookups such as :lookup:`contains `
+are available in GeoDjango when using MySQL, the results returned are really
+equivalent to what would be returned when using :lookup:`bbcontains`
+on a different spatial backend.
+
+.. warning::
+
+ True spatial indexes (R-trees) are only supported with
+ MyISAM tables on MySQL. [#fnmysqlidx]_ In other words, when using
+ MySQL spatial extensions you have to choose between fast spatial
+ lookups and the integrity of your data -- MyISAM tables do
+ not support transactions or foreign key constraints.
+
+Creating and Saving Geographic Models
+=====================================
+Here is an example of how to create a geometry object (assuming the ``Zipcode``
+model)::
+
+ >>> from zipcode.models import Zipcode
+ >>> z = Zipcode(code=77096, poly='POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
+ >>> z.save()
+
+:class:`~django.contrib.gis.geos.GEOSGeometry` objects may also be used to save geometric models::
+
+ >>> from django.contrib.gis.geos import GEOSGeometry
+ >>> poly = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
+ >>> z = Zipcode(code=77096, poly=poly)
+ >>> z.save()
+
+Moreover, if the ``GEOSGeometry`` is in a different coordinate system (has a
+different SRID value) than that of the field, then it will be implicitly
+transformed into the SRID of the model's field, using the spatial database's
+transform procedure::
+
+ >>> poly_3084 = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))', srid=3084) # SRID 3084 is 'NAD83(HARN) / Texas Centric Lambert Conformal'
+ >>> z = Zipcode(code=78212, poly=poly_3084)
+ >>> z.save()
+ >>> from django.db import connection
+ >>> print connection.queries[-1]['sql'] # printing the last SQL statement executed (requires DEBUG=True)
+ INSERT INTO "geoapp_zipcode" ("code", "poly") VALUES (78212, ST_Transform(ST_GeomFromWKB('\\001 ... ', 3084), 4326))
+
+Thus, geometry parameters may be passed in using the ``GEOSGeometry`` object, WKT
+(Well Known Text [#fnwkt]_), HEXEWKB (PostGIS specific -- a WKB geometry in
+hexadecimal [#fnewkb]_), and GeoJSON [#fngeojson]_ (requires GDAL). Essentially,
+if the input is not a ``GEOSGeometry`` object, the geometry field will attempt to
+create a ``GEOSGeometry`` instance from the input.
+
+For more information creating :class:`~django.contrib.gis.geos.GEOSGeometry`
+objects, refer to the :ref:`GEOS tutorial `.
+
+.. _spatial-lookups-intro:
+
+Spatial Lookups
+===============
+
+GeoDjango's lookup types may be used with any manager method like
+``filter()``, ``exclude()``, etc. However, the lookup types unique to
+GeoDjango are only available on geometry fields.
+Filters on 'normal' fields (e.g. :class:`~django.db.models.CharField`)
+may be chained with those on geographic fields. Thus, geographic queries
+take the following general form (assuming the ``Zipcode`` model used in the
+:ref:`ref-gis-model-api`)::
+
+ >>> qs = Zipcode.objects.filter(__=)
+ >>> qs = Zipcode.objects.exclude(...)
+
+For example::
+
+ >>> qs = Zipcode.objects.filter(poly__contains=pnt)
+
+In this case, ``poly`` is the geographic field, :lookup:`contains `
+is the spatial lookup type, and ``pnt`` is the parameter (which may be a
+:class:`~django.contrib.gis.geos.GEOSGeometry` object or a string of
+GeoJSON , WKT, or HEXEWKB).
+
+A complete reference can be found in the :ref:`spatial lookup reference
+`.
+
+.. note::
+
+ GeoDjango constructs spatial SQL with the :class:`GeoQuerySet`, a
+ subclass of :class:`~django.db.models.QuerySet`. The
+ :class:`GeoManager` instance attached to your model is what
+ enables use of :class:`GeoQuerySet`.
+
+.. _distance-queries:
+
+Distance Queries
+================
+
+Introduction
+------------
+Distance calculations with spatial data is tricky because, unfortunately,
+the Earth is not flat. Some distance queries with fields in a geographic
+coordinate system may have to be expressed differently because of
+limitations in PostGIS. Please see the :ref:`selecting-an-srid` section
+in the :ref:`ref-gis-model-api` documentation for more details.
+
+.. _distance-lookups-intro:
+
+Distance Lookups
+----------------
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+The following distance lookups are available:
+
+* :lookup:`distance_lt`
+* :lookup:`distance_lte`
+* :lookup:`distance_gt`
+* :lookup:`distance_gte`
+* :lookup:`dwithin`
+
+.. note::
+
+ For *measuring*, rather than querying on distances, use the
+ :meth:`GeoQuerySet.distance` method.
+
+Distance lookups take a tuple parameter comprising:
+
+#. A geometry to base calculations from; and
+#. A number or :class:`~django.contrib.gis.measure.Distance` object containing the distance.
+
+If a :class:`~django.contrib.gis.measure.Distance` object is used,
+it may be expressed in any units (the SQL generated will use units
+converted to those of the field); otherwise, numeric parameters are assumed
+to be in the units of the field.
+
+.. note::
+
+ For users of PostGIS 1.4 and below, the routine ``ST_Distance_Sphere``
+ is used by default for calculating distances on geographic coordinate systems
+ (e.g., WGS84) -- which may only be called with point geometries [#fndistsphere14]_.
+ Thus, geographic distance lookups on traditional PostGIS geometry columns are
+ only allowed on :class:`PointField` model fields using a point for the
+ geometry parameter.
+
+.. note::
+
+ In PostGIS 1.5, ``ST_Distance_Sphere`` does *not* limit the geometry types
+ geographic distance queries are performed with. [#fndistsphere15]_ However,
+ these queries may take a long time, as great-circle distances must be
+ calculated on the fly for *every* row in the query. This is because the
+ spatial index on traditional geometry fields cannot be used.
+
+ For much better performance on WGS84 distance queries, consider using
+ :ref:`geography columns ` in your database instead because
+ they are able to use their spatial index in distance queries.
+ You can tell GeoDjango to use a geography column by setting ``geography=True``
+ in your field definition.
+
+For example, let's say we have a ``SouthTexasCity`` model (from the
+`GeoDjango distance tests`__ ) on a *projected* coordinate system valid for cities
+in southern Texas::
+
+ from django.contrib.gis.db import models
+
+ class SouthTexasCity(models.Model):
+ name = models.CharField(max_length=30)
+ # A projected coordinate system (only valid for South Texas!)
+ # is used, units are in meters.
+ point = models.PointField(srid=32140)
+ objects = models.GeoManager()
+
+Then distance queries may be performed as follows::
+
+ >>> from django.contrib.gis.geos import *
+ >>> from django.contrib.gis.measure import D # ``D`` is a shortcut for ``Distance``
+ >>> from geoapp import SouthTexasCity
+ # Distances will be calculated from this point, which does not have to be projected.
+ >>> pnt = fromstr('POINT(-96.876369 29.905320)', srid=4326)
+ # If numeric parameter, units of field (meters in this case) are assumed.
+ >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, 7000))
+ # Find all Cities within 7 km, > 20 miles away, and > 100 chains away (an obscure unit)
+ >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, D(km=7)))
+ >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(mi=20)))
+ >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(chain=100)))
+
+__ http://code.djangoproject.com/browser/django/trunk/django/contrib/gis/tests/distapp/models.py
+
+.. _compatibility-table:
+
+Compatibility Tables
+====================
+
+.. _spatial-lookup-compatibility:
+
+Spatial Lookups
+---------------
+
+The following table provides a summary of what spatial lookups are available
+for each spatial database backend.
+
+================================= ========= ======== ============ ==========
+Lookup Type PostGIS Oracle MySQL [#]_ SpatiaLite
+================================= ========= ======== ============ ==========
+:lookup:`bbcontains` X X X
+:lookup:`bboverlaps` X X X
+:lookup:`contained` X X X
+:lookup:`contains ` X X X X
+:lookup:`contains_properly` X
+:lookup:`coveredby` X X
+:lookup:`covers` X X
+:lookup:`crosses` X X
+:lookup:`disjoint` X X X X
+:lookup:`distance_gt` X X X
+:lookup:`distance_gte` X X X
+:lookup:`distance_lt` X X X
+:lookup:`distance_lte` X X X
+:lookup:`dwithin` X X
+:lookup:`equals` X X X X
+:lookup:`exact` X X X X
+:lookup:`intersects` X X X X
+:lookup:`overlaps` X X X X
+:lookup:`relate` X X X
+:lookup:`same_as` X X X X
+:lookup:`touches` X X X X
+:lookup:`within` X X X X
+:lookup:`left` X
+:lookup:`right` X
+:lookup:`overlaps_left` X
+:lookup:`overlaps_right` X
+:lookup:`overlaps_above` X
+:lookup:`overlaps_below` X
+:lookup:`strictly_above` X
+:lookup:`strictly_below` X
+================================= ========= ======== ============ ==========
+
+.. _geoqueryset-method-compatibility:
+
+``GeoQuerySet`` Methods
+-----------------------
+The following table provides a summary of what :class:`GeoQuerySet` methods
+are available on each spatial backend. Please note that MySQL does not
+support any of these methods, and is thus excluded from the table.
+
+==================================== ======= ====== ==========
+Method PostGIS Oracle SpatiaLite
+==================================== ======= ====== ==========
+:meth:`GeoQuerySet.area` X X X
+:meth:`GeoQuerySet.centroid` X X X
+:meth:`GeoQuerySet.collect` X
+:meth:`GeoQuerySet.difference` X X X
+:meth:`GeoQuerySet.distance` X X X
+:meth:`GeoQuerySet.envelope` X X
+:meth:`GeoQuerySet.extent` X X
+:meth:`GeoQuerySet.extent3d` X
+:meth:`GeoQuerySet.force_rhr` X
+:meth:`GeoQuerySet.geohash` X
+:meth:`GeoQuerySet.geojson` X
+:meth:`GeoQuerySet.gml` X X
+:meth:`GeoQuerySet.intersection` X X X
+:meth:`GeoQuerySet.kml` X
+:meth:`GeoQuerySet.length` X X X
+:meth:`GeoQuerySet.make_line` X
+:meth:`GeoQuerySet.mem_size` X
+:meth:`GeoQuerySet.num_geom` X X X
+:meth:`GeoQuerySet.num_points` X X X
+:meth:`GeoQuerySet.perimeter` X X
+:meth:`GeoQuerySet.point_on_surface` X X X
+:meth:`GeoQuerySet.reverse_geom` X X
+:meth:`GeoQuerySet.scale` X X
+:meth:`GeoQuerySet.snap_to_grid` X
+:meth:`GeoQuerySet.svg` X X
+:meth:`GeoQuerySet.sym_difference` X X X
+:meth:`GeoQuerySet.transform` X X X
+:meth:`GeoQuerySet.translate` X X
+:meth:`GeoQuerySet.union` X X X
+:meth:`GeoQuerySet.unionagg` X X X
+==================================== ======= ====== ==========
+
+.. rubric:: Footnotes
+.. [#fnwkt] *See* Open Geospatial Consortium, Inc., `OpenGIS Simple Feature Specification For SQL `_, Document 99-049 (May 5, 1999), at Ch. 3.2.5, p. 3-11 (SQL Textual Representation of Geometry).
+.. [#fnewkb] *See* `PostGIS EWKB, EWKT and Canonical Forms `_, PostGIS documentation at Ch. 4.1.2.
+.. [#fngeojson] *See* Howard Butler, Martin Daly, Allan Doyle, Tim Schaub, & Christopher Schmidt, `The GeoJSON Format Specification `_, Revision 1.0 (June 16, 2008).
+.. [#fndistsphere14] *See* `PostGIS 1.4 documentation `_ on ``ST_distance_sphere``.
+.. [#fndistsphere15] *See* `PostGIS 1.5 documentation `_ on ``ST_distance_sphere``.
+.. [#fnmysqlidx] *See* `Creating Spatial Indexes `_
+ in the MySQL 5.1 Reference Manual:
+
+ For MyISAM tables, ``SPATIAL INDEX`` creates an R-tree index. For storage
+ engines that support nonspatial indexing of spatial columns, the engine
+ creates a B-tree index. A B-tree index on spatial values will be useful
+ for exact-value lookups, but not for range scans.
+
+.. [#] Refer :ref:`mysql-spatial-limitations` section for more details.
diff --git a/parts/django/docs/ref/contrib/gis/deployment.txt b/parts/django/docs/ref/contrib/gis/deployment.txt
new file mode 100644
index 0000000..035b23f
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/deployment.txt
@@ -0,0 +1,99 @@
+===================
+Deploying GeoDjango
+===================
+
+.. warning::
+
+ GeoDjango uses the GDAL geospatial library which is
+ not thread safe at this time. Thus, it is *highly* recommended
+ to not use threading when deploying -- in other words, use a
+ an appropriate configuration of Apache or the prefork method
+ when using FastCGI through another Web server.
+
+Apache
+======
+In this section there are some example ``VirtualHost`` directives for
+when deploying using either ``mod_python`` or ``mod_wsgi``. At this
+time, we recommend ``mod_wsgi``, as it is now officially recommended
+way to deploy Django applications with Apache. Moreover, if
+``mod_python`` is used, then a prefork version of Apache must also be
+used. As long as ``mod_wsgi`` is configured correctly, it does not
+matter whether the version of Apache is prefork or worker.
+
+.. note::
+
+ The ``Alias`` and ``Directory`` configurations in the the examples
+ below use an example path to a system-wide installation folder of Django.
+ Substitute in an appropriate location, if necessary, as it may be
+ different than the path on your system.
+
+``mod_wsgi``
+------------
+
+Example::
+
+
+ WSGIDaemonProcess geodjango user=geo group=geo processes=5 threads=1
+ WSGIProcessGroup geodjango
+ WSGIScriptAlias / /home/geo/geodjango/world.wsgi
+
+ Alias /media/ "/usr/lib/python2.5/site-packages/django/contrib/admin/media/"
+
+ Order allow,deny
+ Options Indexes
+ Allow from all
+ IndexOptions FancyIndexing
+
+
+
+
+.. warning::
+
+ If the ``WSGIDaemonProcess`` attribute ``threads`` is not set to ``1``, then
+ Apache may crash when running your GeoDjango application. Increase the
+ number of ``processes`` instead.
+
+For more information, please consult Django's
+:doc:`mod_wsgi documentation `.
+
+``mod_python``
+--------------
+
+Example::
+
+
+
+
+ SetHandler mod_python
+ PythonHandler django.core.handlers.modpython
+ SetEnv DJANGO_SETTINGS_MODULE world.settings
+ PythonDebug On
+ PythonPath "['/var/www/apps'] + sys.path"
+
+
+ Alias /media/ "/usr/lib/python2.5/site-packages/django/contrib/admin/media/"
+
+ SetHandler None
+
+
+
+
+.. warning::
+
+ When using ``mod_python`` you *must* be using a prefork version of Apache, or
+ else your GeoDjango application may crash Apache.
+
+For more information, please consult Django's
+:doc:`mod_python documentation `.
+
+Lighttpd
+========
+
+FastCGI
+-------
+
+Nginx
+=====
+
+FastCGI
+-------
diff --git a/parts/django/docs/ref/contrib/gis/feeds.txt b/parts/django/docs/ref/contrib/gis/feeds.txt
new file mode 100644
index 0000000..7c3a2d0
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/feeds.txt
@@ -0,0 +1,95 @@
+================
+Geographic Feeds
+================
+
+.. module:: django.contrib.gis.feeds
+ :synopsis: GeoDjango's framework for generating spatial feeds.
+
+GeoDjango has its own :class:`Feed` subclass that may embed location information
+in RSS/Atom feeds formatted according to either the `Simple GeoRSS`__ or
+`W3C Geo`_ standards. Because GeoDjango's syndication API is a superset of
+Django's, please consult :doc:`Django's syndication documentation
+` for details on general usage.
+
+.. _W3C Geo: http://www.w3.org/2003/01/geo/
+
+__ http://georss.org/1.0#simple
+
+Example
+=======
+
+API Reference
+=============
+
+``Feed`` Subclass
+-----------------
+
+.. class:: Feed
+
+ In addition to methods provided by
+ the :class:`django.contrib.syndication.feeds.Feed`
+ base class, GeoDjango's ``Feed`` class provides
+ the following overrides. Note that these overrides may be done in multiple ways::
+
+ from django.contrib.gis.feeds import Feed
+
+ class MyFeed(Feed):
+
+ # First, as a class attribute.
+ geometry = ...
+ item_geometry = ...
+
+ # Also a function with no arguments
+ def geometry(self):
+ ...
+
+ def item_geometry(self):
+ ...
+
+ # And as a function with a single argument
+ def geometry(self, obj):
+ ...
+
+ def item_geometry(self, item):
+ ...
+
+ .. method:: geometry(obj)
+
+ Takes the object returned by ``get_object()`` and returns the *feed's*
+ geometry. Typically this is a ``GEOSGeometry`` instance, or can be a
+ tuple to represent a point or a box. For example::
+
+ class ZipcodeFeed(Feed):
+
+ def geometry(self, obj):
+ # Can also return: `obj.poly`, and `obj.poly.centroid`.
+ return obj.poly.extent # tuple like: (X0, Y0, X1, Y1).
+
+ .. method:: item_geometry(item)
+
+ Set this to return the geometry for each *item* in the feed. This
+ can be a ``GEOSGeometry`` instance, or a tuple that represents a
+ point coordinate or bounding box. For example::
+
+ class ZipcodeFeed(Feed):
+
+ def item_geometry(self, obj):
+ # Returns the polygon.
+ return obj.poly
+
+``SyndicationFeed`` Subclasses
+------------------------------
+
+The following :class:`django.utils.feedgenerator.SyndicationFeed` subclasses
+are available:
+
+.. class:: GeoRSSFeed
+
+.. class:: GeoAtom1Feed
+
+.. class:: W3CGeoFeed
+
+.. note::
+
+ `W3C Geo`_ formatted feeds only support
+ :class:`~django.contrib.gis.db.models.PointField` geometries.
diff --git a/parts/django/docs/ref/contrib/gis/gdal.txt b/parts/django/docs/ref/contrib/gis/gdal.txt
new file mode 100644
index 0000000..1ce21d9
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/gdal.txt
@@ -0,0 +1,1114 @@
+.. _ref-gdal:
+
+========
+GDAL API
+========
+
+.. module:: django.contrib.gis.gdal
+ :synopsis: GeoDjango's high-level interface to the GDAL library.
+
+`GDAL`__ stands for **G**\ eospatial **D**\ ata **A**\ bstraction **L**\ ibrary,
+and is a veritable "swiss army knife" of GIS data functionality. A subset
+of GDAL is the `OGR`__ Simple Features Library, which specializes
+in reading and writing vector geographic data in a variety of standard
+formats.
+
+GeoDjango provides a high-level Python interface for some of the
+capabilities of OGR, including the reading and coordinate transformation
+of vector spatial data.
+
+.. note::
+
+ Although the module is named ``gdal``, GeoDjango only supports
+ some of the capabilities of OGR. Thus, none of GDAL's features
+ with respect to raster (image) data are supported at this time.
+
+__ http://www.gdal.org/
+__ http://www.gdal.org/ogr/
+
+Overview
+========
+
+Sample Data
+-----------
+
+The GDAL/OGR tools described here are designed to help you read in
+your geospatial data, in order for most of them to be useful you have
+to have some data to work with. If you're starting out and don't yet
+have any data of your own to use, GeoDjango comes with a number of
+simple data sets that you can use for testing. This snippet will
+determine where these sample files are installed on your computer::
+
+ >>> import os
+ >>> import django.contrib.gis
+ >>> GIS_PATH = os.path.dirname(django.contrib.gis.__file__)
+ >>> CITIES_PATH = os.path.join(GIS_PATH, 'tests/data/cities/cities.shp')
+
+Vector Data Source Objects
+==========================
+
+``DataSource``
+--------------
+
+:class:`DataSource` is a wrapper for the OGR data source object that
+supports reading data from a variety of OGR-supported geospatial file
+formats and data sources using a simple, consistent interface. Each
+data source is represented by a :class:`DataSource` object which contains
+one or more layers of data. Each layer, represented by a :class:`Layer`
+object, contains some number of geographic features (:class:`Feature`),
+information about the type of features contained in that layer (e.g.
+points, polygons, etc.), as well as the names and types of any
+additional fields (:class:`Field`) of data that may be associated with
+each feature in that layer.
+
+.. class:: DataSource(ds_input)
+
+ The constructor for ``DataSource`` just a single parameter: the path of
+ the file you want to read. However, OGR
+ also supports a variety of more complex data sources, including
+ databases, that may be accessed by passing a special name string instead
+ of a path. For more information, see the `OGR Vector Formats`__
+ documentation. The :attr:`name` property of a ``DataSource``
+ instance gives the OGR name of the underlying data source that it is
+ using.
+
+ Once you've created your ``DataSource``, you can find out how many
+ layers of data it contains by accessing the :attr:`layer_count` property,
+ or (equivalently) by using the ``len()`` function. For information on
+ accessing the layers of data themselves, see the next section::
+
+ >>> from django.contrib.gis.gdal import DataSource
+ >>> ds = DataSource(CITIES_PATH)
+ >>> ds.name # The exact filename may be different on your computer
+ '/usr/local/lib/python2.6/site-packages/django/contrib/gis/tests/data/cities/cities.shp'
+ >>> ds.layer_count # This file only contains one layer
+ 1
+
+ .. attribute:: layer_count
+
+ Returns the number of layers in the data source.
+
+ .. attribute:: name
+
+ Returns the name of the data source.
+
+__ http://www.gdal.org/ogr/ogr_formats.html
+
+``Layer``
+---------
+
+.. class:: Layer
+
+ ``Layer`` is a wrapper for a layer of data in a ``DataSource`` object.
+ You never create a ``Layer`` object directly. Instead, you retrieve
+ them from a :class:`DataSource` object, which is essentially a standard
+ Python container of ``Layer`` objects. For example, you can access a
+ specific layer by its index (e.g. ``ds[0]`` to access the first
+ layer), or you can iterate over all the layers in the container in a
+ ``for`` loop. The ``Layer`` itself acts as a container for geometric
+ features.
+
+ Typically, all the features in a given layer have the same geometry type.
+ The :attr:`geom_type` property of a layer is an :class:`OGRGeomType`
+ that identifies the feature type. We can use it to print out some basic
+ information about each layer in a :class:`DataSource`::
+
+ >>> for layer in ds:
+ ... print 'Layer "%s": %i %ss' % (layer.name, len(layer), layer.geom_type.name)
+ ...
+ Layer "cities": 3 Points
+
+ The example output is from the cities data source, loaded above, which
+ evidently contains one layer, called ``"cities"``, which contains three
+ point features. For simplicity, the examples below assume that you've
+ stored that layer in the variable ``layer``::
+
+ >>> layer = ds[0]
+
+ .. attribute:: name
+
+ Returns the name of this layer in the data source.
+
+ >>> layer.name
+ 'cities'
+
+ .. attribute:: num_feat
+
+ Returns the number of features in the layer. Same as ``len(layer)``::
+
+ >>> layer.num_feat
+ 3
+
+ .. attribute:: geom_type
+
+ Returns the geometry type of the layer, as an :class:`OGRGeomType`
+ object::
+
+ >>> layer.geom_type.name
+ 'Point'
+
+ .. attribute:: num_fields
+
+ Returns the number of fields in the layer, i.e the number of fields of
+ data associated with each feature in the layer::
+
+ >>> layer.num_fields
+ 4
+
+ .. attribute:: fields
+
+ Returns a list of the names of each of the fields in this layer::
+
+ >>> layer.fields
+ ['Name', 'Population', 'Density', 'Created']
+
+ .. attribute field_types
+
+ Returns a list of the data types of each of the fields in this layer.
+ These are subclasses of ``Field``, discussed below::
+
+ >>> [ft.__name__ for ft in layer.field_types]
+ ['OFTString', 'OFTReal', 'OFTReal', 'OFTDate']
+
+ .. attribute:: field_widths
+
+ Returns a list of the maximum field widths for each of the fields in
+ this layer::
+
+ >>> layer.field_widths
+ [80, 11, 24, 10]
+
+ .. attribute:: field_precisions
+
+ Returns a list of the numeric precisions for each of the fields in
+ this layer. This is meaningless (and set to zero) for non-numeric
+ fields::
+
+ >>> layer.field_precisions
+ [0, 0, 15, 0]
+
+ .. attribute:: extent
+
+ Returns the spatial extent of this layer, as an :class:`Envelope`
+ object::
+
+ >>> layer.extent.tuple
+ (-104.609252, 29.763374, -95.23506, 38.971823)
+
+ .. attribute:: srs
+
+ Property that returns the :class:`SpatialReference` associated
+ with this layer::
+
+ >>> print layer.srs
+ GEOGCS["GCS_WGS_1984",
+ DATUM["WGS_1984",
+ SPHEROID["WGS_1984",6378137,298.257223563]],
+ PRIMEM["Greenwich",0],
+ UNIT["Degree",0.017453292519943295]]
+
+ If the :class:`Layer` has no spatial reference information associated
+ with it, ``None`` is returned.
+
+ .. attribute:: spatial_filter
+
+ .. versionadded:: 1.2
+
+ Property that may be used to retrieve or set a spatial filter for this
+ layer. A spatial filter can only be set with an :class:`OGRGeometry`
+ instance, a 4-tuple extent, or ``None``. When set with something
+ other than ``None``, only features that intersect the filter will be
+ returned when iterating over the layer::
+
+ >>> print layer.spatial_filter
+ None
+ >>> print len(layer)
+ 3
+ >>> [feat.get('Name') for feat in layer]
+ ['Pueblo', 'Lawrence', 'Houston']
+ >>> ks_extent = (-102.051, 36.99, -94.59, 40.00) # Extent for state of Kansas
+ >>> layer.spatial_filter = ks_extent
+ >>> len(layer)
+ 1
+ >>> [feat.get('Name') for feat in layer]
+ ['Lawrence']
+ >>> layer.spatial_filter = None
+ >>> len(layer)
+ 3
+
+ .. method:: get_fields()
+
+ A method that returns a list of the values of a given field for each
+ feature in the layer::
+
+ >>> layer.get_fields('Name')
+ ['Pueblo', 'Lawrence', 'Houston']
+
+ .. method:: get_geoms([geos=False])
+
+ A method that returns a list containing the geometry of each feature
+ in the layer. If the optional argument ``geos`` is set to ``True``
+ then the geometries are converted to :class:`~django.contrib.gis.geos.GEOSGeometry`
+ objects. Otherwise, they are returned as :class:`OGRGeometry` objects::
+
+ >>> [pt.tuple for pt in layer.get_geoms()]
+ [(-104.609252, 38.255001), (-95.23506, 38.971823), (-95.363151, 29.763374)]
+
+ .. method:: test_capability(capability)
+
+ Returns a boolean indicating whether this layer supports the
+ given capability (a string). Examples of valid capability strings
+ include: ``'RandomRead'``, ``'SequentialWrite'``, ``'RandomWrite'``,
+ ``'FastSpatialFilter'``, ``'FastFeatureCount'``, ``'FastGetExtent'``,
+ ``'CreateField'``, ``'Transactions'``, ``'DeleteFeature'``, and
+ ``'FastSetNextByIndex'``.
+
+``Feature``
+-----------
+
+.. class:: Feature
+
+
+ ``Feature`` wraps an OGR feature. You never create a ``Feature``
+ object directly. Instead, you retrieve them from a :class:`Layer` object.
+ Each feature consists of a geometry and a set of fields containing
+ additional properties. The geometry of a field is accessible via its
+ ``geom`` property, which returns an :class:`OGRGeometry` object. A ``Feature``
+ behaves like a standard Python container for its fields, which it returns as
+ :class:`Field` objects: you can access a field directly by its index or name,
+ or you can iterate over a feature's fields, e.g. in a ``for`` loop.
+
+ .. attribute:: geom
+
+ Returns the geometry for this feature, as an ``OGRGeometry`` object::
+
+ >>> city.geom.tuple
+ (-104.609252, 38.255001)
+
+ .. attribute:: get
+
+ A method that returns the value of the given field (specified by name)
+ for this feature, **not** a ``Field`` wrapper object::
+
+ >>> city.get('Population')
+ 102121
+
+ .. attribute:: geom_type
+
+ Returns the type of geometry for this feature, as an :class:`OGRGeomType`
+ object. This will be the same for all features in a given layer, and
+ is equivalent to the :attr:`Layer.geom_type` property of the
+ :class:`Layer`` object the feature came from.
+
+ .. attribute:: num_fields
+
+ Returns the number of fields of data associated with the feature.
+ This will be the same for all features in a given layer, and is
+ equivalent to the :attr:`Layer.num_fields` property of the
+ :class:`Layer` object the feature came from.
+
+ .. attribute:: fields
+
+ Returns a list of the names of the fields of data associated with the
+ feature. This will be the same for all features in a given layer, and
+ is equivalent to the :attr:`Layer.fields` property of the :class:`Layer`
+ object the feature came from.
+
+ .. attribute:: fid
+
+ Returns the feature identifier within the layer::
+
+ >>> city.fid
+ 0
+
+ .. attribute:: layer_name
+
+ Returns the name of the :class:`Layer` that the feature came from.
+ This will be the same for all features in a given layer::
+
+ >>> city.layer_name
+ 'cities'
+
+ .. attribute:: index
+
+ A method that returns the index of the given field name. This will be
+ the same for all features in a given layer::
+
+ >>> city.index('Population')
+ 1
+
+``Field``
+---------
+
+.. class:: Field
+
+ .. attribute:: name
+
+ Returns the name of this field::
+
+ >>> city['Name'].name
+ 'Name'
+
+ .. attribute:: type
+
+ Returns the OGR type of this field, as an integer. The
+ ``FIELD_CLASSES`` dictionary maps these values onto
+ subclasses of ``Field``::
+
+ >>> city['Density'].type
+ 2
+
+ .. attribute:: type_name
+
+ Returns a string with the name of the data type of this field::
+
+ >>> city['Name'].type_name
+ 'String'
+
+ .. attribute:: value
+
+ Returns the value of this field. The ``Field`` class itself
+ returns the value as a string, but each subclass returns the
+ value in the most appropriate form::
+
+ >>> city['Population'].value
+ 102121
+
+ .. attribute:: width
+
+ Returns the width of this field::
+
+ >>> city['Name'].width
+ 80
+
+ .. attribute:: precision
+
+ Returns the numeric precision of this field. This is meaningless (and
+ set to zero) for non-numeric fields::
+
+ >>> city['Density'].precision
+ 15
+
+ .. method:: as_double()
+
+ Returns the value of the field as a double (float)::
+
+ >>> city['Density'].as_double()
+ 874.7
+
+ .. method:: as_int()
+
+ Returns the value of the field as an integer::
+
+ >>> city['Population'].as_int()
+ 102121
+
+ .. method:: as_string()
+
+ Returns the value of the field as a string::
+
+ >>> city['Name'].as_string()
+ 'Pueblo'
+
+ .. method:: as_datetime()
+
+ Returns the value of the field as a tuple of date and time components::
+
+ >>> city['Created'].as_datetime()
+ (c_long(1999), c_long(5), c_long(23), c_long(0), c_long(0), c_long(0), c_long(0))
+
+``Driver``
+----------
+
+.. class:: Driver(dr_input)
+
+ The ``Driver`` class is used internally to wrap an OGR :class:`DataSource` driver.
+
+ .. attribute:: driver_count
+
+ Returns the number of OGR vector drivers currently registered.
+
+
+OGR Geometries
+==============
+
+``OGRGeometry``
+---------------
+
+:class:`OGRGeometry` objects share similar functionality with
+:class:`~django.contrib.gis.geos.GEOSGeometry` objects, and are thin
+wrappers around OGR's internal geometry representation. Thus,
+they allow for more efficient access to data when using :class:`DataSource`.
+Unlike its GEOS counterpart, :class:`OGRGeometry` supports spatial reference
+systems and coordinate transformation::
+
+ >>> from django.contrib.gis.gdal import OGRGeometry
+ >>> polygon = OGRGeometry('POLYGON((0 0, 5 0, 5 5, 0 5))')
+
+.. class:: OGRGeometry(geom_input[, srs=None])
+
+ This object is a wrapper for the `OGR Geometry`__ class.
+ These objects are instantiated directly from the given ``geom_input``
+ parameter, which may be a string containing WKT or HEX, a ``buffer``
+ containing WKB data, or an :class:`OGRGeomType` object. These objects
+ are also returned from the :class:`Feature.geom` attribute, when
+ reading vector data from :class:`Layer` (which is in turn a part of
+ a :class:`DataSource`).
+
+ __ http://www.gdal.org/ogr/classOGRGeometry.html
+
+ .. classmethod:: from_bbox(bbox)
+
+ .. versionadded:: 1.1
+
+ Constructs a :class:`Polygon` from the given bounding-box (a 4-tuple).
+
+ .. method:: __len__
+
+ Returns the number of points in a :class:`LineString`, the
+ number of rings in a :class:`Polygon`, or the number of geometries in a
+ :class:`GeometryCollection`. Not applicable to other geometry types.
+
+ .. method:: __iter__
+
+ Iterates over the points in a :class:`LineString`, the rings in a
+ :class:`Polygon`, or the geometries in a :class:`GeometryCollection`.
+ Not applicable to other geometry types.
+
+ .. method:: __getitem__
+
+ Returns the point at the specified index for a :class:`LineString`, the
+ interior ring at the specified index for a :class:`Polygon`, or the geometry
+ at the specified index in a :class:`GeometryCollection`. Not applicable to
+ other geometry types.
+
+ .. attribute:: dimension
+
+ Returns the number of coordinated dimensions of the geometry, i.e. 0
+ for points, 1 for lines, and so forth::
+
+ >> polygon.dimension
+ 2
+
+ .. attribute:: coord_dim
+
+ .. versionchanged:: 1.2
+
+ Returns or sets the coordinate dimension of this geometry. For
+ example, the value would be 2 for two-dimensional geometries.
+
+ .. note::
+
+ Setting this property is only available in versions 1.2 and above.
+
+ .. attribute:: geom_count
+
+ Returns the number of elements in this geometry::
+
+ >>> polygon.geom_count
+ 1
+
+ .. attribute:: point_count
+
+ Returns the number of points used to describe this geometry::
+
+ >>> polygon.point_count
+ 4
+
+ .. attribute:: num_points
+
+ Alias for :attr:`point_count`.
+
+ .. attribute:: num_coords
+
+ Alias for :attr:`point_count`.
+
+ .. attribute:: geom_type
+
+ Returns the type of this geometry, as an :class:`OGRGeomType` object.
+
+ .. attribute:: geom_name
+
+ Returns the name of the type of this geometry::
+
+ >>> polygon.geom_name
+ 'POLYGON'
+
+ .. attribute:: area
+
+ Returns the area of this geometry, or 0 for geometries that do not
+ contain an area::
+
+ >>> polygon.area
+ 25.0
+
+ .. attribute:: envelope
+
+ Returns the envelope of this geometry, as an :class:`Envelope` object.
+
+ .. attribute:: extent
+
+ Returns the envelope of this geometry as a 4-tuple, instead of as an
+ :class:`Envelope` object::
+
+ >>> point.extent
+ (0.0, 0.0, 5.0, 5.0)
+
+ .. attribute:: srs
+
+ This property controls the spatial reference for this geometry, or
+ ``None`` if no spatial reference system has been assigned to it.
+ If assigned, accessing this property returns a :class:`SpatialReference`
+ object. It may be set with another :class:`SpatialReference` object,
+ or any input that :class:`SpatialReference` accepts. Example::
+
+ >>> city.geom.srs.name
+ 'GCS_WGS_1984'
+
+ .. attribute:: srid
+
+ Returns or sets the spatial reference identifier corresponding to
+ :class:`SpatialReference` of this geometry. Returns ``None`` if
+ there is no spatial reference information associated with this
+ geometry, or if an SRID cannot be determined.
+
+ .. attribute:: geos
+
+ Returns a :class:`~django.contrib.gis.geos.GEOSGeometry` object
+ corresponding to this geometry.
+
+ .. attribute:: gml
+
+ Returns a string representation of this geometry in GML format::
+
+ >>> OGRGeometry('POINT(1 2)').gml
+ '1,2'
+
+ .. attribute:: hex
+
+ Returns a string representation of this geometry in HEX WKB format::
+
+ >>> OGRGeometry('POINT(1 2)').hex
+ '0101000000000000000000F03F0000000000000040'
+
+ .. attribute:: json
+
+ Returns a string representation of this geometry in JSON format::
+
+ >>> OGRGeometry('POINT(1 2)').json
+ '{ "type": "Point", "coordinates": [ 1.000000, 2.000000 ] }'
+
+
+ .. attribute:: kml
+
+ .. versionadded:: 1.1
+
+ Returns a string representation of this geometry in KML format.
+
+ .. attribute:: wkb_size
+
+ Returns the size of the WKB buffer needed to hold a WKB representation
+ of this geometry::
+
+ >>> OGRGeometry('POINT(1 2)').wkb_size
+ 21
+
+ .. attribute:: wkb
+
+ Returns a ``buffer`` containing a WKB representation of this geometry.
+
+ .. attribute:: wkt
+
+ Returns a string representation of this geometry in WKT format.
+
+ .. attribute:: ewkt
+
+ .. versionadded:: 1.2
+
+ Returns the EWKT representation of this geometry.
+
+ .. method:: clone()
+
+ Returns a new :class:`OGRGeometry` clone of this geometry object.
+
+ .. method:: close_rings()
+
+ If there are any rings within this geometry that have not been closed,
+ this routine will do so by adding the starting point to the end::
+
+ >>> triangle = OGRGeometry('LINEARRING (0 0,0 1,1 0)')
+ >>> triangle.close_rings()
+ >>> triangle.wkt
+ 'LINEARRING (0 0,0 1,1 0,0 0)'
+
+ .. method:: transform(coord_trans, clone=False)
+
+ Transforms this geometry to a different spatial reference system. May
+ take a :class:`CoordTransform` object, a :class:`SpatialReference` object,
+ or any other input accepted by :class:`SpatialReference` (including
+ spatial reference WKT and PROJ.4 strings, or an integer SRID).
+ By default nothing is returned and the geometry is transformed in-place.
+ However, if the `clone` keyword is set to ``True`` then a transformed clone
+ of this geometry is returned instead.
+
+ .. method:: intersects(other)
+
+ Returns ``True`` if this geometry intersects the other, otherwise returns
+ ``False``.
+
+ .. method:: equals(other)
+
+ Returns ``True`` if this geometry is equivalent to the other, otherwise returns
+ ``False``.
+
+ .. method:: disjoint(other)
+
+ Returns ``True`` if this geometry is spatially disjoint to (i.e. does
+ not intersect) the other, otherwise returns ``False``.
+
+ .. method:: touches(other)
+
+ Returns ``True`` if this geometry touches the other, otherwise returns
+ ``False``.
+
+ .. method:: crosses(other)
+
+ Returns ``True`` if this geometry crosses the other, otherwise returns
+ ``False``.
+
+ .. method:: within(other)
+
+ Returns ``True`` if this geometry is contained within the other, otherwise returns
+ ``False``.
+
+ .. method:: contains(other)
+
+ Returns ``True`` if this geometry contains the other, otherwise returns
+ ``False``.
+
+ .. method:: overlaps(other)
+
+ Returns ``True`` if this geometry overlaps the other, otherwise returns
+ ``False``.
+
+ .. method:: boundary
+
+ The boundary of this geometry, as a new :class:`OGRGeometry` object.
+
+ .. attribute:: convex_hull
+
+ The smallest convex polygon that contains this geometry, as a new
+ :class:`OGRGeometry` object.
+
+ .. method:: difference
+
+ Returns the region consisting of the difference of this geometry and
+ the other, as a new :class:`OGRGeometry` object.
+
+ .. method:: intersection
+
+ Returns the region consisting of the intersection of this geometry and
+ the other, as a new :class:`OGRGeometry` object.
+
+ .. method:: sym_difference
+
+ Returns the region consisting of the symmetric difference of this
+ geometry and the other, as a new :class:`OGRGeometry` object.
+
+ .. method:: union
+
+ Returns the region consisting of the union of this geometry and
+ the other, as a new :class:`OGRGeometry` object.
+
+ .. attribute:: tuple
+
+ Returns the coordinates of a point geometry as a tuple, the
+ coordinates of a line geometry as a tuple of tuples, and so forth::
+
+ >>> OGRGeometry('POINT (1 2)').tuple
+ (1.0, 2.0)
+ >>> OGRGeometry('LINESTRING (1 2,3 4)').tuple
+ ((1.0, 2.0), (3.0, 4.0))
+
+ .. attribute:: coords
+
+ An alias for :attr:`tuple`.
+
+.. class:: Point
+
+ .. attribute:: x
+
+ Returns the X coordinate of this point::
+
+ >>> OGRGeometry('POINT (1 2)').x
+ 1.0
+
+ .. attribute:: y
+
+ Returns the Y coordinate of this point::
+
+ >>> OGRGeometry('POINT (1 2)').y
+ 2.0
+
+ .. attribute:: z
+
+ Returns the Z coordinate of this point, or ``None`` if the
+ the point does not have a Z coordinate::
+
+ >>> OGRGeometry('POINT (1 2 3)').z
+ 3.0
+
+.. class:: LineString
+
+ .. attribute:: x
+
+ Returns a list of X coordinates in this line::
+
+ >>> OGRGeometry('LINESTRING (1 2,3 4)').x
+ [1.0, 3.0]
+
+ .. attribute:: y
+
+ Returns a list of Y coordinates in this line::
+
+ >>> OGRGeometry('LINESTRING (1 2,3 4)').y
+ [2.0, 4.0]
+
+ .. attribute:: z
+
+ Returns a list of Z coordinates in this line, or ``None`` if the
+ line does not have Z coordinates::
+
+ >>> OGRGeometry('LINESTRING (1 2 3,4 5 6)').z
+ [3.0, 6.0]
+
+
+.. class:: Polygon
+
+ .. attribute:: shell
+
+ Returns the shell or exterior ring of this polygon, as a ``LinearRing``
+ geometry.
+
+ .. attribute:: exterior_ring
+
+ An alias for :attr:`shell`.
+
+ .. attribute:: centroid
+
+ Returns a :class:`Point` representing the centroid of this polygon.
+
+.. class:: GeometryCollection
+
+ .. method:: add(geom)
+
+ Adds a geometry to this geometry collection. Not applicable to other
+ geometry types.
+
+
+``OGRGeomType``
+---------------
+
+.. class:: OGRGeomType(type_input)
+
+ This class allows for the representation of an OGR geometry type
+ in any of several ways::
+
+ >>> from django.contrib.gis.gdal import OGRGeomType
+ >>> gt1 = OGRGeomType(3) # Using an integer for the type
+ >>> gt2 = OGRGeomType('Polygon') # Using a string
+ >>> gt3 = OGRGeomType('POLYGON') # It's case-insensitive
+ >>> print gt1 == 3, gt1 == 'Polygon' # Equivalence works w/non-OGRGeomType objects
+ True True
+
+ .. attribute:: name
+
+ Returns a short-hand string form of the OGR Geometry type::
+
+ >>> gt1.name
+ 'Polygon'
+
+ .. attribute:: num
+
+ Returns the number corresponding to the OGR geometry type::
+
+ >>> gt1.num
+ 3
+
+ .. attribute:: django
+
+ Returns the Django field type (a subclass of GeometryField) to use for
+ storing this OGR type, or ``None`` if there is no appropriate Django
+ type::
+
+ >>> gt1.django
+ 'PolygonField'
+
+``Envelope``
+------------
+
+.. class:: Envelope(*args)
+
+ Represents an OGR Envelope structure that contains the
+ minimum and maximum X, Y coordinates for a rectangle bounding box.
+ The naming of the variables is compatible with the OGR Envelope
+ C structure.
+
+ .. attribute:: min_x
+
+ The value of the minimum X coordinate.
+
+ .. attribute:: min_y
+
+ The value of the maximum X coordinate.
+
+ .. attribute:: max_x
+
+ The value of the minimum Y coordinate.
+
+ .. attribute:: max_y
+
+ The value of the maximum Y coordinate.
+
+ .. attribute:: ur
+
+ The upper-right coordinate, as a tuple.
+
+ .. attribute:: ll
+
+ The lower-left coordinate, as a tuple.
+
+ .. attribute:: tuple
+
+ A tuple representing the envelope.
+
+ .. attribute:: wkt
+
+ A string representing this envelope as a polygon in WKT format.
+
+
+ .. method:: expand_to_include(self, *args)
+
+ .. versionadded:: 1.1
+
+Coordinate System Objects
+=========================
+
+``SpatialReference``
+--------------------
+
+.. class:: SpatialReference(srs_input)
+
+ Spatial reference objects are initialized on the given ``srs_input``,
+ which may be one of the following:
+
+ * OGC Well Known Text (WKT) (a string)
+ * EPSG code (integer or string)
+ * PROJ.4 string
+ * A shorthand string for well-known standards (``'WGS84'``, ``'WGS72'``, ``'NAD27'``, ``'NAD83'``)
+
+ Example::
+
+ >>> wgs84 = SpatialReference('WGS84') # shorthand string
+ >>> wgs84 = SpatialReference(4326) # EPSG code
+ >>> wgs84 = SpatialReference('EPSG:4326') # EPSG string
+ >>> proj4 = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs '
+ >>> wgs84 = SpatialReference(proj4) # PROJ.4 string
+ >>> wgs84 = SpatialReference("""GEOGCS["WGS 84",
+ DATUM["WGS_1984",
+ SPHEROID["WGS 84",6378137,298.257223563,
+ AUTHORITY["EPSG","7030"]],
+ AUTHORITY["EPSG","6326"]],
+ PRIMEM["Greenwich",0,
+ AUTHORITY["EPSG","8901"]],
+ UNIT["degree",0.01745329251994328,
+ AUTHORITY["EPSG","9122"]],
+ AUTHORITY["EPSG","4326"]]""") # OGC WKT
+
+ .. method:: __getitem__(target)
+
+ Returns the value of the given string attribute node, ``None`` if the node
+ doesn't exist. Can also take a tuple as a parameter, (target, child),
+ where child is the index of the attribute in the WKT. For example::
+
+ >>> wkt = 'GEOGCS["WGS 84", DATUM["WGS_1984, ... AUTHORITY["EPSG","4326"]]')
+ >>> srs = SpatialReference(wkt) # could also use 'WGS84', or 4326
+ >>> print srs['GEOGCS']
+ WGS 84
+ >>> print srs['DATUM']
+ WGS_1984
+ >>> print srs['AUTHORITY']
+ EPSG
+ >>> print srs['AUTHORITY', 1] # The authority value
+ 4326
+ >>> print srs['TOWGS84', 4] # the fourth value in this wkt
+ 0
+ >>> print srs['UNIT|AUTHORITY'] # For the units authority, have to use the pipe symbole.
+ EPSG
+ >>> print srs['UNIT|AUTHORITY', 1] # The authority value for the untis
+ 9122
+
+ .. method:: attr_value(target, index=0)
+
+ The attribute value for the given target node (e.g. ``'PROJCS'``).
+ The index keyword specifies an index of the child node to return.
+
+ .. method:: auth_name(target)
+
+ Returns the authority name for the given string target node.
+
+ .. method:: auth_code(target)
+
+ Returns the authority code for the given string target node.
+
+ .. method:: clone()
+
+ Returns a clone of this spatial reference object.
+
+ .. method:: identify_epsg()
+
+ This method inspects the WKT of this SpatialReference, and will
+ add EPSG authority nodes where an EPSG identifier is applicable.
+
+ .. method:: from_esri()
+
+ Morphs this SpatialReference from ESRI's format to EPSG
+
+ .. method:: to_esri()
+
+ Morphs this SpatialReference to ESRI's format.
+
+ .. method:: validate()
+
+ Checks to see if the given spatial reference is valid, if not
+ an exception will be raised.
+
+ .. method:: import_epsg(epsg)
+
+ Import spatial reference from EPSG code.
+
+ .. method:: import_proj(proj)
+
+ Import spatial reference from PROJ.4 string.
+
+ .. method:: import_user_input(user_input)
+
+ .. versionadded:: 1.1
+
+ .. method:: import_wkt(wkt)
+
+ Import spatial reference from WKT.
+
+ .. method:: import_xml(xml)
+
+ Import spatial reference from XML.
+
+ .. attribute:: name
+
+ Returns the name of this Spatial Reference.
+
+ .. attribute:: srid
+
+ Returns the SRID of top-level authority, or ``None`` if undefined.
+
+ .. attribute:: linear_name
+
+ Returns the name of the linear units.
+
+ .. attribute:: linear_units
+
+ Returns the value of the linear units.
+
+ .. attribute:: angular_name
+
+ Returns the name of the angular units."
+
+ .. attribute:: angular_units
+
+ Returns the value of the angular units.
+
+ .. attribute:: units
+
+ Returns a 2-tuple of the units value and the units name,
+ and will automatically determines whether to return the linear
+ or angular units.
+
+ .. attribute:: ellisoid
+
+ Returns a tuple of the ellipsoid parameters for this spatial
+ reference: (semimajor axis, semiminor axis, and inverse flattening)
+
+ .. attribute:: semi_major
+
+ Returns the semi major axis of the ellipsoid for this spatial reference.
+
+ .. attribute:: semi_minor
+
+ Returns the semi minor axis of the ellipsoid for this spatial reference.
+
+ .. attribute:: inverse_flattening
+
+ Returns the inverse flattening of the ellipsoid for this spatial reference.
+
+ .. attribute:: geographic
+
+ Returns ``True`` if this spatial reference is geographic
+ (root node is ``GEOGCS``).
+
+ .. attribute:: local
+
+ Returns ``True`` if this spatial reference is local
+ (root node is ``LOCAL_CS``).
+
+ .. attribute:: projected
+
+ Returns ``True`` if this spatial reference is a projected coordinate
+ system (root node is ``PROJCS``).
+
+ .. attribute:: wkt
+
+ Returns the WKT representation of this spatial reference.
+
+ .. attribute:: pretty_wkt
+
+ Returns the 'pretty' representation of the WKT.
+
+ .. attribute:: proj
+
+ Returns the PROJ.4 representation for this spatial reference.
+
+ .. attribute:: proj4
+
+ Alias for :attr:`SpatialReference.proj`.
+
+ .. attribute:: xml
+
+ Returns the XML representation of this spatial reference.
+
+
+``CoordTransform``
+------------------
+
+.. class:: CoordTransform(source, target)
+
+Represents a coordinate system transform. It is initialized with two
+:class:`SpatialReference`, representing the source and target coordinate
+systems, respectively. These objects should be used when performing
+the same coordinate transformation repeatedly on different geometries::
+
+ >>> ct = CoordTransform(SpatialReference('WGS84'), SpatialReference('NAD83'))
+ >>> for feat in layer:
+ ... geom = feat.geom # getting clone of feature geometry
+ ... geom.transform(ct) # transforming
+
+Settings
+========
+
+.. setting:: GDAL_LIBRARY_PATH
+
+GDAL_LIBRARY_PATH
+-----------------
+
+A string specifying the location of the GDAL library. Typically,
+this setting is only used if the GDAL library is in a non-standard
+location (e.g., ``/home/john/lib/libgdal.so``).
diff --git a/parts/django/docs/ref/contrib/gis/geoip.txt b/parts/django/docs/ref/contrib/gis/geoip.txt
new file mode 100644
index 0000000..784d69e
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/geoip.txt
@@ -0,0 +1,223 @@
+.. _ref-geoip:
+
+======================
+Geolocation with GeoIP
+======================
+
+.. module:: django.contrib.gis.utils.geoip
+ :synopsis: High-level Python interface for MaxMind's GeoIP C library.
+
+.. currentmodule:: django.contrib.gis.utils
+
+The :class:`GeoIP` object is a ctypes wrapper for the
+`MaxMind GeoIP C API`__. [#]_ This interface is a BSD-licensed alternative
+to the GPL-licensed `Python GeoIP`__ interface provided by MaxMind.
+
+In order to perform IP-based geolocation, the :class:`GeoIP` object requires
+the GeoIP C libary and either the GeoIP `Country`__ or `City`__
+datasets in binary format (the CSV files will not work!). These datasets may be
+`downloaded from MaxMind`__. Grab the ``GeoIP.dat.gz`` and ``GeoLiteCity.dat.gz``
+and unzip them in a directory corresponding to what you set
+``GEOIP_PATH`` with in your settings. See the example and reference below
+for more details.
+
+__ http://www.maxmind.com/app/c
+__ http://www.maxmind.com/app/python
+__ http://www.maxmind.com/app/country
+__ http://www.maxmind.com/app/city
+__ http://www.maxmind.com/download/geoip/database/
+
+Example
+=======
+
+Assuming you have the GeoIP C library installed, here is an example of its
+usage::
+
+ >>> from django.contrib.gis.utils import GeoIP
+ >>> g = GeoIP()
+ >>> g.country('google.com')
+ {'country_code': 'US', 'country_name': 'United States'}
+ >>> g.city('72.14.207.99')
+ {'area_code': 650,
+ 'city': 'Mountain View',
+ 'country_code': 'US',
+ 'country_code3': 'USA',
+ 'country_name': 'United States',
+ 'dma_code': 807,
+ 'latitude': 37.419200897216797,
+ 'longitude': -122.05740356445312,
+ 'postal_code': '94043',
+ 'region': 'CA'}
+ >>> g.lat_lon('salon.com')
+ (37.789798736572266, -122.39420318603516)
+ >>> g.lon_lat('uh.edu')
+ (-95.415199279785156, 29.77549934387207)
+ >>> g.geos('24.124.1.80').wkt
+ 'POINT (-95.2087020874023438 39.0392990112304688)'
+
+``GeoIP`` Settings
+==================
+
+.. setting:: GEOIP_PATH
+
+GEOIP_PATH
+----------
+
+A string specifying the directory where the GeoIP data files are
+located. This setting is *required* unless manually specified
+with ``path`` keyword when initializing the :class:`GeoIP` object.
+
+.. setting:: GEOIP_LIBRARY_PATH
+
+GEOIP_LIBRARY_PATH
+------------------
+
+A string specifying the location of the GeoIP C library. Typically,
+this setting is only used if the GeoIP C library is in a non-standard
+location (e.g., ``/home/sue/lib/libGeoIP.so``).
+
+.. setting:: GEOIP_COUNTRY
+
+GEOIP_COUNTRY
+-------------
+
+The basename to use for the GeoIP country data file.
+Defaults to ``'GeoIP.dat'``.
+
+.. setting:: GEOIP_CITY
+
+GEOIP_CITY
+----------
+
+The basename to use for the GeoIP city data file.
+Defaults to ``'GeoLiteCity.dat'``.
+
+``GeoIP`` API
+=============
+
+.. class:: GeoIP([path=None, cache=0, country=None, city=None])
+
+The ``GeoIP`` object does not require any parameters to use the default
+settings. However, at the very least the :setting:`GEOIP_PATH` setting
+should be set with the path of the location of your GeoIP data sets. The
+following intialization keywords may be used to customize any of the
+defaults.
+
+=================== =======================================================
+Keyword Arguments Description
+=================== =======================================================
+``path`` Base directory to where GeoIP data is located or the
+ full path to where the city or country data files
+ (.dat) are located. Assumes that both the city and
+ country data sets are located in this directory;
+ overrides the :setting:`GEOIP_PATH` settings attribute.
+
+``cache`` The cache settings when opening up the GeoIP datasets,
+ and may be an integer in (0, 1, 2, 4) corresponding to
+ the ``GEOIP_STANDARD``, ``GEOIP_MEMORY_CACHE``,
+ ``GEOIP_CHECK_CACHE``, and ``GEOIP_INDEX_CACHE``
+ ``GeoIPOptions`` C API settings, respectively.
+ Defaults to 0 (``GEOIP_STANDARD``).
+
+``country`` The name of the GeoIP country data file. Defaults
+ to ``GeoIP.dat``. Setting this keyword overrides the
+ :setting:`GEOIP_COUNTRY` settings attribute.
+
+``city`` The name of the GeoIP city data file. Defaults to
+ ``GeoLiteCity.dat``. Setting this keyword overrides
+ the :setting:`GEOIP_CITY` settings attribute.
+=================== =======================================================
+
+``GeoIP`` Methods
+=================
+
+Querying
+--------
+
+All the following querying routines may take either a string IP address
+or a fully qualified domain name (FQDN). For example, both
+``'24.124.1.80'`` and ``'djangoproject.com'`` would be valid query
+parameters.
+
+.. method:: GeoIP.city(query)
+
+Returns a dictionary of city information for the given query. Some
+of the values in the dictionary may be undefined (``None``).
+
+.. method:: GeoIPcountry(query)
+
+Returns a dictionary with the country code and country for the given
+query.
+
+.. method:: GeoIP.country_code(query)
+
+Returns only the country code corresponding to the query.
+
+.. method:: GeoIP.country_name(query)
+
+Returns only the country name corresponding to the query.
+
+Coordinate Retrieval
+--------------------
+
+.. method:: GeoIP.coords(query)
+
+Returns a coordinate tuple of (longitude, latitude).
+
+.. method:: GeoIP.lon_lat(query)
+
+Returns a coordinate tuple of (longitude, latitude).
+
+.. method:: GeoIP.lat_lon(query)
+
+Returns a coordinate tuple of (latitude, longitude),
+
+.. method:: GeoIP.geos(query)
+
+Returns a :class:`django.contrib.gis.geos.Point` object corresponding to the query.
+
+Database Information
+--------------------
+
+.. attribute:: GeoIP.country_info
+
+This property returns information about the GeoIP country database.
+
+.. attribute:: GeoIP.city_info
+
+This property returns information about the GeoIP city database.
+
+.. attribute:: GeoIP.info
+
+This property returns information about all GeoIP databases (both city
+and country).
+
+GeoIP-Python API compatibility methods
+----------------------------------------
+
+These methods exist to ease compatibility with any code using MaxMind's
+existing Python API.
+
+.. classmethod:: GeoIP.open(path, cache)
+
+This classmethod instantiates the GeoIP object from the given database path
+and given cache setting.
+
+.. method:: GeoIP.region_by_addr(query)
+
+.. method:: GeoIP.region_by_name(query)
+
+.. method:: GeoIP.record_by_addr(query)
+
+.. method:: GeoIP.record_by_name(query)
+
+.. method:: GeoIP.country_code_by_addr(query)
+
+.. method:: GeoIP.country_code_by_name(query)
+
+.. method:: GeoIP.country_name_by_addr(query)
+
+.. method:: GeoIP.country_name_by_name(query)
+
+.. rubric:: Footnotes
+.. [#] GeoIP(R) is a registered trademark of MaxMind, LLC of Boston, Massachusetts.
diff --git a/parts/django/docs/ref/contrib/gis/geoquerysets.txt b/parts/django/docs/ref/contrib/gis/geoquerysets.txt
new file mode 100644
index 0000000..69f0c02
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/geoquerysets.txt
@@ -0,0 +1,1256 @@
+.. _ref-geoquerysets:
+
+=========================
+GeoQuerySet API Reference
+=========================
+
+.. currentmodule:: django.contrib.gis.db.models
+
+.. class:: GeoQuerySet([model=None])
+
+
+.. _spatial-lookups:
+
+Spatial Lookups
+===============
+
+Just like when using the the :ref:`queryset-api`, interaction
+with ``GeoQuerySet`` by :ref:`chaining filters `.
+Instead of the regular Django :ref:`field-lookups`, the
+spatial lookups in this section are available for :class:`GeometryField`.
+
+For an introduction, see the :ref:`spatial lookups introduction
+`. For an overview of what lookups are
+compatible with a particular spatial backend, refer to the
+:ref:`spatial lookup compatibility table `.
+
+.. fieldlookup:: bbcontains
+
+bbcontains
+----------
+
+*Availability*: PostGIS, MySQL, SpatiaLite
+
+Tests if the geometry field's bounding box completely contains the lookup
+geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__bbcontains=geom)
+
+========== ==========================
+Backend SQL Equivalent
+========== ==========================
+PostGIS ``poly ~ geom``
+MySQL ``MBRContains(poly, geom)``
+SpatiaLite ``MbrContains(poly, geom)``
+========== ==========================
+
+.. fieldlookup:: bboverlaps
+
+bboverlaps
+----------
+
+*Availability*: PostGIS, MySQL, SpatiaLite
+
+Tests if the geometry field's bounding box overlaps the lookup geometry's
+bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__bboverlaps=geom)
+
+========== ==========================
+Backend SQL Equivalent
+========== ==========================
+PostGIS ``poly && geom``
+MySQL ``MBROverlaps(poly, geom)``
+SpatiaLite ``MbrOverlaps(poly, geom)``
+========== ==========================
+
+.. fieldlookup:: contained
+
+contained
+---------
+
+*Availability*: PostGIS, MySQL, SpatiaLite
+
+Tests if the geometry field's bounding box is completely contained by the
+lookup geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__contained=geom)
+
+========== ==========================
+Backend SQL Equivalent
+========== ==========================
+PostGIS ``poly @ geom``
+MySQL ``MBRWithin(poly, geom)``
+SpatiaLite ``MbrWithin(poly, geom)``
+========== ==========================
+
+.. fieldlookup:: gis-contains
+
+contains
+--------
+
+*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
+
+Tests if the geometry field spatially contains the lookup geometry.
+
+Example::
+
+ Zipcode.objects.filter(poly__contains=geom)
+
+========== ============================
+Backend SQL Equivalent
+========== ============================
+PostGIS ``ST_Contains(poly, geom)``
+Oracle ``SDO_CONTAINS(poly, geom)``
+MySQL ``MBRContains(poly, geom)``
+SpatiaLite ``Contains(poly, geom)``
+========== ============================
+
+.. fieldlookup:: contains_properly
+
+contains_properly
+-----------------
+
+.. versionadded:: 1.2
+
+*Availability*: PostGIS
+
+Returns true if the lookup geometry intersects the interior of the
+geometry field, but not the boundary (or exterior). [#fncontainsproperly]_
+
+.. note::
+
+ Requires PostGIS 1.4 and above.
+
+Example::
+
+ Zipcode.objects.filter(poly__contains_properly=geom)
+
+========== ===================================
+Backend SQL Equivalent
+========== ===================================
+PostGIS ``ST_ContainsProperly(poly, geom)``
+========== ===================================
+
+.. fieldlookup:: coveredby
+
+coveredby
+---------
+
+*Availability*: PostGIS, Oracle
+
+Tests if no point in the geometry field is outside the lookup geometry.
+[#fncovers]_
+
+Example::
+
+ Zipcode.objects.filter(poly__coveredby=geom)
+
+========== =============================
+Backend SQL Equivalent
+========== =============================
+PostGIS ``ST_CoveredBy(poly, geom)``
+Oracle ``SDO_COVEREDBY(poly, geom)``
+========== =============================
+
+.. fieldlookup:: covers
+
+covers
+------
+
+*Availability*: PostGIS, Oracle
+
+Tests if no point in the lookup geometry is outside the geometry field.
+[#fncovers]_
+
+Example::
+
+ Zipcode.objects.filter(poly__covers=geom)
+
+========== ==========================
+Backend SQL Equivalent
+========== ==========================
+PostGIS ``ST_Covers(poly, geom)``
+Oracle ``SDO_COVERS(poly, geom)``
+========== ==========================
+
+.. fieldlookup:: crosses
+
+crosses
+-------
+
+*Availability*: PostGIS, SpatiaLite
+
+Tests if the geometry field spatially crosses the lookup geometry.
+
+Example::
+
+ Zipcode.objects.filter(poly__crosses=geom)
+
+========== ==========================
+Backend SQL Equivalent
+========== ==========================
+PostGIS ``ST_Crosses(poly, geom)``
+SpatiaLite ``Crosses(poly, geom)``
+========== ==========================
+
+.. fieldlookup:: disjoint
+
+disjoint
+--------
+
+*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
+
+Tests if the geometry field is spatially disjoint from the lookup geometry.
+
+Example::
+
+ Zipcode.objects.filter(poly__disjoint=geom)
+
+========== =================================================
+Backend SQL Equivalent
+========== =================================================
+PostGIS ``ST_Disjoint(poly, geom)``
+Oracle ``SDO_GEOM.RELATE(poly, 'DISJOINT', geom, 0.05)``
+MySQL ``MBRDisjoint(poly, geom)``
+SpatiaLite ``Disjoint(poly, geom)``
+========== =================================================
+
+equals
+------
+
+*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
+
+.. fieldlookup:: exact
+.. fieldlookup:: same_as
+
+exact, same_as
+--------------
+
+*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
+
+.. fieldlookup:: intersects
+
+intersects
+----------
+
+*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
+
+Tests if the geometry field spatially intersects the lookup geometry.
+
+Example::
+
+ Zipcode.objects.filter(poly__intersects=geom)
+
+========== =================================================
+Backend SQL Equivalent
+========== =================================================
+PostGIS ``ST_Intersects(poly, geom)``
+Oracle ``SDO_OVERLAPBDYINTERSECT(poly, geom)``
+MySQL ``MBRIntersects(poly, geom)``
+SpatiaLite ``Intersects(poly, geom)``
+========== =================================================
+
+.. fieldlookup:: overlaps
+
+overlaps
+--------
+
+*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
+
+.. fieldlookup:: relate
+
+relate
+------
+
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+Tests if the geometry field is spatially related to the the lookup geometry by
+the values given in the given pattern. This lookup requires a tuple parameter,
+``(geom, pattern)``; the form of ``pattern`` will depend on the spatial backend:
+
+PostGIS & SpatiaLite
+~~~~~~~~~~~~~~~~~~~~
+On these spatial backends the intersection pattern is a string comprising
+nine characters, which define intersections between the interior, boundary,
+and exterior of the geometry field and the lookup geometry.
+The intersection pattern matrix may only use the following characters:
+``1``, ``2``, ``T``, ``F``, or ``*``. This lookup type allows users to "fine tune"
+a specific geometric relationship consistent with the DE-9IM model. [#fnde9im]_
+
+Example::
+
+ # A tuple lookup parameter is used to specify the geometry and
+ # the intersection pattern (the pattern here is for 'contains').
+ Zipcode.objects.filter(poly__relate(geom, 'T*T***FF*'))
+
+PostGIS SQL equivalent::
+
+ SELECT ... WHERE ST_Relate(poly, geom, 'T*T***FF*')
+
+SpatiaLite SQL equivalent::
+
+ SELECT ... WHERE Relate(poly, geom, 'T*T***FF*')
+
+Oracle
+~~~~~~
+
+Here the relation pattern is compreised at least one of the nine relation
+strings: ``TOUCH``, ``OVERLAPBDYDISJOINT``, ``OVERLAPBDYINTERSECT``,
+``EQUAL``, ``INSIDE``, ``COVEREDBY``, ``CONTAINS``, ``COVERS``, ``ON``, and
+``ANYINTERACT``. Multiple strings may be combined with the logical Boolean
+operator OR, for example, ``'inside+touch'``. [#fnsdorelate]_ The relation
+strings are case-insensitive.
+
+Example::
+
+ Zipcode.objects.filter(poly__relate(geom, 'anyinteract'))
+
+Oracle SQL equivalent::
+
+ SELECT ... WHERE SDO_RELATE(poly, geom, 'anyinteract')
+
+.. fieldlookup:: touches
+
+touches
+-------
+
+*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
+
+Tests if the geometry field spatially touches the lookup geometry.
+
+Example::
+
+ Zipcode.objects.filter(poly__touches=geom)
+
+========== ==========================
+Backend SQL Equivalent
+========== ==========================
+PostGIS ``ST_Touches(poly, geom)``
+MySQL ``MBRTouches(poly, geom)``
+Oracle ``SDO_TOUCH(poly, geom)``
+SpatiaLite ``Touches(poly, geom)``
+========== ==========================
+
+.. fieldlookup:: within
+
+within
+------
+
+*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
+
+Tests if the geometry field is spatially within the lookup geometry.
+
+Example::
+
+ Zipcode.objects.filter(poly__within=geom)
+
+========== ==========================
+Backend SQL Equivalent
+========== ==========================
+PostGIS ``ST_Within(poly, geom)``
+MySQL ``MBRWithin(poly, geom)``
+Oracle ``SDO_INSIDE(poly, geom)``
+SpatiaLite ``Within(poly, geom)``
+========== ==========================
+
+.. fieldlookup:: left
+
+left
+----
+
+*Availability*: PostGIS
+
+Tests if the geometry field's bounding box is strictly to the left of the
+lookup geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__left=geom)
+
+PostGIS equivalent::
+
+ SELECT ... WHERE poly << geom
+
+.. fieldlookup:: right
+
+right
+-----
+
+*Availability*: PostGIS
+
+Tests if the geometry field's bounding box is strictly to the right of the
+lookup geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__right=geom)
+
+PostGIS equivalent::
+
+ SELECT ... WHERE poly >> geom
+
+.. fieldlookup:: overlaps_left
+
+overlaps_left
+-------------
+
+*Availability*: PostGIS
+
+Tests if the geometry field's bounding box overlaps or is to the left of the lookup
+geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__overlaps_left=geom)
+
+PostGIS equivalent::
+
+ SELECT ... WHERE poly &< geom
+
+
+.. fieldlookup:: overlaps_right
+
+overlaps_right
+--------------
+
+*Availability*: PostGIS
+
+Tests if the geometry field's bounding box overlaps or is to the right of the lookup
+geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__overlaps_right=geom)
+
+PostGIS equivalent::
+
+ SELECT ... WHERE poly &> geom
+
+.. fieldlookup:: overlaps_above
+
+overlaps_above
+--------------
+
+*Availability*: PostGIS
+
+Tests if the geometry field's bounding box overlaps or is above the lookup
+geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__overlaps_above=geom)
+
+PostGIS equivalent::
+
+ SELECT ... WHERE poly |&> geom
+
+.. fieldlookup:: overlaps_below
+
+overlaps_below
+--------------
+
+*Availability*: PostGIS
+
+Tests if the geometry field's bounding box overlaps or is below the lookup
+geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__overlaps_below=geom)
+
+PostGIS equivalent::
+
+ SELECT ... WHERE poly &<| geom
+
+.. fieldlookup:: strictly_above
+
+strictly_above
+--------------
+
+*Availability*: PostGIS
+
+Tests if the geometry field's bounding box is strictly above the lookup
+geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__strictly_above=geom)
+
+PostGIS equivalent::
+
+ SELECT ... WHERE poly |>> geom
+
+.. fieldlookup:: strictly_below
+
+strictly_below
+--------------
+
+*Availability*: PostGIS
+
+Tests if the geometry field's bounding box is strictly above the lookup
+geometry's bounding box.
+
+Example::
+
+ Zipcode.objects.filter(poly__strictly_above=geom)
+
+PostGIS equivalent::
+
+ SELECT ... WHERE poly |>> geom
+
+
+.. _distance-lookups:
+
+Distance Lookups
+================
+
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+For an overview on performing distance queries, please refer to
+the :ref:`distance queries introduction `.
+
+Distance lookups take the following form::
+
+ __=(, [, 'spheroid'])
+
+The value passed into a distance lookup is a tuple; the first two
+values are mandatory, and are the geometry to calculate distances to,
+and a distance value (either a number in units of the field or a
+:class:`~django.contrib.gis.measure.Distance` object). On every
+distance lookup but :lookup:`dwithin`, an optional
+third element, ``'spheroid'``, may be included to tell GeoDjango
+to use the more accurate spheroid distance calculation functions on
+fields with a geodetic coordinate system (e.g., ``ST_Distance_Spheroid``
+would be used instead of ``ST_Distance_Sphere``).
+
+.. fieldlookup:: distance_gt
+
+distance_gt
+-----------
+
+Returns models where the distance to the geometry field from the lookup
+geometry is greater than the given distance value.
+
+Example::
+
+ Zipcode.objects.filter(poly__distance_gt=(geom, D(m=5)))
+
+========== ===============================================
+Backend SQL Equivalent
+========== ===============================================
+PostGIS ``ST_Distance(poly, geom) > 5``
+Oracle ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) > 5``
+SpatiaLite ``Distance(poly, geom) > 5``
+========== ===============================================
+
+.. fieldlookup:: distance_gte
+
+distance_gte
+------------
+
+Returns models where the distance to the geometry field from the lookup
+geometry is greater than or equal to the given distance value.
+
+Example::
+
+ Zipcode.objects.filter(poly__distance_gte=(geom, D(m=5)))
+
+========== ================================================
+Backend SQL Equivalent
+========== ================================================
+PostGIS ``ST_Distance(poly, geom) >= 5``
+Oracle ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) >= 5``
+SpatiaLite ``Distance(poly, geom) >= 5``
+========== ================================================
+
+.. fieldlookup:: distance_lt
+
+distance_lt
+-----------
+
+Returns models where the distance to the geometry field from the lookup
+geometry is less than the given distance value.
+
+Example::
+
+ Zipcode.objects.filter(poly__distance_lt=(geom, D(m=5)))
+
+========== ===============================================
+Backend SQL Equivalent
+========== ===============================================
+PostGIS ``ST_Distance(poly, geom) < 5``
+Oracle ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) < 5``
+SpatiaLite ``Distance(poly, geom) < 5``
+========== ===============================================
+
+.. fieldlookup:: distance_lte
+
+distance_lte
+------------
+
+Returns models where the distance to the geometry field from the lookup
+geometry is less than or equal to the given distance value.
+
+Example::
+
+ Zipcode.objects.filter(poly__distance_lte=(geom, D(m=5)))
+
+========== ================================================
+Backend SQL Equivalent
+========== ================================================
+PostGIS ``ST_Distance(poly, geom) <= 5``
+Oracle ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) <= 5``
+SpatiaLite ``Distance(poly, geom) <= 5``
+========== ================================================
+
+.. fieldlookup:: dwithin
+
+dwithin
+-------
+
+Returns models where the distance to the geometry field from the
+lookup geometry are within the given distance from one another.
+
+Example::
+
+ Zipcode.objects.filter(poly__dwithin=(geom, D(m=5)))
+
+========== ======================================
+Backend SQL Equivalent
+========== ======================================
+PostGIS ``ST_DWithin(poly, geom, 5)``
+Oracle ``SDO_WITHIN_DISTANCE(poly, geom, 5)``
+========== ======================================
+
+.. note::
+
+ This lookup is not available on SpatiaLite.
+
+.. fieldlookup:: equals
+
+
+``GeoQuerySet`` Methods
+=======================
+
+``GeoQuerySet`` methods specify that a spatial operation be performed
+on each patial operation on each geographic
+field in the queryset and store its output in a new attribute on the model
+(which is generally the name of the ``GeoQuerySet`` method).
+
+There are also aggregate ``GeoQuerySet`` methods which return a single value
+instead of a queryset. This section will describe the API and availability
+of every ``GeoQuerySet`` method available in GeoDjango.
+
+.. note::
+
+ What methods are available depend on your spatial backend. See
+ the :ref:`compatibility table `
+ for more details.
+
+With a few exceptions, the following keyword arguments may be used with all
+``GeoQuerySet`` methods:
+
+===================== =====================================================
+Keyword Argument Description
+===================== =====================================================
+``field_name`` By default, ``GeoQuerySet`` methods use the first
+ geographic field encountered in the model. This
+ keyword should be used to specify another
+ geographic field (e.g., ``field_name='point2'``)
+ when there are multiple geographic fields in a model.
+
+ On PostGIS, the ``field_name`` keyword may also be
+ used on geometry fields in models that are related
+ via a ``ForeignKey`` relation (e.g.,
+ ``field_name='related__point'``).
+
+``model_att`` By default, ``GeoQuerySet`` methods typically attach
+ their output in an attribute with the same name as
+ the ``GeoQuerySet`` method. Setting this keyword
+ with the desired attribute name will override this
+ default behavior. For example,
+ ``qs = Zipcode.objects.centroid(model_att='c')`` will
+ attach the centroid of the ``Zipcode`` geometry field
+ in a ``c`` attribute on every model rather than in a
+ ``centroid`` attribute.
+
+ This keyword is required if
+ a method name clashes with an existing
+ ``GeoQuerySet`` method -- if you wanted to use the
+ ``area()`` method on model with a ``PolygonField``
+ named ``area``, for example.
+===================== =====================================================
+
+Measurement
+-----------
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+``area``
+~~~~~~~~
+
+.. method:: GeoQuerySet.area(**kwargs)
+
+Returns the area of the geographic field in an ``area`` attribute on
+each element of this GeoQuerySet.
+
+``distance``
+~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.distance(geom, **kwargs)
+
+This method takes a geometry as a parameter, and attaches a ``distance``
+attribute to every model in the returned queryset that contains the
+distance (as a :class:`~django.contrib.gis.measure.Distance` object) to the given geometry.
+
+In the following example (taken from the `GeoDjango distance tests`__),
+the distance from the `Tasmanian`__ city of Hobart to every other
+:class:`PointField` in the ``AustraliaCity`` queryset is calculated::
+
+ >>> pnt = AustraliaCity.objects.get(name='Hobart').point
+ >>> for city in AustraliaCity.objects.distance(pnt): print city.name, city.distance
+ Wollongong 990071.220408 m
+ Shellharbour 972804.613941 m
+ Thirroul 1002334.36351 m
+ Mittagong 975691.632637 m
+ Batemans Bay 834342.185561 m
+ Canberra 598140.268959 m
+ Melbourne 575337.765042 m
+ Sydney 1056978.87363 m
+ Hobart 0.0 m
+ Adelaide 1162031.83522 m
+ Hillsdale 1049200.46122 m
+
+.. note::
+
+ Because the ``distance`` attribute is a
+ :class:`~django.contrib.gis.measure.Distance` object, you can easily express
+ the value in the units of your choice. For example, ``city.distance.mi`` is
+ the distance value in miles and ``city.distance.km`` is the distance value
+ in kilometers. See the :ref:`ref-measure` for usage details and the list of
+ :ref:`supported_units`.
+
+__ http://code.djangoproject.com/browser/django/trunk/django/contrib/gis/tests/distapp/models.py
+__ http://en.wikipedia.org/wiki/Tasmania
+
+``length``
+~~~~~~~~~~
+
+.. method:: GeoQuerySet.length(**kwargs)
+
+Returns the length of the geometry field in a ``length`` attribute
+(a :class:`~django.contrib.gis.measure.Distance` object) on each model in
+the queryset.
+
+``perimeter``
+~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.perimeter(**kwargs)
+
+Returns the perimeter of the geometry field in a ``perimeter`` attribute
+(a :class:`~django.contrib.gis.measure.Distance` object) on each model in
+the queryset.
+
+Geometry Relationships
+----------------------
+
+The following methods take no arguments, and attach geometry objects
+each element of the :class:`GeoQuerySet` that is the result of relationship
+function evaluated on the the geometry field.
+
+``centroid``
+~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.centroid(**kwargs)
+
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+Returns the ``centroid`` value for the geographic field in a ``centroid``
+attribute on each element of the ``GeoQuerySet``.
+
+``envelope``
+~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.envelope(**kwargs)
+
+*Availability*: PostGIS, SpatiaLite
+
+Returns a geometry representing the bounding box of the geometry field in
+an ``envelope`` attribute on each element of the ``GeoQuerySet``.
+
+``point_on_surface``
+~~~~~~~~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.point_on_surface(**kwargs)
+
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+Returns a Point geometry guaranteed to lie on the surface of the
+geometry field in a ``point_on_surface`` attribute on each element
+of the queryset; otherwise sets with None.
+
+Geometry Editors
+----------------
+
+``force_rhr``
+~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.force_rhr(**kwargs)
+
+.. versionadded:: 1.2
+
+*Availability*: PostGIS
+
+Returns a modified version of the polygon/multipolygon in which all
+of the vertices follow the Right-Hand-Rule, and attaches as a
+``force_rhr`` attribute on each element of the queryset.
+
+``reverse_geom``
+~~~~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.reverse_geom(**kwargs)
+
+.. versionadded:: 1.2
+
+*Availability*: PostGIS, Oracle
+
+Reverse the coordinate order of the geometry field, and attaches as a
+``reverse`` attribute on each element of the queryset.
+
+``scale``
+~~~~~~~~~
+
+.. method:: GeoQuerySet.scale(x, y, z=0.0, **kwargs)
+
+*Availability*: PostGIS, SpatiaLite
+
+``snap_to_grid``
+~~~~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.snap_to_grid(*args, **kwargs)
+
+.. versionadded:: 1.1
+
+Snap all points of the input geometry to the grid. How the
+geometry is snapped to the grid depends on how many numeric
+(either float, integer, or long) arguments are given.
+
+=================== =====================================================
+Number of Arguments Description
+=================== =====================================================
+1 A single size to snap bot the X and Y grids to.
+2 X and Y sizes to snap the grid to.
+4 X, Y sizes and the corresponding X, Y origins.
+=================== =====================================================
+
+``transform``
+~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.transform(srid=4326, **kwargs)
+
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+The ``transform`` method transforms the geometry field of a model to the spatial
+reference system specified by the ``srid`` parameter. If no ``srid`` is given,
+then 4326 (WGS84) is used by default.
+
+.. note::
+
+ Unlike other ``GeoQuerySet`` methods, ``transform`` stores its output
+ "in-place". In other words, no new attribute for the transformed
+ geometry is placed on the models.
+
+.. note::
+
+ What spatial reference system an integer SRID corresponds to may depend on
+ the spatial database used. In other words, the SRID numbers used for Oracle
+ are not necessarily the same as those used by PostGIS.
+
+Example::
+
+ >>> qs = Zipcode.objects.all().transform() # Transforms to WGS84
+ >>> qs = Zipcode.objects.all().transform(32140) # Transforming to "NAD83 / Texas South Central"
+ >>> print qs[0].poly.srid
+ 32140
+ >>> print qs[0].poly
+ POLYGON ((234055.1698884720099159 4937796.9232223574072123 ...
+
+``translate``
+~~~~~~~~~~~~~
+.. method:: GeoQuerySet.translate(x, y, z=0.0, **kwargs)
+
+*Availability*: PostGIS, SpatiaLite
+
+Translates the geometry field to a new location using the given numeric
+parameters as offsets.
+
+Geometry Operations
+-------------------
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+The following methods all take a geometry as a parameter and attach a geometry
+to each element of the ``GeoQuerySet`` that is the result of the operation.
+
+``difference``
+~~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.difference(geom)
+
+Returns the spatial difference of the geographic field with the given
+geometry in a ``difference`` attribute on each element of the
+``GeoQuerySet``.
+
+
+``intersection``
+~~~~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.intersection(geom)
+
+Returns the spatial intersection of the geographic field with the
+given geometry in an ``intersection`` attribute on each element of the
+``GeoQuerySet``.
+
+``sym_difference``
+~~~~~~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.sym_difference(geom)
+
+Returns the symmetric difference of the geographic field with the
+given geometry in a ``sym_difference`` attribute on each element of the
+``GeoQuerySet``.
+
+``union``
+~~~~~~~~~
+
+.. method:: GeoQuerySet.union(geom)
+
+Returns the union of the geographic field with the given
+geometry in an ``union`` attribute on each element of the
+``GeoQuerySet``.
+
+Geometry Output
+---------------
+
+The following ``GeoQuerySet`` methods will return an attribute that has the value
+of the geometry field in each model converted to the requested output format.
+
+``geohash``
+~~~~~~~~~~~
+
+.. method:: GeoQuerySet.geohash(preceision=20, **kwargs)
+
+.. versionadded:: 1.2
+
+Attaches a ``geohash`` attribute to every model the the queryset
+containing the `GeoHash`__ representation of the geometry.
+
+__ http://geohash.org/
+
+``geojson``
+~~~~~~~~~~~
+
+.. method:: GeoQuerySet.geojson(**kwargs)
+
+.. versionadded:: 1.1
+
+*Availability*: PostGIS
+
+Attaches a ``geojson`` attribute to every model in the queryset that contains the
+`GeoJSON`__ representation of the geometry.
+
+===================== =====================================================
+Keyword Argument Description
+===================== =====================================================
+``precision`` It may be used to specify the number of significant
+ digits for the coordinates in the GeoJSON
+ representation -- the default value is 8.
+
+``crs`` Set this to ``True`` if you want the coordinate
+ reference system to be included in the returned
+ GeoJSON.
+
+``bbox`` Set this to ``True`` if you want the bounding box
+ to be included in the returned GeoJSON.
+===================== =====================================================
+
+__ http://geojson.org/
+
+``gml``
+~~~~~~~
+
+.. method:: GeoQuerySet.gml(**kwargs)
+
+*Availability*: PostGIS, Oracle
+
+Attaches a ``gml`` attribute to every model in the queryset that contains the
+`Geographic Markup Language (GML)`__ representation of the geometry.
+
+Example::
+
+ >>> qs = Zipcode.objects.all().gml()
+ >>> print qs[0].gml
+ -147.78711,70.245363 ... -147.78711,70.245363
+
+===================== =====================================================
+Keyword Argument Description
+===================== =====================================================
+``precision`` This keyword is for PostGIS only. It may be used
+ to specify the number of significant digits for the
+ coordinates in the GML representation -- the default
+ value is 8.
+
+``version`` This keyword is for PostGIS only. It may be used to
+ specify the GML version used, and may only be values
+ of 2 or 3. The default value is 2.
+===================== =====================================================
+
+__ http://en.wikipedia.org/wiki/Geography_Markup_Language
+
+``kml``
+~~~~~~~
+
+.. method:: GeoQuerySet.kml(**kwargs)
+
+*Availability*: PostGIS
+
+Attaches a ``kml`` attribute to every model in the queryset that contains the
+`Keyhole Markup Language (KML)`__ representation of the geometry fields. It
+should be noted that the contents of the KML are transformed to WGS84 if
+necessary.
+
+Example::
+
+ >>> qs = Zipcode.objects.all().kml()
+ >>> print qs[0].kml
+ -103.04135,36.217596,0 ... -103.04135,36.217596,0
+
+===================== =====================================================
+Keyword Argument Description
+===================== =====================================================
+``precision`` This keyword may be used to specify the number of
+ significant digits for the coordinates in the KML
+ representation -- the default value is 8.
+===================== =====================================================
+
+__ http://code.google.com/apis/kml/documentation/
+
+``svg``
+~~~~~~~
+
+.. method:: GeoQuerySet.svg(**kwargs)
+
+*Availability*: PostGIS, SpatiaLite
+
+Attaches a ``svg`` attribute to every model in the queryset that contains
+the `Scalable Vector Graphics (SVG)`__ path data of the geometry fields.
+
+===================== =====================================================
+Keyword Argument Description
+===================== =====================================================
+``relative`` If set to ``True``, the path data will be implemented
+ in terms of relative moves. Defaults to ``False``,
+ meaning that absolute moves are used instead.
+
+``precision`` This keyword may be used to specify the number of
+ significant digits for the coordinates in the SVG
+ representation -- the default value is 8.
+===================== =====================================================
+
+__ http://www.w3.org/Graphics/SVG/
+
+Miscellaneous
+-------------
+
+``mem_size``
+~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.mem_size(**kwargs)
+
+*Availability*: PostGIS
+
+Returns the memory size (number of bytes) that the geometry field takes
+in a ``mem_size`` attribute on each element of the ``GeoQuerySet``.
+
+``num_geom``
+~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.num_geom(**kwargs)
+
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+Returns the number of geometries in a ``num_geom`` attribute on
+each element of the ``GeoQuerySet`` if the geometry field is a
+collection (e.g., a ``GEOMETRYCOLLECTION`` or ``MULTI*`` field);
+otherwise sets with ``None``.
+
+``num_points``
+~~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.num_points(**kwargs)
+
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+Returns the number of points in the first linestring in the
+geometry field in a ``num_points`` attribute on each element of
+the ``GeoQuerySet``; otherwise sets with ``None``.
+
+Spatial Aggregates
+==================
+.. versionadded:: 1.1
+
+Aggregate Methods
+-----------------
+
+``collect``
+~~~~~~~~~~~
+
+.. method:: GeoQuerySet.collect(**kwargs)
+
+.. versionadded:: 1.1
+
+*Availability*: PostGIS
+
+Returns a ``GEOMETRYCOLLECTION`` or a ``MULTI`` geometry object from the geometry
+column. This is analagous to a simplified version of the :meth:`GeoQuerySet.unionagg` method,
+except it can be several orders of magnitude faster than peforming a union because
+it simply rolls up geometries into a collection or multi object, not caring about
+dissolving boundaries.
+
+``extent``
+~~~~~~~~~~
+
+.. method:: GeoQuerySet.extent(**kwargs)
+
+*Availability*: PostGIS, Oracle
+
+Returns the extent of the ``GeoQuerySet`` as a four-tuple, comprising the
+lower left coordinate and the upper right coordinate.
+
+Example::
+
+ >>> qs = City.objects.filter(name__in=('Houston', 'Dallas'))
+ >>> print qs.extent()
+ (-96.8016128540039, 29.7633724212646, -95.3631439208984, 32.782058715820)
+
+``extent3d``
+~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.extent3d(**kwargs)
+
+.. versionadded:: 1.2
+
+*Availability*: PostGIS
+
+Returns the 3D extent of the ``GeoQuerySet`` as a six-tuple, comprising
+the lower left coordinate and upper right coordinate.
+
+Example::
+
+ >>> qs = City.objects.filter(name__in=('Houston', 'Dallas'))
+ >>> print qs.extent3d()
+ (-96.8016128540039, 29.7633724212646, 0, -95.3631439208984, 32.782058715820, 0)
+
+``make_line``
+~~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.make_line(**kwargs)
+
+*Availability*: PostGIS
+
+Returns a ``LineString`` constructed from the point field geometries in the
+``GeoQuerySet``. Currently, ordering the queryset has no effect.
+
+Example::
+
+ >>> print City.objects.filter(name__in=('Houston', 'Dallas')).make_line()
+ LINESTRING (-95.3631510000000020 29.7633739999999989, -96.8016109999999941 32.7820570000000018)
+
+``unionagg``
+~~~~~~~~~~~~
+
+.. method:: GeoQuerySet.unionagg(**kwargs)
+
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+This method returns a :class:`~django.contrib.gis.geos.GEOSGeometry` object
+comprising the union of every geometry in the queryset. Please note that
+use of ``unionagg`` is processor intensive and may take a significant amount
+of time on large querysets.
+
+.. note::
+
+ If the computation time for using this method is too expensive,
+ consider using :meth:`GeoQuerySet.collect` instead.
+
+Example::
+
+ >>> u = Zipcode.objects.unionagg() # This may take a long time.
+ >>> u = Zipcode.objects.filter(poly__within=bbox).unionagg() # A more sensible approach.
+
+===================== =====================================================
+Keyword Argument Description
+===================== =====================================================
+``tolerance`` This keyword is for Oracle only. It is for the
+ tolerance value used by the ``SDOAGGRTYPE``
+ procedure; the `Oracle documentation`__ has more
+ details.
+===================== =====================================================
+
+__ http://download.oracle.com/docs/html/B14255_01/sdo_intro.htm#sthref150
+
+Aggregate Functions
+-------------------
+
+Example::
+
+ >>> from django.contrib.gis.db.models import Extent, Union
+ >>> WorldBorders.objects.aggregate(Extent('mpoly'), Union('mpoly'))
+
+``Collect``
+~~~~~~~~~~~
+
+.. class:: Collect(geo_field)
+
+Returns the same as the :meth:`GeoQuerySet.collect` aggregate method.
+
+``Extent``
+~~~~~~~~~~
+.. class:: Extent(geo_field)
+
+
+Returns the same as the :meth:`GeoQuerySet.extent` aggregate method.
+
+``Extent3D``
+~~~~~~~~~~~~
+
+.. class:: Extent3D(geo_field)
+
+.. versionadded:: 1.2
+
+Returns the same as the :meth:`GeoQuerySet.extent3d` aggregate method.
+
+``MakeLine``
+~~~~~~~~~~~~
+
+.. class:: MakeLine(geo_field)
+
+Returns the same as the :meth:`GeoQuerySet.make_line` aggregate method.
+
+``Union``
+~~~~~~~~~
+
+.. class:: Union(geo_field)
+
+Returns the same as the :meth:`GeoQuerySet.union` aggregate method.
+
+.. rubric:: Footnotes
+.. [#fnde9im] *See* `OpenGIS Simple Feature Specification For SQL `_, at Ch. 2.1.13.2, p. 2-13 (The Dimensionally Extended Nine-Intersection Model).
+.. [#fnsdorelate] *See* `SDO_RELATE documentation `_, from Ch. 11 of the Oracle Spatial User's Guide and Manual.
+.. [#fncovers] For an explanation of this routine, read `Quirks of the "Contains" Spatial Predicate `_ by Martin Davis (a PostGIS developer).
+.. [#fncontainsproperly] Refer to the PostGIS ``ST_ContainsProperly`` `documentation `_ for more details.
diff --git a/parts/django/docs/ref/contrib/gis/geos.txt b/parts/django/docs/ref/contrib/gis/geos.txt
new file mode 100644
index 0000000..06a88a8
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/geos.txt
@@ -0,0 +1,911 @@
+.. _ref-geos:
+
+========
+GEOS API
+========
+
+.. module:: django.contrib.gis.geos
+ :synopsis: GeoDjango's high-level interface to the GEOS library.
+
+Background
+==========
+
+What is GEOS?
+-------------
+
+`GEOS`__ stands for **G**\ eometry **E**\ ngine - **O**\ pen **S**\ ource,
+and is a C++ library, ported from the `Java Topology Suite`__. GEOS
+implements the OpenGIS `Simple Features for SQL`__ spatial predicate functions
+and spatial operators. GEOS, now an OSGeo project, was initially developed and
+maintained by `Refractions Research`__ of Victoria, Canada.
+
+__ http://trac.osgeo.org/geos/
+__ http://sourceforge.net/projects/jts-topo-suite/
+__ http://www.opengeospatial.org/standards/sfs
+__ http://www.refractions.net/
+
+Features
+--------
+
+GeoDjango implements a high-level Python wrapper for the GEOS library, its
+features include:
+
+* A BSD-licensed interface to the GEOS geometry routines, implemented purely
+ in Python using ``ctypes``.
+* Loosely-coupled to GeoDjango. For example, :class:`GEOSGeometry` objects
+ may be used outside of a django project/application. In other words,
+ no need to have ``DJANGO_SETTINGS_MODULE`` set or use a database, etc.
+* Mutability: :class:`GEOSGeometry` objects may be modified.
+* Cross-platform and tested; compatible with Windows, Linux, Solaris, and Mac
+ OS X platforms.
+
+.. _geos-tutorial:
+
+Tutorial
+========
+
+This section contains a brief introduction and tutorial to using
+:class:`GEOSGeometry` objects.
+
+Creating a Geometry
+-------------------
+
+:class:`GEOSGeometry` objects may be created in a few ways. The first is
+to simply instantiate the object on some spatial input -- the following
+are examples of creating the same geometry from WKT, HEX, WKB, and GeoJSON::
+
+ >>> from django.contrib.gis.geos import GEOSGeometry
+ >>> pnt = GEOSGeometry('POINT(5 23)') # WKT
+ >>> pnt = GEOSGeometry('010100000000000000000014400000000000003740') # HEX
+ >>> pnt = GEOSGeometry(buffer('\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14@\x00\x00\x00\x00\x00\x007@'))
+ >>> pnt = GEOSGeometry('{ "type": "Point", "coordinates": [ 5.000000, 23.000000 ] }') # GeoJSON
+
+Another option is to use the constructor for the specific geometry type
+that you wish to create. For example, a :class:`Point` object may be
+created by passing in the X and Y coordinates into its constructor::
+
+ >>> from django.contrib.gis.geos import Point
+ >>> pnt = Point(5, 23)
+
+Finally, there are :func:`fromstr` and :func:`fromfile` factory methods, which
+return a :class:`GEOSGeometry` object from an input string or a file::
+
+ >>> from django.contrib.gis.geos import fromstr, fromfile
+ >>> pnt = fromstr('POINT(5 23)')
+ >>> pnt = fromfile('/path/to/pnt.wkt')
+ >>> pnt = fromfile(open('/path/to/pnt.wkt'))
+
+Geometries are Pythonic
+-----------------------
+:class:`GEOSGeometry` objects are 'Pythonic', in other words components may
+be accessed, modified, and iterated over using standard Python conventions.
+For example, you can iterate over the coordinates in a :class:`Point`::
+
+ >>> pnt = Point(5, 23)
+ >>> [coord for coord in pnt]
+ [5.0, 23.0]
+
+With any geometry object, the :attr:`GEOSGeometry.coords` property
+may be used to get the geometry coordinates as a Python tuple::
+
+ >>> pnt.coords
+ (5.0, 23.0)
+
+You can get/set geometry components using standard Python indexing
+techniques. However, what is returned depends on the geometry type
+of the object. For example, indexing on a :class:`LineString`
+returns a coordinate tuple::
+
+ >>> from django.contrib.gis.geos import LineString
+ >>> line = LineString((0, 0), (0, 50), (50, 50), (50, 0), (0, 0))
+ >>> line[0]
+ (0.0, 0.0)
+ >>> line[-2]
+ (50.0, 0.0)
+
+Whereas indexing on a :class:`Polygon` will return the ring
+(a :class:`LinearRing` object) corresponding to the index::
+
+ >>> from django.contrib.gis.geos import Polygon
+ >>> poly = Polygon( ((0.0, 0.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (0.0, 0.0)) )
+ >>> poly[0]
+
+ >>> poly[0][-2] # second-to-last coordinate of external ring
+ (50.0, 0.0)
+
+In addition, coordinates/components of the geometry may added or modified,
+just like a Python list::
+
+ >>> line[0] = (1.0, 1.0)
+ >>> line.pop()
+ (0.0, 0.0)
+ >>> line.append((1.0, 1.0))
+ >>> line.coords
+ ((1.0, 1.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (1.0, 1.0))
+
+Geometry Objects
+================
+
+``GEOSGeometry``
+----------------
+
+.. class:: GEOSGeometry(geo_input[, srid=None])
+
+ :param geo_input: Geometry input value
+ :type geo_input: string or buffer
+ :param srid: spatial reference identifier
+ :type srid: integer
+
+This is the base class for all GEOS geometry objects. It initializes on the
+given ``geo_input`` argument, and then assumes the proper geometry subclass
+(e.g., ``GEOSGeometry('POINT(1 1)')`` will create a :class:`Point` object).
+
+The following input formats, along with their corresponding Python types,
+are accepted:
+
+============= ======================
+Format Input Type
+============= ======================
+WKT / EWKT ``str`` or ``unicode``
+HEX / HEXEWKB ``str`` or ``unicode``
+WKB / EWKB ``buffer``
+GeoJSON ``str`` or ``unicode``
+============= ======================
+
+Properties
+~~~~~~~~~~
+
+.. attribute:: GEOSGeometry.coords
+
+Returns the coordinates of the geometry as a tuple.
+
+.. attribute:: GEOSGeometry.empty
+
+Returns whether or not the set of points in the geometry is empty.
+
+.. attribute:: GEOSGeometry.geom_type
+
+Returns a string corresponding to the type of geometry. For example::
+
+ >>> pnt = GEOSGeometry('POINT(5 23)')
+ >>> pnt.geom_type
+ 'Point'
+
+.. attribute:: GEOSGeometry.geom_typeid
+
+Returns the GEOS geometry type identification number. The following table
+shows the value for each geometry type:
+
+=========================== ========
+Geometry ID
+=========================== ========
+:class:`Point` 0
+:class:`LineString` 1
+:class:`LinearRing` 2
+:class:`Polygon` 3
+:class:`MultiPoint` 4
+:class:`MultiLineString` 5
+:class:`MultiPolygon` 6
+:class:`GeometryCollection` 7
+=========================== ========
+
+.. attribute:: GEOSGeometry.num_coords
+
+Returns the number of coordinates in the geometry.
+
+.. attribute:: GEOSGeometry.num_geom
+
+Returns the number of geometries in this geometry. In other words, will
+return 1 on anything but geometry collections.
+
+.. attribute:: GEOSGeometry.hasz
+
+Returns a boolean indicating whether the geometry is three-dimensional.
+
+.. attribute:: GEOSGeometry.ring
+
+Returns a boolean indicating whether the geometry is a ``LinearRing``.
+
+.. attribute:: GEOSGeometry.simple
+
+Returns a boolean indicating whether the geometry is 'simple'. A geometry
+is simple if and only if it does not intersect itself (except at boundary
+points). For example, a :class:`LineString` object is not simple if it
+intersects itself. Thus, :class:`LinearRing` and :class`Polygon` objects
+are always simple because they do cannot intersect themselves, by
+definition.
+
+.. attribute:: GEOSGeometry.valid
+
+Returns a boolean indicating whether the geometry is valid.
+
+.. attribute:: GEOSGeometry.srid
+
+Property that may be used to retrieve or set the SRID associated with the
+geometry. For example::
+
+ >>> pnt = Point(5, 23)
+ >>> print pnt.srid
+ None
+ >>> pnt.srid = 4326
+ >>> pnt.srid
+ 4326
+
+Output Properties
+~~~~~~~~~~~~~~~~~
+
+The properties in this section export the :class:`GEOSGeometry` object into
+a different. This output may be in the form of a string, buffer, or even
+another object.
+
+.. attribute:: GEOSGeometry.ewkt
+
+Returns the "extended" Well-Known Text of the geometry. This representation
+is specific to PostGIS and is a super set of the OGC WKT standard. [#fnogc]_
+Essentially the SRID is prepended to the WKT representation, for example
+``SRID=4326;POINT(5 23)``.
+
+.. note::
+
+ The output from this property does not include the 3dm, 3dz, and 4d
+ information that PostGIS supports in its EWKT representations.
+
+.. attribute:: GEOSGeometry.hex
+
+Returns the WKB of this Geometry in hexadecimal form. Please note
+that the SRID and Z values are not included in this representation
+because it is not a part of the OGC specification (use the
+:attr:`GEOSGeometry.hexewkb` property instead).
+
+.. attribute:: GEOSGeometry.hexewkb
+
+.. versionadded:: 1.2
+
+Returns the EWKB of this Geometry in hexadecimal form. This is an
+extension of the WKB specification that includes SRID and Z values
+that are a part of this geometry.
+
+.. note::
+
+ GEOS 3.1 is *required* if you want valid 3D HEXEWKB.
+
+.. attribute:: GEOSGeometry.json
+
+Returns the GeoJSON representation of the geometry.
+
+.. note::
+
+ Requires GDAL.
+
+.. attribute:: GEOSGeometry.geojson
+
+Alias for :attr:`GEOSGeometry.json`.
+
+.. attribute:: GEOSGeometry.kml
+
+Returns a `KML`__ (Keyhole Markup Language) representation of the
+geometry. This should only be used for geometries with an SRID of
+4326 (WGS84), but this restriction is not enforced.
+
+.. attribute:: GEOSGeometry.ogr
+
+Returns an :class:`~django.contrib.gis.gdal.OGRGeometry` object
+correspondg to the GEOS geometry.
+
+.. note::
+
+ Requires GDAL.
+
+.. _wkb:
+
+.. attribute:: GEOSGeometry.wkb
+
+Returns the WKB (Well-Known Binary) representation of this Geometry
+as a Python buffer. SRID and Z values are not included, use the
+:attr:`GEOSGeometry.ewkb` property instead.
+
+.. _ewkb:
+
+.. attribute:: GEOSGeometry.ewkb
+
+.. versionadded:: 1.2
+
+Return the EWKB representation of this Geometry as a Python buffer.
+This is an extension of the WKB specification that includes any SRID
+and Z values that are a part of this geometry.
+
+.. note::
+
+ GEOS 3.1 is *required* if you want valid 3D EWKB.
+
+.. attribute:: GEOSGeometry.wkt
+
+Returns the Well-Known Text of the geometry (an OGC standard).
+
+__ http://code.google.com/apis/kml/documentation/
+
+Spatial Predicate Methods
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+All of the following spatial predicate methods take another
+:class:`GEOSGeometry` instance (``other``) as a parameter, and
+return a boolean.
+
+.. method:: GEOSGeometry.contains(other)
+
+Returns ``True`` if :meth:`GEOSGeometry.within` is ``False``.
+
+.. method:: GEOSGeometry.crosses(other)
+
+Returns ``True`` if the DE-9IM intersection matrix for the two Geometries
+is ``T*T******`` (for a point and a curve,a point and an area or a line
+and an area) ``0********`` (for two curves).
+
+.. method:: GEOSGeometry.disjoint(other)
+
+Returns ``True`` if the DE-9IM intersection matrix for the two geometries
+is ``FF*FF****``.
+
+.. method:: GEOSGeometry.equals(other)
+
+Returns ``True`` if the DE-9IM intersection matrix for the two geometries
+is ``T*F**FFF*``.
+
+.. method:: GEOSGeometry.equals_exact(other, tolerance=0)
+
+Returns true if the two geometries are exactly equal, up to a
+specified tolerance. The ``tolerance`` value should be a floating
+point number representing the error tolerance in the comparison, e.g.,
+``poly1.equals_exact(poly2, 0.001)`` will compare equality to within
+one thousandth of a unit.
+
+.. method:: GEOSGeometry.intersects(other)
+
+Returns ``True`` if :meth:`GEOSGeometry.disjoint` is ``False``.
+
+.. method:: GEOSGeometry.overlaps(other)
+
+Returns true if the DE-9IM intersection matrix for the two geometries
+is ``T*T***T**`` (for two points or two surfaces) ``1*T***T**``
+(for two curves).
+
+.. method:: GEOSGeometry.relate_pattern(other, pattern)
+
+Returns ``True`` if the elements in the DE-9IM intersection matrix
+for this geometry and the other matches the given ``pattern`` --
+a string of nine characters from the alphabet: {``T``, ``F``, ``*``, ``0``}.
+
+.. method:: GEOSGeometry.touches(other)
+
+Returns ``True`` if the DE-9IM intersection matrix for the two geometries
+is ``FT*******``, ``F**T*****`` or ``F***T****``.
+
+.. method:: GEOSGeometry.within(other)
+
+Returns ``True`` if the DE-9IM intersection matrix for the two geometries
+is ``T*F**F***``.
+
+Topological Methods
+~~~~~~~~~~~~~~~~~~~
+
+.. method:: GEOSGeometry.buffer(width, quadsegs=8)
+
+Returns a :class:`GEOSGeometry` that represents all points whose distance
+from this geometry is less than or equal to the given ``width``. The optional
+``quadsegs`` keyword sets the number of segments used to approximate a
+quarter circle (defaults is 8).
+
+.. method:: GEOSGeometry.difference(other)
+
+Returns a :class:`GEOSGeometry` representing the points making up this
+geometry that do not make up other.
+
+.. method:: GEOSGeometry:intersection(other)
+
+Returns a :class:`GEOSGeometry` representing the points shared by this
+geometry and other.
+
+.. method:: GEOSGeometry.relate(other)
+
+Returns the DE-9IM intersection matrix (a string) representing the
+topological relationship between this geometry and the other.
+
+.. method:: GEOSGeometry.simplify(tolerance=0.0, preserve_topology=False)
+
+Returns a new :class:`GEOSGeometry`, simplified using the Douglas-Peucker
+algorithm to the specified tolerance. A higher tolerance value implies
+less points in the output. If no tolerance is tolerance provided,
+it defaults to 0.
+
+By default, this function does not preserve topology - e.g.,
+:class:`Polygon` objects can be split, collapsed into lines or disappear.
+:class:`Polygon` holes can be created or disappear, and lines can cross.
+By specifying ``preserve_topology=True``, the result will have the same
+dimension and number of components as the input, however, this is
+significantly slower.
+
+.. method:: GEOSGeometry.sym_difference(other)
+
+Returns a :class:`GEOSGeometry` combining the points in this geometry
+not in other, and the points in other not in this geometry.
+
+.. method:: GEOSGeometry.union(other)
+
+Returns a :class:`GEOSGeometry` representing all the points in this
+geometry and the other.
+
+Topological Properties
+~~~~~~~~~~~~~~~~~~~~~~
+
+.. attribute:: GEOSGeometry.boundary
+
+Returns the boundary as a newly allocated Geometry object.
+
+.. attribute:: GEOSGeometry.centroid
+
+Returns a :class:`Point` object representing the geometric center of
+the geometry. The point is not guaranteed to be on the interior
+of the geometry.
+
+.. attribute:: GEOSGeometry.convex_hull
+
+Returns the smallest :class:`Polygon` that contains all the points in
+the geometry.
+
+.. attribute:: GEOSGeometry.envelope
+
+Returns a :class:`Polygon` that represents the bounding envelope of
+this geometry.
+
+.. attribute:: GEOSGeometry.point_on_surface
+
+Computes and returns a :class:`Point` guaranteed to be on the interior
+of this geometry.
+
+Other Properties & Methods
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. attribute:: GEOSGeometry.area
+
+This property returns the area of the Geometry.
+
+.. attribute:: GEOSGeometry.extent
+
+This property returns the extent of this geometry as a 4-tuple,
+consisting of (xmin, ymin, xmax, ymax).
+
+.. method:: GEOSGeometry.clone()
+
+This method returns a :class:`GEOSGeometry` that is a clone of the original.
+
+.. method:: GEOSGeometry.distance(geom)
+
+Returns the distance between the closest points on this geometry and the given
+``geom`` (another :class:`GEOSGeometry` object).
+
+.. note::
+
+ GEOS distance calculations are linear -- in other words, GEOS does not
+ perform a spherical calculation even if the SRID specifies a geographic
+ coordinate system.
+
+.. attribute:: GEOSGeometry.length
+
+Returns the length of this geometry (e.g., 0 for a :class:`Point`,
+the length of a :class:`LineString`, or the circumference of
+a :class:`Polygon`).
+
+.. attribute:: GEOSGeometry.prepared
+
+.. versionadded:: 1.1
+
+.. note::
+
+ Support for prepared geometries requires GEOS 3.1.
+
+Returns a GEOS ``PreparedGeometry`` for the contents of this geometry.
+``PreparedGeometry`` objects are optimized for the contains, intersects,
+and covers operations. Refer to the :ref:`prepared-geometries` documentation
+for more information.
+
+.. attribute:: GEOSGeometry.srs
+
+Returns a :class:`~django.contrib.gis.gdal.SpatialReference` object
+corresponding to the SRID of the geometry or ``None``.
+
+.. note::
+
+ Requires GDAL.
+
+.. method:: transform(ct, clone=False)
+
+Transforms the geometry according to the given coordinate transformation paramter
+(``ct``), which may be an integer SRID, spatial reference WKT string,
+a PROJ.4 string, a :class:`~django.contrib.gis.gdal.SpatialReference` object, or a
+:class:`~django.contrib.gis.gdal.CoordTransform` object. By default, the geometry
+is transformed in-place and nothing is returned. However if the ``clone`` keyword
+is set, then the geometry is not modified and a transformed clone of the geometry
+is returned instead.
+
+.. note::
+
+ Requires GDAL.
+
+``Point``
+---------
+
+.. class:: Point(x, y, z=None, srid=None)
+
+ ``Point`` objects are instantiated using arguments that represent
+ the component coordinates of the point or with a single sequence
+ coordinates. For example, the following are equivalent::
+
+ >>> pnt = Point(5, 23)
+ >>> pnt = Point([5, 23])
+
+``LineString``
+--------------
+
+.. class:: LineString(*args, **kwargs)
+
+ ``LineString`` objects are instantiated using arguments that are
+ either a sequence of coordinates or :class:`Point` objects.
+ For example, the following are equivalent::
+
+ >>> ls = LineString((0, 0), (1, 1))
+ >>> ls = LineString(Point(0, 0), Point(1, 1))
+
+ In addition, ``LineString`` objects may also be created by passing
+ in a single sequence of coordinate or :class:`Point` objects::
+
+ >>> ls = LineString( ((0, 0), (1, 1)) )
+ >>> ls = LineString( [Point(0, 0), Point(1, 1)] )
+
+``LinearRing``
+--------------
+
+.. class:: LinearRing(*args, **kwargs)
+
+ ``LinearRing`` objects are constructed in the exact same way as
+ :class:`LineString` objects, however the coordinates must be
+ *closed*, in other words, the first coordinates must be the
+ same as the last coordinates. For example::
+
+ >>> ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
+
+ Notice that ``(0, 0)`` is the first and last coordinate -- if
+ they were not equal, an error would be raised.
+
+``Polygon``
+-----------
+
+.. class:: Polygon(*args, **kwargs)
+
+ ``Polygon`` objects may be instantiated by passing in one or
+ more parameters that represent the rings of the polygon. The
+ parameters must either be :class:`LinearRing` instances, or
+ a sequence that may be used to construct a :class:`LinearRing`::
+
+ >>> ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
+ >>> int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
+ >>> poly = Polygon(ext_coords, int_coords)
+ >>> poly = Polygon(LinearRing(ext_coords), LinearRing(int_coords))
+
+ .. classmethod:: from_bbox(bbox)
+
+ .. versionadded:: 1.1
+
+ Returns a polygon object from the given bounding-box, a 4-tuple
+ comprising (xmin, ymin, xmax, ymax).
+
+ .. attribute:: num_interior_rings
+
+ Returns the number of interior rings in this geometry.
+
+Geometry Collections
+====================
+
+``MultiPoint``
+--------------
+
+.. class:: MultiPoint(*args, **kwargs)
+
+ ``MultiPoint`` objects may be instantiated by passing in one
+ or more :class:`Point` objects as arguments, or a single
+ sequence of :class:`Point` objects::
+
+ >>> mp = MultiPoint(Point(0, 0), Point(1, 1))
+ >>> mp = MultiPoint( (Point(0, 0), Point(1, 1)) )
+
+``MultiLineString``
+-------------------
+
+.. class:: MultiLineString(*args, **kwargs)
+
+ ``MultiLineString`` objects may be instantiated by passing in one
+ or more :class:`LineString` objects as arguments, or a single
+ sequence of :class:`LineString` objects::
+
+ >>> ls1 = LineString((0, 0), (1, 1))
+ >>> ls2 = LineString((2, 2), (3, 3))
+ >>> mls = MultiLineString(ls1, ls2)
+ >>> mls = MultiLineString([ls1, ls2])
+
+ .. attribute:: merged
+
+ .. versionadded:: 1.1
+
+ Returns a :class:`LineString` representing the line merge of
+ all the components in this ``MultiLineString``.
+
+
+``MultiPolygon``
+----------------
+
+.. class:: MultiPolygon(*args, **kwargs)
+
+ ``MultiPolygon`` objects may be instantiated by passing one or
+ more :class:`Polygon` objects as arguments, or a single sequence
+ of :class:`Polygon` objects::
+
+ >>> p1 = Polygon( ((0, 0), (0, 1), (1, 1), (0, 0)) )
+ >>> p2 = Polygon( ((1, 1), (1, 2), (2, 2), (1, 1)) )
+ >>> mp = MultiPolygon(p1, p2)
+ >>> mp = MultiPolygon([p1, p2])
+
+ .. attribute:: cascaded_union
+
+ .. versionadded:: 1.1
+
+ Returns a :class:`Polygon` that is the union of all of the component
+ polygons in this collection. The algorithm employed is significantly
+ more efficient (faster) than trying to union the geometries together
+ individually. [#fncascadedunion]_
+
+ .. note::
+
+ GEOS 3.1 is *required* to peform cascaded unions.
+
+``GeometryCollection``
+----------------------
+
+.. class:: GeometryCollection(*args, **kwargs)
+
+ ``GeometryCollection`` objects may be instantiated by passing in
+ one or more other :class:`GEOSGeometry` as arguments, or a single
+ sequence of :class:`GEOSGeometry` objects::
+
+ >>> poly = Polygon( ((0, 0), (0, 1), (1, 1), (0, 0)) )
+ >>> gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
+ >>> gc = GeometryCollection((Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly))
+
+.. _prepared-geometries:
+
+Prepared Geometries
+===================
+
+.. versionadded: 1.1
+
+In order to obtain a prepared geometry, just access the
+:attr:`GEOSGeometry.prepared` property. Once you have a
+``PreparedGeometry`` instance its spatial predicate methods, listed below,
+may be used with other ``GEOSGeometry`` objects. An operation with a prepared
+geometry can be orders of magnitude faster -- the more complex the geometry
+that is prepared, the larger the speedup in the operation. For more information,
+please consult the `GEOS wiki page on prepared geometries `_.
+
+.. note::
+
+ GEOS 3.1 is *required* in order to use prepared geometries.
+
+For example::
+
+ >>> from django.contrib.gis.geos import Point, Polygon
+ >>> poly = Polygon.from_bbox((0, 0, 5, 5))
+ >>> prep_poly = poly.prepared
+ >>> prep_poly.contains(Point(2.5, 2.5))
+ True
+
+``PreparedGeometry``
+--------------------
+
+.. class:: PreparedGeometry
+
+ All methods on ``PreparedGeometry`` take an ``other`` argument, which
+ must be a :class:`GEOSGeometry` instance.
+
+ .. method:: contains(other)
+
+ .. method:: contains_properly(other)
+
+ .. method:: covers(other)
+
+ .. method:: intersects(other)
+
+Geometry Factories
+==================
+
+.. function:: fromfile(file_h)
+
+ :param file_h: input file that contains spatial data
+ :type file_h: a Python ``file`` object or a string path to the file
+ :rtype: a :class:`GEOSGeometry` corresponding to the spatial data in the file
+
+Example::
+
+ >>> from django.contrib.gis.geos import fromfile
+ >>> g = fromfile('/home/bob/geom.wkt')
+
+.. function:: fromstr(string, [,srid=None])
+
+ :param string: string that contains spatial data
+ :type string: string
+ :param srid: spatial reference identifier
+ :type srid: integer
+ :rtype: a :class:`GEOSGeometry` corresponding to the spatial data in the string
+
+Example::
+
+ >>> from django.contrib.gis.geos import fromstr
+ >>> pnt = fromstr('POINT(-90.5 29.5)', srid=4326)
+
+I/O Objects
+===========
+
+.. versionadded: 1.1
+
+Reader Objects
+--------------
+
+The reader I/O classes simply return a :class:`GEOSGeometry` instance from the
+WKB and/or WKT input given to their ``read(geom)`` method.
+
+.. class:: WKBReader
+
+Example::
+
+ >>> from django.contrib.gis.geos import WKBReader
+ >>> wkb_r = WKBReader()
+ >>> wkb_r.read('0101000000000000000000F03F000000000000F03F')
+
+
+.. class:: WKTReader
+
+Example::
+
+ >>> from django.contrib.gis.geos import WKTReader
+ >>> wkt_r = WKTReader()
+ >>> wkt_r.read('POINT(1 1)')
+
+
+Writer Objects
+--------------
+
+All writer objects have a ``write(geom)`` method that returns either the
+WKB or WKT of the given geometry. In addition, :class:`WKBWriter` objects
+also have properties that may be used to change the byte order, and or
+include the SRID and 3D values (in other words, EWKB).
+
+.. class:: WKBWriter
+
+``WKBWriter`` provides the most control over its output. By default it
+returns OGC-compliant WKB when it's ``write`` method is called. However,
+it has properties that allow for the creation of EWKB, a superset of the
+WKB standard that includes additional information.
+
+.. method:: WKBWriter.write(geom)
+
+Returns the WKB of the given geometry as a Python ``buffer`` object.
+Example::
+
+ >>> from django.contrib.gis.geos import Point, WKBWriter
+ >>> pnt = Point(1, 1)
+ >>> wkb_w = WKBWriter()
+ >>> wkb_w.write(pnt)
+
+
+.. method:: WKBWriter.write_hex(geom)
+
+Returns WKB of the geometry in hexadecimal. Example::
+
+ >>> from django.contrib.gis.geos import Point, WKBWriter
+ >>> pnt = Point(1, 1)
+ >>> wkb_w = WKBWriter()
+ >>> wkb_w.write_hex(pnt)
+ '0101000000000000000000F03F000000000000F03F'
+
+.. attribute:: WKBWriter.byteorder
+
+This property may be be set to change the byte-order of the geometry
+representation.
+
+=============== =================================================
+Byteorder Value Description
+=============== =================================================
+0 Big Endian (e.g., compatible with RISC systems)
+1 Little Endian (e.g., compatible with x86 systems)
+=============== =================================================
+
+Example::
+
+ >>> from django.contrib.gis.geos import Point, WKBWriter
+ >>> wkb_w = WKBWriter()
+ >>> pnt = Point(1, 1)
+ >>> wkb_w.write_hex(pnt)
+ '0101000000000000000000F03F000000000000F03F'
+ >>> wkb_w.byteorder = 0
+ '00000000013FF00000000000003FF0000000000000'
+
+.. attribute:: WKBWriter.outdim
+
+This property may be set to change the output dimension of the geometry
+representation. In other words, if you have a 3D geometry then set to 3
+so that the Z value is included in the WKB.
+
+============ ===========================
+Outdim Value Description
+============ ===========================
+2 The default, output 2D WKB.
+3 Output 3D EWKB.
+============ ===========================
+
+Example::
+
+ >>> from django.contrib.gis.geos import Point, WKBWriter
+ >>> wkb_w = WKBWriter()
+ >>> wkb_w.outdim
+ 2
+ >>> pnt = Point(1, 1, 1)
+ >>> wkb_w.write_hex(pnt) # By default, no Z value included:
+ '0101000000000000000000F03F000000000000F03F'
+ >>> wkb_w.outdim = 3 # Tell writer to include Z values
+ >>> wkb_w.write_hex(pnt)
+ '0101000080000000000000F03F000000000000F03F000000000000F03F'
+
+.. attribute:: WKBWriter.srid
+
+Set this property with a boolean to indicate whether the SRID of the
+geometry should be included with the WKB representation. Example::
+
+ >>> from django.contrib.gis.geos import Point, WKBWriter
+ >>> wkb_w = WKBWriter()
+ >>> pnt = Point(1, 1, srid=4326)
+ >>> wkb_w.write_hex(pnt) # By default, no SRID included:
+ '0101000000000000000000F03F000000000000F03F'
+ >>> wkb_w.srid = True # Tell writer to include SRID
+ >>> wkb_w.write_hex(pnt)
+ '0101000020E6100000000000000000F03F000000000000F03F'
+
+.. class:: WKTWriter
+
+.. method:: WKTWriter.write(geom)
+
+Returns the WKT of the given geometry. Example::
+
+ >>> from django.contrib.gis.geos import Point, WKTWriter
+ >>> pnt = Point(1, 1)
+ >>> wkt_w = WKTWriter()
+ >>> wkt_w.write(pnt)
+ 'POINT (1.0000000000000000 1.0000000000000000)'
+
+
+.. rubric:: Footnotes
+.. [#fnogc] *See* `PostGIS EWKB, EWKT and Canonical Forms `_, PostGIS documentation at Ch. 4.1.2.
+.. [#fncascadedunion] For more information, read Paul Ramsey's blog post about `(Much) Faster Unions in PostGIS 1.4 `_ and Martin Davis' blog post on `Fast polygon merging in JTS using Cascaded Union `_.
+
+Settings
+========
+
+.. setting:: GEOS_LIBRARY_PATH
+
+GEOS_LIBRARY_PATH
+-----------------
+
+A string specifying the location of the GEOS C library. Typically,
+this setting is only used if the GEOS C library is in a non-standard
+location (e.g., ``/home/bob/lib/libgeos_c.so``).
+
+.. note::
+
+ The setting must be the *full* path to the **C** shared library; in
+ other words you want to use ``libgeos_c.so``, not ``libgeos.so``.
diff --git a/parts/django/docs/ref/contrib/gis/index.txt b/parts/django/docs/ref/contrib/gis/index.txt
new file mode 100644
index 0000000..c4959e0
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/index.txt
@@ -0,0 +1,33 @@
+.. _ref-contrib-gis:
+
+=========
+GeoDjango
+=========
+
+.. versionadded:: 1.0
+
+.. module:: django.contrib.gis
+ :synopsis: Geographic Information System (GIS) extensions for Django
+
+GeoDjango intends to be a world-class geographic Web framework. Its goal is to
+make it as easy as possible to build GIS Web applications and harness the power
+of spatially enabled data.
+
+.. toctree::
+ :maxdepth: 2
+
+ tutorial
+ install
+ model-api
+ db-api
+ geoquerysets
+ measure
+ geos
+ gdal
+ utils
+ commands
+ admin
+ feeds
+ sitemaps
+ testing
+ deployment
diff --git a/parts/django/docs/ref/contrib/gis/install.txt b/parts/django/docs/ref/contrib/gis/install.txt
new file mode 100644
index 0000000..fa8e34c
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/install.txt
@@ -0,0 +1,1190 @@
+.. _ref-gis-install:
+
+======================
+GeoDjango Installation
+======================
+
+Overview
+========
+In general, GeoDjango installation requires:
+
+1. :ref:`python24` and :ref:`django`
+2. :ref:`spatial_database`
+3. :ref:`geospatial_libs`
+
+Details for each of the requirements and installation instructions
+are provided in the sections below. In addition, platform-specific
+instructions are available for:
+
+* :ref:`macosx`
+* :ref:`ubuntudebian`
+* :ref:`windows`
+
+.. admonition:: Use the Source
+
+ Because GeoDjango takes advantage of the latest in the open source geospatial
+ software technology, recent versions of the libraries are necessary.
+ If binary packages aren't available for your platform,
+ :ref:`installation from source `
+ may be required. When compiling the libraries from source, please follow the
+ directions closely, especially if you're a beginner.
+
+Requirements
+============
+
+.. _python24:
+
+Python 2.4+
+-----------
+
+Python 2.4 is the minimum version supported by Django, however Python 2.5+ is
+recommended because the `ctypes`__ module comes included; otherwise, 2.4 users
+will need to `download and install ctypes`__.
+
+__ http://docs.python.org/lib/module-ctypes.html
+__ http://sourceforge.net/projects/ctypes/files/
+
+.. _django:
+
+Django
+------
+
+Because GeoDjango is included with Django, please refer to Django's
+:doc:`installation instructions ` for details on how to install.
+
+.. _spatial_database:
+
+Spatial Database
+----------------
+PostgreSQL (with PostGIS), MySQL, Oracle, and SQLite (with SpatiaLite) are
+the spatial databases currently supported.
+
+.. note::
+
+ PostGIS is recommended, because it is the most mature and feature-rich
+ open source spatial database.
+
+The geospatial libraries required for a GeoDjango installation depends
+on the spatial database used. The following lists the library requirements,
+supported versions, and any notes for each of the supported database backends:
+
+================== ============================== ================== ==========================================================
+Database Library Requirements Supported Versions Notes
+================== ============================== ================== ==========================================================
+PostgreSQL GEOS, PROJ.4, PostGIS 8.1+ Requires PostGIS.
+MySQL GEOS 5.x Not OGC-compliant; limited functionality.
+Oracle GEOS 10.2, 11 XE not supported; not tested with 9.
+SQLite GEOS, GDAL, PROJ.4, SpatiaLite 3.6.+ Requires SpatiaLite 2.3+, pysqlite2 2.5+, and Django 1.1.
+================== ============================== ================== ==========================================================
+
+.. _geospatial_libs:
+
+Geospatial Libraries
+--------------------
+GeoDjango uses and/or provides interfaces for the the following open source
+geospatial libraries:
+
+======================== ==================================== ================================ ==========================
+Program Description Required Supported Versions
+======================== ==================================== ================================ ==========================
+:ref:`GEOS ` Geometry Engine Open Source Yes 3.2, 3.1, 3.0
+`PROJ.4`_ Cartographic Projections library Yes (PostgreSQL and SQLite only) 4.7, 4.6, 4.5, 4.4
+:ref:`GDAL ` Geospatial Data Abstraction Library No (but, required for SQLite) 1.7, 1.6, 1.5, 1.4
+:ref:`GeoIP ` IP-based geolocation library No 1.4
+`PostGIS`__ Spatial extensions for PostgreSQL Yes (PostgreSQL only) 1.5, 1.4, 1.3
+`SpatiaLite`__ Spatial extensions for SQLite Yes (SQLite only) 2.4, 2.3
+======================== ==================================== ================================ ==========================
+
+.. admonition:: Install GDAL
+
+ While :ref:`gdalbuild` is technically not required, it is *recommended*.
+ Some features of GeoDjango (including the :ref:`ref-layermapping` and the geographic
+ admin) depend on its functionality.
+
+.. note::
+
+ The GeoDjango interfaces to GEOS, GDAL, and GeoIP may be used
+ independently of Django. In other words, no database or settings file
+ required -- just import them as normal from :mod:`django.contrib.gis`.
+
+.. _PROJ.4: http://trac.osgeo.org/proj/
+__ http://postgis.refractions.net/
+__ http://www.gaia-gis.it/spatialite/index.html
+
+.. _build_from_source:
+
+Building from Source
+====================
+
+When installing from source on UNIX and GNU/Linux systems, please follow
+the installation instructions carefully, and install the libraries in the
+given order. If using MySQL or Oracle as the spatial database, only GEOS
+is required.
+
+.. note::
+
+ On Linux platforms, it may be necessarry to run the ``ldconfig``
+ command after installing each library. For example::
+
+ $ sudo make install
+ $ sudo ldconfig
+
+.. note::
+
+ OS X users are required to install `Apple Developer Tools`_ in order
+ to compile software from source. This is typically included on your
+ OS X installation DVDs.
+
+.. _Apple Developer Tools: http://developer.apple.com/tools/xcode/
+
+.. _geosbuild:
+
+GEOS
+----
+
+GEOS is a C++ library for performing geometric operations, and is the default
+internal geometry representation used by GeoDjango (it's behind the "lazy"
+geometries). Specifically, the C API library is called (e.g., ``libgeos_c.so``)
+directly from Python using ctypes.
+
+First, download GEOS 3.2 from the refractions Web site and untar the source
+archive::
+
+ $ wget http://download.osgeo.org/geos/geos-3.2.2.tar.bz2
+ $ tar xjf geos-3.2.2.tar.bz2
+
+Next, change into the directory where GEOS was unpacked, run the configure
+script, compile, and install::
+
+ $ cd geos-3.2.2
+ $ ./configure
+ $ make
+ $ sudo make install
+ $ cd ..
+
+Troubleshooting
+^^^^^^^^^^^^^^^
+
+Can't find GEOS Library
+~~~~~~~~~~~~~~~~~~~~~~~
+
+When GeoDjango can't find GEOS, this error is raised::
+
+ ImportError: Could not find the GEOS library (tried "geos_c"). Try setting GEOS_LIBRARY_PATH in your settings.
+
+The most common solution is to properly configure your :ref:`libsettings` *or* set
+:ref:`geoslibrarypath` in your settings.
+
+If using a binary package of GEOS (e.g., on Ubuntu 8.10), you may need to :ref:`binutils`.
+
+.. _geoslibrarypath:
+
+``GEOS_LIBRARY_PATH``
+~~~~~~~~~~~~~~~~~~~~~
+
+If your GEOS library is in a non-standard location, or you don't want to
+modify the system's library path then the :setting:`GEOS_LIBRARY_PATH` setting
+may be added to your Django settings file with the full path to the GEOS
+C library. For example::
+
+ GEOS_LIBRARY_PATH = '/home/bob/local/lib/libgeos_c.so'
+
+.. note::
+
+ The setting must be the *full* path to the **C** shared library; in
+ other words you want to use ``libgeos_c.so``, not ``libgeos.so``.
+
+.. _proj4:
+
+PROJ.4
+------
+
+`PROJ.4`_ is a library for converting geospatial data to different coordinate
+reference systems.
+
+First, download the PROJ.4 source code and datum shifting files [#]_::
+
+ $ wget http://download.osgeo.org/proj/proj-4.7.0.tar.gz
+ $ wget http://download.osgeo.org/proj/proj-datumgrid-1.5.zip
+
+Next, untar the source code archive, and extract the datum shifting files in the
+``nad`` subdirectory. This must be done *prior* to configuration::
+
+ $ tar xzf proj-4.7.0.tar.gz
+ $ cd proj-4.7.0/nad
+ $ unzip ../../proj-datumgrid-1.5.zip
+ $ cd ..
+
+Finally, configure, make and install PROJ.4::
+
+ $ ./configure
+ $ make
+ $ sudo make install
+ $ cd ..
+
+.. _postgis:
+
+PostGIS
+-------
+
+`PostGIS`__ adds geographic object support to PostgreSQL, turning it
+into a spatial database. :ref:`geosbuild` and :ref:`proj4` should be
+installed prior to building PostGIS.
+
+.. note::
+
+ The `psycopg2`_ module is required for use as the database adaptor
+ when using GeoDjango with PostGIS.
+
+.. _psycopg2: http://initd.org/projects/psycopg2
+
+First download the source archive, and extract::
+
+ $ wget http://postgis.refractions.net/download/postgis-1.5.2.tar.gz
+ $ tar xzf postgis-1.5.2.tar.gz
+ $ cd postgis-1.5.2
+
+Next, configure, make and install PostGIS::
+
+ $ ./configure
+
+Finally, make and install::
+
+ $ make
+ $ sudo make install
+ $ cd ..
+
+.. note::
+
+ GeoDjango does not automatically create a spatial database. Please
+ consult the section on :ref:`spatialdb_template` for more information.
+
+__ http://postgis.refractions.net/
+
+.. _gdalbuild:
+
+GDAL
+----
+
+`GDAL`__ is an excellent open source geospatial library that has support for
+reading most vector and raster spatial data formats. Currently, GeoDjango only
+supports :ref:`GDAL's vector data ` capabilities [#]_.
+:ref:`geosbuild` and :ref:`proj4` should be installed prior to building GDAL.
+
+First download the latest GDAL release version and untar the archive::
+
+ $ wget http://download.osgeo.org/gdal/gdal-1.7.2.tar.gz
+ $ tar xzf gdal-1.7.2.tar.gz
+ $ cd gdal-1.7.2
+
+Configure, make and install::
+
+ $ ./configure
+ $ make # Go get some coffee, this takes a while.
+ $ sudo make install
+ $ cd ..
+
+.. note::
+
+ Because GeoDjango has it's own Python interface, the preceding instructions
+ do not build GDAL's own Python bindings. The bindings may be built by
+ adding the ``--with-python`` flag when running ``configure``. See
+ `GDAL/OGR In Python`__ for more information on GDAL's bindings.
+
+If you have any problems, please see the troubleshooting section below for
+suggestions and solutions.
+
+__ http://trac.osgeo.org/gdal/
+__ http://trac.osgeo.org/gdal/wiki/GdalOgrInPython
+
+.. _gdaltrouble:
+
+Troubleshooting
+^^^^^^^^^^^^^^^
+
+Can't find GDAL Library
+~~~~~~~~~~~~~~~~~~~~~~~
+
+When GeoDjango can't find the GDAL library, the ``HAS_GDAL`` flag
+will be false::
+
+ >>> from django.contrib.gis import gdal
+ >>> gdal.HAS_GDAL
+ False
+
+The solution is to properly configure your :ref:`libsettings` *or* set
+:ref:`gdallibrarypath` in your settings.
+
+.. _gdallibrarypath:
+
+``GDAL_LIBRARY_PATH``
+~~~~~~~~~~~~~~~~~~~~~
+
+If your GDAL library is in a non-standard location, or you don't want to
+modify the system's library path then the :setting:`GDAL_LIBRARY_PATH`
+setting may be added to your Django settings file with the full path to
+the GDAL library. For example::
+
+ GDAL_LIBRARY_PATH = '/home/sue/local/lib/libgdal.so'
+
+.. _gdaldata:
+
+Can't find GDAL data files (``GDAL_DATA``)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When installed from source, GDAL versions 1.5.1 and below have an autoconf bug
+that places data in the wrong location. [#]_ This can lead to error messages
+like this::
+
+ ERROR 4: Unable to open EPSG support file gcs.csv.
+ ...
+ OGRException: OGR failure.
+
+The solution is to set the ``GDAL_DATA`` environment variable to the location of the
+GDAL data files before invoking Python (typically ``/usr/local/share``; use
+``gdal-config --datadir`` to find out). For example::
+
+ $ export GDAL_DATA=`gdal-config --datadir`
+ $ python manage.py shell
+
+If using Apache, you may need to add this environment variable to your configuration
+file::
+
+ SetEnv GDAL_DATA /usr/local/share
+
+.. _spatialite:
+
+SpatiaLite
+----------
+.. versionadded:: 1.1
+
+.. note::
+
+ Mac OS X users should follow the instructions in the :ref:`kyngchaos` section,
+ as it is much easier than building from source.
+
+`SpatiaLite`__ adds spatial support to SQLite, turning it into a full-featured
+spatial database. Because SpatiaLite has special requirements, it typically
+requires SQLite and pysqlite2 (the Python SQLite DB-API adaptor) to be built from
+source. :ref:`geosbuild` and :ref:`proj4` should be installed prior to building
+SpatiaLite.
+
+After installation is complete, don't forget to read the post-installation
+docs on :ref:`create_spatialite_db`.
+
+__ http://www.gaia-gis.it/spatialite/index.html
+
+.. _sqlite:
+
+SQLite
+^^^^^^
+
+Typically, SQLite packages are not compiled to include the `R*Tree module`__ --
+thus it must be compiled from source. First download the latest amalgamation
+source archive from the `SQLite download page`__, and extract::
+
+ $ wget http://sqlite.org/sqlite-amalgamation-3.6.23.1.tar.gz
+ $ tar xzf sqlite-amalgamation-3.6.23.1.tar.gz
+ $ cd sqlite-3.6.23.1
+
+Next, run the ``configure`` script -- however the ``CFLAGS`` environment variable
+needs to be customized so that SQLite knows to build the R*Tree module::
+
+ $ CFLAGS="-DSQLITE_ENABLE_RTREE=1" ./configure
+ $ make
+ $ sudo make install
+ $ cd ..
+
+.. note::
+
+ If using Ubuntu, installing a newer SQLite from source can be very difficult
+ because it links to the existing ``libsqlite3.so`` in ``/usr/lib`` which
+ many other packages depend on. Unfortunately, the best solution at this time
+ is to overwrite the existing library by adding ``--prefix=/usr`` to the
+ ``configure`` command.
+
+__ http://www.sqlite.org/rtree.html
+__ http://www.sqlite.org/download.html
+
+.. _spatialitebuild :
+
+SpatiaLite Library (``libspatialite``) and Tools (``spatialite``)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+After SQLite has been built with the R*Tree module enabled, get the latest
+SpatiaLite library source and tools bundle from the `download page`__::
+
+ $ wget http://www.gaia-gis.it/spatialite/libspatialite-amalgamation-2.3.1.tar.gz
+ $ wget http://www.gaia-gis.it/spatialite/spatialite-tools-2.3.1.tar.gz
+ $ tar xzf libspatialite-amalgamation-2.3.1.tar.gz
+ $ tar xzf spatialite-tools-2.3.1.tar.gz
+
+Prior to attempting to build, please read the important notes below to see if
+customization of the ``configure`` command is necessary. If not, then run the
+``configure`` script, make, and install for the SpatiaLite library::
+
+ $ cd libspatialite-amalgamation-2.3.1
+ $ ./configure # May need to modified, see notes below.
+ $ make
+ $ sudo make install
+ $ cd ..
+
+Finally, do the same for the SpatiaLite tools::
+
+ $ cd spatialite-tools-2.3.1
+ $ ./configure # May need to modified, see notes below.
+ $ make
+ $ sudo make install
+ $ cd ..
+
+.. note::
+
+ If you've installed GEOS and PROJ.4 from binary packages, you will have to specify
+ their paths when running the ``configure`` scripts for *both* the library and the
+ tools (the configure scripts look, by default, in ``/usr/local``). For example,
+ on Debian/Ubuntu distributions that have GEOS and PROJ.4 packages, the command would be::
+
+ $ ./configure --with-proj-include=/usr/include --with-proj-lib=/usr/lib --with-geos-include=/usr/include --with-geos-lib=/usr/lib
+
+.. note::
+
+ For Mac OS X users building from source, the SpatiaLite library *and* tools
+ need to have their ``target`` configured::
+
+ $ ./configure --target=macosx
+
+__ http://www.gaia-gis.it/spatialite/sources.html
+
+.. _pysqlite2:
+
+pysqlite2
+^^^^^^^^^
+
+Because SpatiaLite must be loaded as an external extension, it requires the
+``enable_load_extension`` method, which is only available in versions 2.5+.
+Thus, download pysqlite2 2.6, and untar::
+
+ $ wget http://pysqlite.googlecode.com/files/pysqlite-2.6.0.tar.gz
+ $ tar xzf pysqlite-2.6.0.tar.gz
+ $ cd pysqlite-2.6.0
+
+Next, use a text editor (e.g., ``emacs`` or ``vi``) to edit the ``setup.cfg`` file
+to look like the following::
+
+ [build_ext]
+ #define=
+ include_dirs=/usr/local/include
+ library_dirs=/usr/local/lib
+ libraries=sqlite3
+ #define=SQLITE_OMIT_LOAD_EXTENSION
+
+.. note::
+
+ The important thing here is to make sure you comment out the the
+ ``define=SQLITE_OMIT_LOAD_EXTENSION`` flag and that the ``include_dirs``
+ and ``library_dirs`` settings are uncommented and set to the appropriate
+ path if the SQLite header files and libraries are not in ``/usr/include``
+ and ``/usr/lib``, respectively.
+
+After modifying ``setup.cfg`` appropriately, then run the ``setup.py`` script
+to build and install::
+
+ $ sudo python setup.py install
+
+Post-Installation
+=================
+
+.. _spatialdb_template:
+
+Creating a Spatial Database Template for PostGIS
+------------------------------------------------
+
+Creating a spatial database with PostGIS is different than normal because
+additional SQL must be loaded to enable spatial functionality. Because of
+the steps in this process, it's better to create a database template that
+can be reused later.
+
+First, you need to be able to execute the commands as a privileged database
+user. For example, you can use the following to become the ``postgres`` user::
+
+ $ sudo su - postgres
+
+.. note::
+
+ The location *and* name of the PostGIS SQL files (e.g., from
+ ``POSTGIS_SQL_PATH`` below) depends on the version of PostGIS.
+ PostGIS versions 1.3 and below use ``/contrib/lwpostgis.sql``;
+ whereas version 1.4 uses ``/contrib/postgis.sql`` and
+ version 1.5 uses ``/contrib/postgis-1.5/postgis.sql``.
+
+ The example below assumes PostGIS 1.5, thus you may need to modify
+ ``POSTGIS_SQL_PATH`` and the name of the SQL file for the specific
+ version of PostGIS you are using.
+
+Once you're a database super user, then you may execute the following commands
+to create a PostGIS spatial database template. If running Ubuntu :ref:`ibex`
+or Debian :ref:`lenny`, please refer to their specific documentation for
+modifications to these commands::
+
+ $ POSTGIS_SQL_PATH=`pg_config --sharedir`/contrib/postgis-1.5
+ # Creating the template spatial database.
+ $ createdb -E UTF8 template_postgis
+ $ createlang -d template_postgis plpgsql # Adding PLPGSQL language support.
+ # Allows non-superusers the ability to create from this template
+ $ psql -d postgres -c "UPDATE pg_database SET datistemplate='true' WHERE datname='template_postgis';"
+ # Loading the PostGIS SQL routines
+ $ psql -d template_postgis -f $POSTGIS_SQL_PATH/postgis.sql
+ $ psql -d template_postgis -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql
+ # Enabling users to alter spatial tables.
+ $ psql -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;"
+ $ psql -d template_postgis -c "GRANT ALL ON geography_columns TO PUBLIC;"
+ $ psql -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"
+
+These commands may be placed in a shell script for later use; for convenience
+the following scripts are available:
+
+=============== ==========================================
+PostGIS Version Shell Script
+=============== ==========================================
+1.3 `create_template_postgis-1.3.sh`_
+1.4 `create_template_postgis-1.4.sh`_
+1.5 `create_template_postgis-1.5.sh`_
+=============== ==========================================
+
+Afterwards, you may create a spatial database by simply specifying
+``template_postgis`` as the template to use (via the ``-T`` option)::
+
+ $ createdb -T template_postgis
+
+.. note::
+
+ While the ``createdb`` command does not require database super-user privileges,
+ it must be executed by a database user that has permissions to create databases.
+ You can create such a user with the following command::
+
+ $ createuser --createdb
+
+.. _create_template_postgis-1.3.sh: http://geodjango.org/docs/create_template_postgis-1.3.sh
+.. _create_template_postgis-1.4.sh: http://geodjango.org/docs/create_template_postgis-1.4.sh
+.. _create_template_postgis-1.5.sh: http://geodjango.org/docs/create_template_postgis-1.5.sh
+.. _create_template_postgis-debian.sh: http://geodjango.org/docs/create_template_postgis-debian.sh
+
+.. _create_spatialite_db:
+
+Creating a Spatial Database for SpatiaLite
+-------------------------------------------
+
+After the SpatiaLite library and tools have been installed, it is now possible
+to create spatial database for use with GeoDjango. In order to do this, download
+the spatial database initialization SQL from the `SpatiaLite Resources`__ page::
+
+ $ wget http://www.gaia-gis.it/spatialite/init_spatialite-2.3.sql.gz
+ $ gunzip init_spatialite-2.3.sql.gz
+
+Now, the ``spatialite`` command can be used to initialize a spatial database::
+
+ $ spatialite geodjango.db < init_spatialite-2.3.sql
+
+.. note::
+
+ The parameter ``geodjango.db`` is the *filename* of the SQLite database
+ you want to use. Use the same in the :setting:`DATABASE_NAME`
+ inside your ``settings.py``.
+
+
+__ http://www.gaia-gis.it/spatialite/resources.html
+
+
+Add ``django.contrib.gis`` to ``INSTALLED_APPS``
+------------------------------------------------
+
+Like other Django contrib applications, you will *only* need to add
+:mod:`django.contrib.gis` to :setting:`INSTALLED_APPS` in your settings.
+This is the so that ``gis`` templates can be located -- if not done, then
+features such as the geographic admin or KML sitemaps will not function properly.
+
+.. _addgoogleprojection:
+
+Add Google Projection to ``spatial_ref_sys`` table
+--------------------------------------------------
+
+.. versionchanged:: 1.2
+
+.. note::
+
+ If running PostGIS 1.4 and above, the entry is already included in the
+ default ``spatial_ref_sys`` table. You can skip this step.
+
+In order to conduct database transformations to the so-called "Google"
+projection (a spherical mercator projection used by Google Maps),
+an entry must be added to your spatial database's ``spatial_ref_sys`` table.
+Invoke the Django shell from your project and execute the
+``add_srs_entry`` function::
+
+ $ python manage shell
+ >>> from django.contrib.gis.utils import add_srs_entry
+ >>> add_srs_entry(900913)
+
+.. note::
+
+ In Django 1.1 the name of this function is ``add_postgis_srs``.
+
+This adds an entry for the 900913 SRID to the ``spatial_ref_sys`` (or equivalent)
+table, making it possible for the spatial database to transform coordinates in
+this projection. You only need to execute this command *once* per spatial database.
+
+Troubleshooting
+===============
+
+If you can't find the solution to your problem here then participate in the
+community! You can:
+
+* Join the ``#geodjango`` IRC channel on FreeNode (may be accessed on the
+ Web via `Mibbit`__). Please be patient and polite -- while you may not
+ get an immediate response, someone will attempt to answer your question
+ as soon as they see it.
+* Ask your question on the `GeoDjango`__ mailing list.
+* File a ticket on the `Django trac`__ if you think there's a bug. Make
+ sure to provide a complete description of the problem, versions used,
+ and specify the component as "GIS".
+
+__ http://www.mibbit.com/?server=irc.freenode.net&channel=%23geodjango
+__ http://groups.google.com/group/geodjango
+__ http://code.djangoproject.com/simpleticket
+
+.. _libsettings:
+
+Library Environment Settings
+----------------------------
+
+By far, the most common problem when installing GeoDjango is that the
+external shared libraries (e.g., for GEOS and GDAL) cannot be located. [#]_
+Typically, the cause of this problem is that the operating system isn't aware
+of the directory where the libraries built from source were installed.
+
+In general, the library path may be set on a per-user basis by setting
+an environment variable, or by configuring the library path for the entire
+system.
+
+``LD_LIBRARY_PATH`` environment variable
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+A user may set this environment variable to customize the library paths
+they want to use. The typical library directory for software
+built from source is ``/usr/local/lib``. Thus, ``/usr/local/lib`` needs
+to be included in the ``LD_LIBRARY_PATH`` variable. For example, the user
+could place the following in their bash profile::
+
+ export LD_LIBRARY_PATH=/usr/local/lib
+
+Setting System Library Path
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+On GNU/Linux systems, there is typically a file in ``/etc/ld.so.conf``, which may include
+additional paths from files in another directory, such as ``/etc/ld.so.conf.d``.
+As the root user, add the custom library path (like ``/usr/local/lib``) on a
+new line in ``ld.so.conf``. This is *one* example of how to do so::
+
+ $ sudo echo /usr/local/lib >> /etc/ld.so.conf
+ $ sudo ldconfig
+
+For OpenSolaris users, the system library path may be modified using the
+``crle`` utility. Run ``crle`` with no options to see the current configuration
+and use ``crle -l`` to set with the new library path. Be *very* careful when
+modifying the system library path::
+
+ # crle -l $OLD_PATH:/usr/local/lib
+
+.. _binutils:
+
+Install ``binutils``
+^^^^^^^^^^^^^^^^^^^^
+
+GeoDjango uses the ``find_library`` function (from the ``ctypes.util`` Python
+module) to discover libraries. The ``find_library`` routine uses a program
+called ``objdump`` (part of the ``binutils`` package) to verify a shared
+library on GNU/Linux systems. Thus, if ``binutils`` is not installed on your
+Linux system then Python's ctypes may not be able to find your library even if
+your library path is set correctly and geospatial libraries were built perfectly.
+
+The ``binutils`` package may be installed on Debian and Ubuntu systems using the
+following command::
+
+ $ sudo apt-get install binutils
+
+Similarly, on Red Hat and CentOS systems::
+
+ $ sudo yum install binutils
+
+Platform Specific Instructions
+==============================
+
+.. _macosx:
+
+Mac OS X
+--------
+
+Because of the variety of packaging systems available for OS X, users have
+several different options for installing GeoDjango. These options are:
+
+* :ref:`kyngchaos`
+* :ref:`fink`
+* :ref:`macports`
+* :ref:`build_from_source`
+
+.. note::
+
+ Currently, the easiest and recommended approach for installing GeoDjango
+ on OS X is to use the KyngChaos packages.
+
+This section also includes instructions for installing an upgraded version
+of :ref:`macosx_python` from packages provided by the Python Software
+Foundation, however, this is not required.
+
+.. _macosx_python:
+
+Python
+^^^^^^
+
+Although OS X comes with Python installed, users can use framework
+installers (`2.5`__ and `2.6`__ are available) provided by
+the Python Software Foundation. An advantage to using the installer is
+that OS X's Python will remain "pristine" for internal operating system
+use.
+
+__ http://python.org/ftp/python/2.5.4/python-2.5.4-macosx.dmg
+__ http://python.org/ftp/python/2.6.2/python-2.6.2-macosx2009-04-16.dmg
+
+.. note::
+
+ You will need to modify the ``PATH`` environment variable in your
+ ``.profile`` file so that the new version of Python is used when
+ ``python`` is entered at the command-line::
+
+ export PATH=/Library/Frameworks/Python.framework/Versions/Current/bin:$PATH
+
+.. _kyngchaos:
+
+KyngChaos Packages
+^^^^^^^^^^^^^^^^^^
+
+William Kyngesburye provides a number of `geospatial library binary packages`__
+that make it simple to get GeoDjango installed on OS X without compiling
+them from source. However, the `Apple Developer Tools`_ are still necessary
+for compiling the Python database adapters :ref:`psycopg2_kyngchaos` (for PostGIS)
+and :ref:`pysqlite2_kyngchaos` (for SpatiaLite).
+
+.. note::
+
+ SpatiaLite users should consult the :ref:`spatialite_kyngchaos` section
+ after installing the packages for additional instructions.
+
+Download the framework packages for:
+
+* UnixImageIO
+* PROJ
+* GEOS
+* SQLite3 (includes the SpatiaLite library)
+* GDAL
+
+Install the packages in the order they are listed above, as the GDAL and SQLite
+packages require the packages listed before them. Afterwards, you can also
+install the KyngChaos binary packages for `PostgreSQL and PostGIS`__.
+
+After installing the binary packages, you'll want to add the following to
+your ``.profile`` to be able to run the package programs from the command-line::
+
+ export PATH=/Library/Frameworks/UnixImageIO.framework/Programs:$PATH
+ export PATH=/Library/Frameworks/PROJ.framework/Programs:$PATH
+ export PATH=/Library/Frameworks/GEOS.framework/Programs:$PATH
+ export PATH=/Library/Frameworks/SQLite3.framework/Programs:$PATH
+ export PATH=/Library/Frameworks/GDAL.framework/Programs:$PATH
+ export PATH=/usr/local/pgsql/bin:$PATH
+
+__ http://www.kyngchaos.com/software/frameworks
+__ http://www.kyngchaos.com/software/postgres
+
+.. note::
+
+ Use of these binaries requires Django 1.0.3 and above. If you are
+ using a previous version of Django (like 1.0.2), then you will have
+ to add the the following in your settings::
+
+ GEOS_LIBRARY_PATH='/Library/Frameworks/GEOS.framework/GEOS'
+ GDAL_LIBRARY_PATH='/Library/Frameworks/GDAL.framework/GDAL'
+
+.. _psycopg2_kyngchaos:
+
+psycopg2
+~~~~~~~~
+
+After you've installed the KyngChaos binaries and modified your ``PATH``, as
+described above, ``psycopg2`` may be installed using the following command::
+
+ $ sudo python easy_install psycopg2
+
+.. note::
+
+ To use ``easy_install`` you'll need to install Python's `setuptools`_.
+
+.. _setuptools: http://pypi.python.org/pypi/setuptools
+
+.. _pysqlite2_kyngchaos:
+
+pysqlite2
+~~~~~~~~~
+
+Follow the :ref:`pysqlite2` source install instructions, however,
+when editing the ``setup.cfg`` use the following instead::
+
+ [build_ext]
+ #define=
+ include_dirs=/Library/Frameworks/SQLite3.framework/unix/include
+ library_dirs=/Library/Frameworks/SQLite3.framework/unix/lib
+ libraries=sqlite3
+ #define=SQLITE_OMIT_LOAD_EXTENSION
+
+.. _spatialite_kyngchaos:
+
+SpatiaLite
+~~~~~~~~~~
+
+When :ref:`create_spatialite_db`, the ``spatialite`` program is required.
+However, instead of attempting to compile the SpatiaLite tools from source,
+download the `SpatiaLite Binaries`__ for OS X, and install ``spatialite`` in a
+location available in your ``PATH``. For example::
+
+ $ curl -O http://www.gaia-gis.it/spatialite/spatialite-tools-osx-x86-2.3.1.tar.gz
+ $ tar xzf spatialite-tools-osx-x86-2.3.1.tar.gz
+ $ cd spatialite-tools-osx-x86-2.3.1/bin
+ $ sudo cp spatialite /Library/Frameworks/SQLite3.framework/Programs
+
+Finally, for GeoDjango to be able to find the KyngChaos SpatiaLite library,
+add the following to your ``settings.py``::
+
+ SPATIALITE_LIBRARY_PATH='/Library/Frameworks/SQLite3.framework/SQLite3'
+
+__ http://www.gaia-gis.it/spatialite/binaries.html
+
+.. _fink:
+
+Fink
+^^^^
+
+`Kurt Schwehr`__ has been gracious enough to create GeoDjango packages for users
+of the `Fink`__ package system. The following packages are available, depending
+on which version of Python you want to use:
+
+* ``django-gis-py26``
+* ``django-gis-py25``
+* ``django-gis-py24``
+
+__ http://schwehr.org/blog/
+__ http://www.finkproject.org/
+
+.. _macports:
+
+MacPorts
+^^^^^^^^
+
+`MacPorts`__ may be used to install GeoDjango prerequisites on Macintosh
+computers running OS X. Because MacPorts still builds the software from source,
+the `Apple Developer Tools`_ are required.
+
+Summary::
+
+ $ sudo port install postgresql83-server
+ $ sudo port install geos
+ $ sudo port install proj
+ $ sudo port install postgis
+ $ sudo port install gdal
+ $ sudo port install libgeoip
+
+.. note::
+
+ You will also have to modify the ``PATH`` in your ``.profile`` so
+ that the MacPorts programs are accessible from the command-line::
+
+ export PATH=/opt/local/bin:/opt/local/lib/postgresql83/bin
+
+ In addition, add the ``FALLBACK_DYLD_LIBRARY_PATH`` setting so that
+ the libraries can be found by Python::
+
+ export FALLBACK_DYLD_LIBRARY_PATH=/opt/local/lib:/opt/local/lib/postgresql83
+
+__ http://www.macports.org/
+
+.. _ubuntudebian:
+
+Ubuntu & Debian GNU/Linux
+-------------------------
+
+.. _ubuntu:
+
+Ubuntu
+^^^^^^
+
+.. _heron:
+
+8.04 and lower
+~~~~~~~~~~~~~~
+
+The 8.04 (and lower) versions of Ubuntu use GEOS v2.2.3 in their binary packages,
+which is incompatible with GeoDjango. Thus, do *not* use the binary packages
+for GEOS or PostGIS and build some prerequisites from source, per the instructions
+in this document; however, it is okay to use the PostgreSQL binary packages.
+
+For more details, please see the Debian instructions for :ref:`etch` below.
+
+.. _ibex:
+
+8.10
+~~~~
+
+Use the synaptic package manager to install the following packages::
+
+ $ sudo apt-get install binutils libgdal1-1.5.0 postgresql-8.3-postgis postgresql-server-dev-8.3 python-psycopg2 python-setuptools
+
+Afterwards, you may install Django with Python's ``easy_install`` script (the
+Ubuntu package ``python-django`` uses an older version missing several
+important bug fixes for GeoDjango)::
+
+ $ sudo easy_install Django
+
+That's it! For the curious, the required binary prerequisites packages are:
+
+* ``binutils``: for ctypes to find libraries
+* ``postgresql-8.3``
+* ``postgresql-server-dev-8.3``: for ``pg_config``
+* ``postgresql-8.3-postgis``: for PostGIS 1.3.3
+* ``libgeos-3.0.0``, and ``libgeos-c1``: for GEOS 3.0.0
+* ``libgdal1-1.5.0``: for GDAL 1.5.0 library
+* ``proj``: for PROJ 4.6.0 -- but no datum shifting files, see note below
+* ``python-psycopg2``
+* ``python-setuptools``: for ``easy_install``
+
+Optional packages to consider:
+
+* ``libgeoip1``: for :ref:`GeoIP ` support
+* ``gdal-bin``: for GDAL command line programs like ``ogr2ogr``
+* ``python-gdal`` for GDAL's own Python bindings -- includes interfaces for raster manipulation
+
+.. note::
+
+ The Ubuntu ``proj`` package does not come with the datum shifting files
+ installed, which will cause problems with the geographic admin because
+ the ``null`` datum grid is not available for transforming geometries to the
+ spherical mercator projection. A solution is to download the
+ datum-shifting files, create the grid file, and install it yourself::
+
+ $ wget http://download.osgeo.org/proj/proj-datumgrid-1.4.tar.gz
+ $ mkdir nad
+ $ cd nad
+ $ tar xzf ../proj-datumgrid-1.4.tar.gz
+ $ nad2bin null < null.lla
+ $ sudo cp null /usr/share/proj
+
+ Otherwise, the Ubuntu ``proj`` package is fine for general use as long as you
+ do not plan on doing any database transformation of geometries to the
+ Google projection (900913).
+
+.. note::
+
+ The PostGIS SQL files are not placed the PostgreSQL share directory in the
+ Ubuntu packages. Use the `create_template_postgis-debian.sh`_ script
+ instead when :ref:`spatialdb_template`.
+
+.. _debian:
+
+Debian
+------
+
+.. _etch:
+
+4.0 (Etch)
+^^^^^^^^^^
+The situation here is the same as that of Ubuntu :ref:`heron` -- in other words,
+some packages must be built from source to work properly with GeoDjango.
+
+Binary Packages
+~~~~~~~~~~~~~~~
+The following command will install acceptable binary packages, as well as
+the development tools necessary to build the rest of the requirements::
+
+ $ sudo apt-get install binutils bzip2 gcc g++ flex make postgresql-8.1 postgresql-server-dev-8.1 python-ctypes python-psycopg2 python-setuptools
+
+Required package information:
+
+* ``binutils``: for ctypes to find libraries
+* ``bzip2``: for decompressing the source packages
+* ``gcc``, ``g++``, ``make``: GNU developer tools used to compile the libraries
+* ``flex``: required to build PostGIS
+* ``postgresql-8.1``
+* ``postgresql-server-dev-8.1``: for ``pg_config``
+* ``python-ctypes``: Python 2.4 needs to have ctypes installed separately
+* ``python-psycopg2``
+* ``python-setuptools``: for ``easy_install``
+
+Optional packages:
+
+* ``libgeoip``: for :ref:`GeoIP ` support
+
+Source Packages
+~~~~~~~~~~~~~~~
+You will still have to install :ref:`geosbuild`, :ref:`proj4`,
+:ref:`postgis`, and :ref:`gdalbuild` from source. Please follow the
+directions carefully.
+
+.. _lenny:
+
+5.0 (Lenny)
+^^^^^^^^^^^
+This version is comparable to Ubuntu :ref:`ibex`, so the command
+is very similar::
+
+ $ sudo apt-get install binutils libgdal1-1.5.0 postgresql-8.3 postgresql-8.3-postgis postgresql-server-dev-8.3 python-psycopg2 python-setuptools
+
+This assumes that you are using PostgreSQL version 8.3. Else, replace ``8.3``
+in the above command with the appropriate PostgreSQL version.
+
+.. note::
+
+ Please read the note in the Ubuntu :ref:`ibex` install documentation
+ about the ``proj`` package -- it also applies here because the package does
+ not include the datum shifting files.
+
+.. _post_install:
+
+Post-installation Notes
+~~~~~~~~~~~~~~~~~~~~~~~
+
+If the PostgreSQL database cluster was not initiated after installing, then it
+can be created (and started) with the following command::
+
+ $ sudo pg_createcluster --start 8.3 main
+
+Afterwards, the ``/etc/init.d/postgresql-8.3`` script should be used to manage
+the starting and stopping of PostgreSQL.
+
+In addition, the SQL files for PostGIS are placed in a different location on
+Debian 5.0 . Thus when :ref:`spatialdb_template` either:
+
+* Create a symbolic link to these files::
+
+ $ sudo ln -s /usr/share/postgresql-8.3-postgis/{lwpostgis,spatial_ref_sys}.sql /usr/share/postgresql/8.3
+
+ If not running PostgreSQL 8.3, then replace ``8.3`` in the command above with the correct version.
+
+* Or use the `create_template_postgis-debian.sh`_ to create the spatial database.
+
+.. _windows:
+
+Windows XP
+----------
+
+Python
+^^^^^^
+
+First, download the `Python 2.6 installer`__ from the Python Web site. Next,
+execute the installer and use defaults, e.g., keep 'Install for all users'
+checked and the installation path set as ``C:\Python26``.
+
+.. note::
+
+ You may already have a version of Python installed in ``C:\python`` as ESRI
+ products sometimes install a copy there. *You should still install a
+ fresh version of Python 2.6.*
+
+__ http://python.org/ftp/python/2.6.2/python-2.6.2.msi
+
+PostgreSQL
+^^^^^^^^^^
+
+First, select a mirror and download the latest `PostgreSQL 8.3 installer`__ from
+the EnterpriseDB Web site.
+
+.. note::
+
+ PostgreSQL 8.3 is required because PostGIS is not available yet for 8.4.
+
+After downloading, simply click on the installer, follow the
+on-screen directions, and keep the default options (e.g., keep the installation
+path as ``C:\Program Files\PostgreSQL\8.3``).
+
+.. note::
+
+ This PostgreSQL installation process will create both a new windows user to be the
+ 'postgres service account' and a special 'postgres superuser' to own the database
+ cluster. You will be prompted to set a password for both users (make sure to write
+ them down!). To see basic details on the 'service user' account right click on
+ 'My Computer' and select 'Manage' or go to: Control Panel -> Administrative Tools ->
+ Computer Management -> System Tools -> Local Users and Groups.
+
+If installed successfully, the PostgreSQL server will run in the background each time
+the system as started as a Windows service. When finished, the installer should launch
+the Application Stack Builder (ASB) -- use this to install PostGIS, see instructions
+below for more details. A 'PostgreSQL 8.3' start menu group should be created that
+contains shortcuts for the ASB and 'Command Prompt', which launches a terminal window
+in the PostgreSQL directory.
+
+__ http://www.enterprisedb.com/products/pgdownload.do#windows
+
+PostGIS
+^^^^^^^
+
+From the Application Stack Builder (Programs -> PostgreSQL 8.3), select
+'PostgreSQL Database Server 8.3 on port 5432' from the drop down menu. Next,
+select 'PostGIS 1.3.6 for PostgreSQL 8.3' from the 'Spatial Extensions' tree
+in the list. Select only the default options during install (do not uncheck
+the option to create a default PostGIS database).
+
+.. note::
+
+ You will be prompted to enter your 'postgres superuser' password in the
+ 'Database Connection Information' dialog.
+
+psycopg2
+^^^^^^^^
+
+The ``psycopg2`` Python module provides the interface between Python and the
+PostgreSQL database. Download the `Windows installer`__ (v2.0.10) and run
+using the default settings. [#]_
+
+__ http://www.stickpeople.com/projects/python/win-psycopg/psycopg2-2.0.10.win32-py2.6-pg8.3.7-release.exe
+
+GeoDjango Installer
+^^^^^^^^^^^^^^^^^^^
+
+Download the `GeoDjango Installer`__; this was created [#]_ to simplify the rest
+of the process for installing GeoDjango on Windows platforms. The installer
+automatically installs Django 1.1, GDAL 1.6.0, PROJ 4.6.1 (including datum grid
+files), and configures the necessary environment variables.
+
+Once the installer has completed, log out and log back in so that the
+modifications to the system environment variables take effect, and you
+should be good to go.
+
+.. note::
+
+ The installer modifies the system ``Path`` environment variable to
+ include ``C:\Program Files\PostgreSQL\8.3\bin`` and
+ ``C:\Program Files\GeoDjango\bin``. This is required so that Python
+ may find the GEOS DLL provided by PostGIS and the GDAL DLL provided
+ by the installer. The installer also sets the ``GDAL_DATA`` and
+ ``PROJ_LIB`` environment variables.
+
+__ http://geodjango.org/windows/GeoDjango_Installer.exe
+
+.. rubric:: Footnotes
+.. [#] The datum shifting files are needed for converting data to and from certain projections.
+ For example, the PROJ.4 string for the `Google projection (900913) `_
+ requires the ``null`` grid file only included in the extra datum shifting files.
+ It is easier to install the shifting files now, then to have debug a problem caused by their absence later.
+.. [#] Specifically, GeoDjango provides support for the `OGR `_ library, a component of GDAL.
+.. [#] See `GDAL ticket #2382 `_.
+.. [#] GeoDjango uses the `find_library `_
+ routine from ``ctypes.util`` to locate shared libraries.
+.. [#] The ``psycopg2`` Windows installers are packaged and maintained by
+ `Jason Erickson `_.
+.. [#] The source code for the installer is available in the `nsis_installer `_
+ GeoDjango mercurial repository.
diff --git a/parts/django/docs/ref/contrib/gis/layermapping.txt b/parts/django/docs/ref/contrib/gis/layermapping.txt
new file mode 100644
index 0000000..0b09e17
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/layermapping.txt
@@ -0,0 +1,220 @@
+.. _ref-layermapping:
+
+====================================
+``LayerMapping`` data import utility
+====================================
+
+.. module:: django.contrib.gis.utils.layermapping
+ :synopsis: Spatial data import utility for GeoDjango models.
+
+.. currentmodule:: django.contrib.gis.utils
+
+The :class:`LayerMapping` class provides a way to map the contents of
+vector spatial data files (e.g. shapefiles) intoto GeoDjango models.
+
+This utility grew out of the author's personal needs to eliminate
+the code repetition that went into pulling geometries and fields out of
+a vector layer, converting to another coordinate system (e.g. WGS84), and
+then inserting into a GeoDjango model.
+
+.. note::
+
+ Use of :class:`LayerMapping` requires GDAL.
+
+.. warning ::
+
+ GIS data sources, like shapefiles, may be very large. If you find
+ that :class:`LayerMapping` is using too much memory, set
+ :setting:`DEBUG` to ``False`` in your settings. When :setting:`DEBUG`
+ is set to ``True``, Django :ref:`automatically logs `
+ *every* SQL query -- thus, when SQL statements contain geometries, it is
+ easy to consume more memory than is typical.
+
+Example
+=======
+
+1. You need a GDAL-supported data source, like a shapefile (here we're using
+ a simple polygon shapefile, ``test_poly.shp``, with three features)::
+
+ >>> from django.contrib.gis.gdal import DataSource
+ >>> ds = DataSource('test_poly.shp')
+ >>> layer = ds[0]
+ >>> print layer.fields # Exploring the fields in the layer, we only want the 'str' field.
+ ['float', 'int', 'str']
+ >>> print len(layer) # getting the number of features in the layer (should be 3)
+ 3
+ >>> print layer.geom_type # Should be 'Polygon'
+ Polygon
+ >>> print layer.srs # WGS84 in WKT
+ GEOGCS["GCS_WGS_1984",
+ DATUM["WGS_1984",
+ SPHEROID["WGS_1984",6378137,298.257223563]],
+ PRIMEM["Greenwich",0],
+ UNIT["Degree",0.017453292519943295]]
+
+2. Now we define our corresponding Django model (make sure to use ``syncdb``)::
+
+ from django.contrib.gis.db import models
+
+ class TestGeo(models.Model):
+ name = models.CharField(max_length=25) # corresponds to the 'str' field
+ poly = models.PolygonField(srid=4269) # we want our model in a different SRID
+ objects = models.GeoManager()
+ def __unicode__(self):
+ return 'Name: %s' % self.name
+
+3. Use :class:`LayerMapping` to extract all the features and place them in the
+ database::
+
+ >>> from django.contrib.gis.utils import LayerMapping
+ >>> from geoapp.models import TestGeo
+ >>> mapping = {'name' : 'str', # The 'name' model field maps to the 'str' layer field.
+ 'poly' : 'POLYGON', # For geometry fields use OGC name.
+ } # The mapping is a dictionary
+ >>> lm = LayerMapping(TestGeo, 'test_poly.shp', mapping)
+ >>> lm.save(verbose=True) # Save the layermap, imports the data.
+ Saved: Name: 1
+ Saved: Name: 2
+ Saved: Name: 3
+
+Here, :class:`LayerMapping` just transformed the three geometries from the
+shapefile in their original spatial reference system (WGS84) to the spatial
+reference system of the GeoDjango model (NAD83). If no spatial reference
+system is defined for the layer, use the ``source_srs`` keyword with a
+:class:`~django.contrib.gis.gdal.SpatialReference` object to specify one.
+
+``LayerMapping`` API
+====================
+
+.. class:: LayerMapping(model, data_source, mapping[, layer=0, source_srs=None, encoding=None, transaction_mode='commit_on_success', transform=True, unique=True, using='default'])
+
+The following are the arguments and keywords that may be used during
+instantiation of ``LayerMapping`` objects.
+
+================= =========================================================
+Argument Description
+================= =========================================================
+``model`` The geographic model, *not* an instance.
+
+``data_source`` The path to the OGR-supported data source file
+ (e.g., a shapefile). Also accepts
+ :class:`django.contrib.gis.gdal.DataSource` instances.
+
+``mapping`` A dictionary: keys are strings corresponding to
+ the model field, and values correspond to
+ string field names for the OGR feature, or if the
+ model field is a geographic then it should
+ correspond to the OGR geometry type,
+ e.g., ``'POINT'``, ``'LINESTRING'``, ``'POLYGON'``.
+================= =========================================================
+
+===================== =====================================================
+Keyword Arguments
+===================== =====================================================
+``layer`` The index of the layer to use from the Data Source
+ (defaults to 0)
+
+``source_srs`` Use this to specify the source SRS manually (for
+ example, some shapefiles don't come with a '.prj'
+ file). An integer SRID, WKT or PROJ.4 strings, and
+ :class:`django.contrib.gis.gdal.SpatialReference`
+ objects are accepted.
+
+``encoding`` Specifies the character set encoding of the strings
+ in the OGR data source. For example, ``'latin-1'``,
+ ``'utf-8'``, and ``'cp437'`` are all valid encoding
+ parameters.
+
+``transaction_mode`` May be ``'commit_on_success'`` (default) or
+ ``'autocommit'``.
+
+``transform`` Setting this to False will disable coordinate
+ transformations. In other words, geometries will
+ be inserted into the database unmodified from their
+ original state in the data source.
+
+``unique`` Setting this to the name, or a tuple of names,
+ from the given model will create models unique
+ only to the given name(s). Geometries will from
+ each feature will be added into the collection
+ associated with the unique model. Forces
+ the transaction mode to be ``'autocommit'``.
+
+``using`` New in version 1.2. Sets the database to use when
+ importing spatial data. Default is ``'default'``
+===================== =====================================================
+
+``save()`` Keyword Arguments
+----------------------------
+
+.. method:: LayerMapping.save([verbose=False, fid_range=False, step=False, progress=False, silent=False, stream=sys.stdout, strict=False])
+
+The ``save()`` method also accepts keywords. These keywords are
+used for controlling output logging, error handling, and for importing
+specific feature ranges.
+
+=========================== =================================================
+Save Keyword Arguments Description
+=========================== =================================================
+``fid_range`` May be set with a slice or tuple of
+ (begin, end) feature ID's to map from
+ the data source. In other words, this
+ keyword enables the user to selectively
+ import a subset range of features in the
+ geographic data source.
+
+``progress`` When this keyword is set, status information
+ will be printed giving the number of features
+ processed and successfully saved. By default,
+ progress information will be printed every 1000
+ features processed, however, this default may
+ be overridden by setting this keyword with an
+ integer for the desired interval.
+
+``silent`` By default, non-fatal error notifications are
+ printed to ``sys.stdout``, but this keyword may
+ be set to disable these notifications.
+
+``step`` If set with an integer, transactions will
+ occur at every step interval. For example, if
+ ``step=1000``, a commit would occur after the
+ 1,000th feature, the 2,000th feature etc.
+
+
+``stream`` Status information will be written to this file
+ handle. Defaults to using ``sys.stdout``, but
+ any object with a ``write`` method is supported.
+
+``strict`` Execution of the model mapping will cease upon
+ the first error encountered. The default value
+ (``False``)
+ behavior is to attempt to continue.
+
+``verbose`` If set, information will be printed
+ subsequent to each model save
+ executed on the database.
+=========================== =================================================
+
+Troubleshooting
+===============
+
+Running out of memory
+---------------------
+
+As noted in the warning at the top of this section, Django stores all SQL
+queries when ``DEBUG=True``. Set ``DEBUG=False`` in your settings, and this
+should stop excessive memory use when running ``LayerMapping`` scripts.
+
+MySQL: ``max_allowed_packet`` error
+-----------------------------------
+
+If you encounter the following error when using ``LayerMapping`` and MySQL::
+
+ OperationalError: (1153, "Got a packet bigger than 'max_allowed_packet' bytes")
+
+Then the solution is to increase the value of the ``max_allowed_packet``
+setting in your MySQL configuration. For example, the default value may
+be something low like one megabyte -- the setting may be modified in MySQL's
+configuration file (``my.cnf``) in the ``[mysqld]`` section::
+
+ max_allowed_packet = 10M
diff --git a/parts/django/docs/ref/contrib/gis/measure.txt b/parts/django/docs/ref/contrib/gis/measure.txt
new file mode 100644
index 0000000..6971788
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/measure.txt
@@ -0,0 +1,180 @@
+.. _ref-measure:
+
+===================
+Measurement Objects
+===================
+
+.. module:: django.contrib.gis.measure
+ :synopsis: GeoDjango's distance and area measurment objects.
+
+The :mod:`django.contrib.gis.measure` module contains objects that allow
+for convenient representation of distance and area units of measure. [#]_
+Specifically, it implements two objects, :class:`Distance` and
+:class:`Area` -- both of which may be accessed via the
+:class:`D` and :class:`A` convenience aliases, respectively.
+
+Example
+=======
+
+:class:`Distance` objects may be instantiated using a keyword argument indicating the
+context of the units. In the example below, two different distance objects are
+instantiated in units of kilometers (``km``) and miles (``mi``)::
+
+ >>> from django.contrib.gis.measure import Distance, D
+ >>> d1 = Distance(km=5)
+ >>> print d1
+ 5.0 km
+ >>> d2 = D(mi=5) # `D` is an alias for `Distance`
+ >>> print d2
+ 5.0 mi
+
+Conversions are easy, just access the preferred unit attribute to get a
+converted distance quantity::
+
+ >>> print d1.mi # Converting 5 kilometers to miles
+ 3.10685596119
+ >>> print d2.km # Converting 5 miles to kilometers
+ 8.04672
+
+Moreover, arithmetic operations may be performed between the distance
+objects::
+
+ >>> print d1 + d2 # Adding 5 miles to 5 kilometers
+ 13.04672 km
+ >>> print d2 - d1 # Subtracting 5 kilometers from 5 miles
+ 1.89314403881 mi
+
+Two :class:`Distance` objects multiplied together will yield an :class:`Area`
+object, which uses squared units of measure::
+
+ >>> a = d1 * d2 # Returns an Area object.
+ >>> print a
+ 40.2336 sq_km
+
+To determine what the attribute abbreviation of a unit is, the ``unit_attname``
+class method may be used::
+
+ >>> print Distance.unit_attname('US Survey Foot')
+ survey_ft
+ >>> print Distance.unit_attname('centimeter')
+ cm
+
+.. _supported_units:
+
+Supported units
+===============
+
+================================= ========================================
+Unit Attribute Full name or alias(es)
+================================= ========================================
+``km`` Kilometre, Kilometer
+``mi`` Mile
+``m`` Meter, Metre
+``yd`` Yard
+``ft`` Foot, Foot (International)
+``survey_ft`` U.S. Foot, US survey foot
+``inch`` Inches
+``cm`` Centimeter
+``mm`` Millimetre, Millimeter
+``um`` Micrometer, Micrometre
+``british_ft`` British foot (Sears 1922)
+``british_yd`` British yard (Sears 1922)
+``british_chain_sears`` British chain (Sears 1922)
+``indian_yd`` Indian yard, Yard (Indian)
+``sears_yd`` Yard (Sears)
+``clarke_ft`` Clarke's Foot
+``chain`` Chain
+``chain_benoit`` Chain (Benoit)
+``chain_sears`` Chain (Sears)
+``british_chain_benoit`` British chain (Benoit 1895 B)
+``british_chain_sears_truncated`` British chain (Sears 1922 truncated)
+``gold_coast_ft`` Gold Coast foot
+``link`` Link
+``link_benoit`` Link (Benoit)
+``link_sears`` Link (Sears)
+``clarke_link`` Clarke's link
+``fathom`` Fathom
+``rod`` Rod
+``nm`` Nautical Mile
+``nm_uk`` Nautical Mile (UK)
+``german_m`` German legal metre
+================================= ========================================
+
+.. note::
+
+ :class:`Area` attributes are the same as :class:`Distance` attributes,
+ except they are prefixed with ``sq_`` (area units are square in nature).
+ For example, ``Area(sq_m=2)`` creates an :class:`Area` object
+ representing two square meters.
+
+Measurement API
+===============
+
+``Distance``
+------------
+
+.. class:: Distance(**kwargs)
+
+ To initialize a distance object, pass in a keyword corresponding to
+ the desired :ref:`unit attribute name ` set with
+ desired value. For example, the following creates a distance
+ object representing 5 miles::
+
+ >>> dist = Distance(mi=5)
+
+ .. method:: __getattr__(unit_att)
+
+ Returns the distance value in units corresponding to the given unit
+ attribute. For example::
+
+ >>> print dist.km
+ 8.04672
+
+ .. classmethod:: unit_attname(unit_name)
+
+ Returns the distance unit attribute name for the given full unit name.
+ For example::
+
+ >>> Distance.unit_attname('Mile')
+ 'mi'
+
+.. class:: D
+
+ Alias for :class:`Distance` class.
+
+``Area``
+--------
+
+.. class:: Area(**kwargs)
+
+ To initialize a distance object, pass in a keyword corresponding to
+ the desired :ref:`unit attribute name ` set with
+ desired value. For example, the following creates a distance
+ object representing 5 square miles::
+
+ >>> a = Area(sq_mi=5)
+
+ .. method:: __getattr__(unit_att)
+
+ Returns the area value in units corresponding to the given unit
+ attribute. For example::
+
+ >>> print a.sq_km
+ 12.949940551680001
+
+ .. classmethod:: unit_attname(unit_name)
+
+ Returns the area unit attribute name for the given full unit name.
+ For example::
+
+ >>> Area.unit_attname('Kilometer')
+ 'sq_km'
+
+.. class:: A
+
+ Alias for :class:`Area` class.
+
+.. rubric:: Footnotes
+.. [#] `Robert Coup `_ is the initial author of the measure objects,
+ and was inspired by Brian Beck's work in `geopy `_
+ and Geoff Biggs' PhD work on dimensioned units for robotics.
diff --git a/parts/django/docs/ref/contrib/gis/model-api.txt b/parts/django/docs/ref/contrib/gis/model-api.txt
new file mode 100644
index 0000000..6b50cf3
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/model-api.txt
@@ -0,0 +1,265 @@
+.. _ref-gis-model-api:
+
+===================
+GeoDjango Model API
+===================
+
+.. module:: django.contrib.gis.db.models
+ :synopsis: GeoDjango model and field API.
+
+This document explores the details of the GeoDjango Model API. Throughout this
+section, we'll be using the following geographic model of a `ZIP code`__ as our
+example::
+
+ from django.contrib.gis.db import models
+
+ class Zipcode(models.Model):
+ code = models.CharField(max_length=5)
+ poly = models.PolygonField()
+ objects = models.GeoManager()
+
+__ http://en.wikipedia.org/wiki/ZIP_code
+
+Geometry Field Types
+====================
+
+Each of the following geometry field types correspond with the
+OpenGIS Simple Features specification [#fnogc]_.
+
+``GeometryField``
+-----------------
+
+.. class:: GeometryField
+
+``PointField``
+--------------
+
+.. class:: PointField
+
+``LineStringField``
+-------------------
+
+.. class:: LineStringField
+
+``PolygonField``
+----------------
+
+.. class:: PolygonField
+
+``MultiPointField``
+-------------------
+
+.. class:: MultiPointField
+
+``MultiLineStringField``
+------------------------
+
+.. class:: MultiLineStringField
+
+``MultiPolygonField``
+---------------------
+
+.. class:: MultiPolygonField
+
+``GeometryCollectionField``
+---------------------------
+
+.. class:: GeometryCollectionField
+
+.. _geometry-field-options:
+
+Geometry Field Options
+======================
+
+In addition to the regular :ref:`common-model-field-options` available for
+Django model fields, geometry fields have the following additional options.
+All are optional.
+
+``srid``
+--------
+
+.. attribute:: GeometryField.srid
+
+Sets the SRID [#fnogcsrid]_ (Spatial Reference System Identity) of the geometry field to
+the given value. Defaults to 4326 (also known as `WGS84`__, units are in degrees
+of longitude and latitude).
+
+__ http://en.wikipedia.org/wiki/WGS84
+
+.. _selecting-an-srid:
+
+Selecting an SRID
+^^^^^^^^^^^^^^^^^
+
+Choosing an appropriate SRID for your model is an important decision that the
+developer should consider carefully. The SRID is an integer specifier that
+corresponds to the projection system that will be used to interpret the data
+in the spatial database. [#fnsrid]_ Projection systems give the context to the
+coordinates that specify a location. Although the details of `geodesy`__ are
+beyond the scope of this documentation, the general problem is that the earth
+is spherical and representations of the earth (e.g., paper maps, Web maps)
+are not.
+
+Most people are familiar with using latitude and longitude to reference a
+location on the earth's surface. However, latitude and longitude are angles,
+not distances. [#fnharvard]_ In other words, while the shortest path between two points on
+a flat surface is a straight line, the shortest path between two points on a curved
+surface (such as the earth) is an *arc* of a `great circle`__. [#fnthematic]_ Thus,
+additional computation is required to obtain distances in planar units (e.g.,
+kilometers and miles). Using a geographic coordinate system may introduce
+complications for the developer later on. For example, PostGIS versions 1.4
+and below do not have the capability to perform distance calculations between
+non-point geometries using geographic coordinate systems, e.g., constructing a
+query to find all points within 5 miles of a county boundary stored as WGS84.
+[#fndist]_
+
+Portions of the earth's surface may projected onto a two-dimensional, or
+Cartesian, plane. Projected coordinate systems are especially convenient
+for region-specific applications, e.g., if you know that your database will
+only cover geometries in `North Kansas`__, then you may consider using projection
+system specific to that region. Moreover, projected coordinate systems are
+defined in Cartesian units (such as meters or feet), easing distance
+calculations.
+
+.. note::
+
+ If you wish to peform arbitrary distance queries using non-point
+ geometries in WGS84, consider upgrading to PostGIS 1.5. For
+ better performance, enable the :attr:`GeometryField.geography`
+ keyword so that :ref:`geography database type `
+ is used instead.
+
+Additional Resources:
+
+* `spatialreference.org`__: A Django-powered database of spatial reference
+ systems.
+* `The State Plane Coordinate System`__: A Web site covering the various
+ projection systems used in the United States. Much of the U.S. spatial
+ data encountered will be in one of these coordinate systems rather than
+ in a geographic coordinate system such as WGS84.
+
+__ http://en.wikipedia.org/wiki/Geodesy
+__ http://en.wikipedia.org/wiki/Great_circle
+__ http://www.spatialreference.org/ref/epsg/2796/
+__ http://spatialreference.org/
+__ http://welcome.warnercnr.colostate.edu/class_info/nr502/lg3/datums_coordinates/spcs.html
+
+``spatial_index``
+-----------------
+
+.. attribute:: GeometryField.spatial_index
+
+Defaults to ``True``. Creates a spatial index for the given geometry
+field.
+
+.. note::
+
+ This is different from the ``db_index`` field option because spatial
+ indexes are created in a different manner than regular database
+ indexes. Specifically, spatial indexes are typically created using
+ a variant of the R-Tree, while regular database indexes typically
+ use B-Trees.
+
+``dim``
+-------
+
+.. versionadded:: 1.2
+
+.. attribute:: GeometryField.dim
+
+This option may be used for customizing the coordinate dimension of the
+geometry field. By default, it is set to 2, for representing two-dimensional
+geometries. For spatial backends that support it, it may be set to 3 for
+three-dimensonal support.
+
+.. note::
+
+ At this time 3D support requires that GEOS 3.1 be installed, and is
+ limited only to the PostGIS spatial backend.
+
+``geography``
+-------------
+
+.. versionadded:: 1.2
+
+.. attribute:: GeometryField.geography
+
+If set to ``True``, this option will create a database column of
+type geography, rather than geometry. Please refer to the
+:ref:`geography type ` section below for more
+details.
+
+.. note::
+
+ Geography support is limited only to PostGIS 1.5+, and will
+ force the SRID to be 4326.
+
+.. _geography-type:
+
+Geography Type
+^^^^^^^^^^^^^^
+
+In PostGIS 1.5, the geography type was introduced -- it provides
+provides native support for spatial features represented with geographic
+coordinates (e.g., WGS84 longitude/latitude). [#fngeography]_
+Unlike the plane used by a geometry type, the geography type uses a spherical
+representation of its data. Distance and measurement operations
+performed on a geography column automatically employ great circle arc
+calculations and return linear units. In other words, when ``ST_Distance``
+is called on two geographies, a value in meters is returned (as opposed
+to degrees if called on a geometry column in WGS84).
+
+Because geography calculations involve more mathematics, only a subset of the
+PostGIS spatial lookups are available for the geography type. Practically,
+this means that in addition to the :ref:`distance lookups `
+only the following additional :ref:`spatial lookups ` are
+available for geography columns:
+
+* :lookup:`bboverlaps`
+* :lookup:`coveredby`
+* :lookup:`covers`
+* :lookup:`intersects`
+
+For more information, the PostGIS documentation contains a helpful section on
+determining `when to use geography data type over geometry data type
+`_.
+
+``GeoManager``
+==============
+
+.. currentmodule:: django.contrib.gis.db.models
+.. class:: GeoManager
+
+In order to conduct geographic queries, each geographic model requires
+a ``GeoManager`` model manager. This manager allows for the proper SQL
+construction for geographic queries; thus, without it, all geographic filters
+will fail. It should also be noted that ``GeoManager`` is required even if the
+model does not have a geographic field itself, e.g., in the case of a
+``ForeignKey`` relation to a model with a geographic field. For example,
+if we had an ``Address`` model with a ``ForeignKey`` to our ``Zipcode``
+model::
+
+ from django.contrib.gis.db import models
+ from django.contrib.localflavor.us.models import USStateField
+
+ class Address(models.Model):
+ num = models.IntegerField()
+ street = models.CharField(max_length=100)
+ city = models.CharField(max_length=100)
+ state = USStateField()
+ zipcode = models.ForeignKey(Zipcode)
+ objects = models.GeoManager()
+
+The geographic manager is needed to do spatial queries on related ``Zipcode`` objects,
+for example::
+
+ qs = Address.objects.filter(zipcode__poly__contains='POINT(-104.590948 38.319914)')
+
+.. rubric:: Footnotes
+.. [#fnogc] OpenGIS Consortium, Inc., `Simple Feature Specification For SQL `_, Document 99-049 (May 5, 1999).
+.. [#fnogcsrid] *See id.* at Ch. 2.3.8, p. 39 (Geometry Values and Spatial Reference Systems).
+.. [#fnsrid] Typically, SRID integer corresponds to an EPSG (`European Petroleum Survey Group `_) identifier. However, it may also be associated with custom projections defined in spatial database's spatial reference systems table.
+.. [#fnharvard] Harvard Graduate School of Design, `An Overview of Geodesy and Geographic Referencing Systems `_. This is an excellent resource for an overview of principles relating to geographic and Cartesian coordinate systems.
+.. [#fnthematic] Terry A. Slocum, Robert B. McMaster, Fritz C. Kessler, & Hugh H. Howard, *Thematic Cartography and Geographic Visualization* (Prentice Hall, 2nd edition), at Ch. 7.1.3.
+.. [#fndist] This limitation does not apply to PostGIS 1.5. It should be noted that even in previous versions of PostGIS, this isn't impossible using GeoDjango; you could for example, take a known point in a projected coordinate system, buffer it to the appropriate radius, and then perform an intersection operation with the buffer transformed to the geographic coordinate system.
+.. [#fngeography] Please refer to the `PostGIS Geography Type `_ documentation for more details.
diff --git a/parts/django/docs/ref/contrib/gis/ogrinspect.txt b/parts/django/docs/ref/contrib/gis/ogrinspect.txt
new file mode 100644
index 0000000..ed285e0
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/ogrinspect.txt
@@ -0,0 +1,21 @@
+.. _ref-ogrinspect:
+
+==============
+OGR Inspection
+==============
+
+.. module:: django.contrib.gis.utils.ogrinspect
+ :synopsis: Utilities for inspecting OGR data sources.
+
+.. currentmodule:: django.contrib.gis.utils
+
+``ogrinspect``
+==============
+
+.. function:: ogrinspect(data_source, model_name[, **kwargs])
+ :noindex:
+
+``mapping``
+===========
+
+.. function:: mapping(data_source, [geom_name='geom', layer_key=0, multi_geom=False])
diff --git a/parts/django/docs/ref/contrib/gis/sitemaps.txt b/parts/django/docs/ref/contrib/gis/sitemaps.txt
new file mode 100644
index 0000000..75bddd3
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/sitemaps.txt
@@ -0,0 +1,27 @@
+===================
+Geographic Sitemaps
+===================
+
+Google's sitemap protocol has been recently extended to support geospatial
+content. [#]_ This includes the addition of the ```` child element
+````, which tells Google that the content located at the URL is
+geographic in nature. [#]_
+
+Example
+=======
+
+Reference
+=========
+
+``KMLSitemap``
+--------------
+
+``KMZSitemap``
+--------------
+
+``GeoRSSSitemap``
+-----------------
+
+.. rubric:: Footnotes
+.. [#] Google, Inc., `What is a Geo Sitemap? `_.
+.. [#] Google, Inc., `Submit Your Geo Content to Google `_.
diff --git a/parts/django/docs/ref/contrib/gis/testing.txt b/parts/django/docs/ref/contrib/gis/testing.txt
new file mode 100644
index 0000000..889b43a
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/testing.txt
@@ -0,0 +1,268 @@
+======================
+Testing GeoDjango Apps
+======================
+
+.. versionchanged:: 1.2
+
+In Django 1.2, the addition of :ref:`spatial-backends`
+simplified the process of testing GeoDjango applications. Specifically, testing
+GeoDjango applications is now the same as :doc:`/topics/testing`.
+
+Included in this documentation are some additional notes and settings
+for :ref:`testing-postgis` and :ref:`testing-spatialite` users.
+
+.. note::
+
+ Django 1.1 users are still required to use a custom :setting:`TEST_RUNNER`.
+ See the :ref:`testing-1.1` section for more details.
+
+.. _testing-postgis:
+
+PostGIS
+=======
+
+Settings
+--------
+
+.. note::
+
+ The settings below have sensible defaults, and shouldn't require manual setting.
+
+.. setting:: POSTGIS_TEMPLATE
+
+``POSTGIS_TEMPLATE``
+^^^^^^^^^^^^^^^^^^^^
+
+.. versionadded:: 1.1
+
+.. versionchanged:: 1.2
+
+This setting may be used to customize the name of the PostGIS template
+database to use. In Django versions 1.2 and above, it automatically
+defaults to ``'template_postgis'`` (the same name used in the
+:ref:`installation documentation `).
+
+.. note::
+
+ Django 1.1 users will still have to define the :setting:`POSTGIS_TEMPLATE`
+ with a value, for example::
+
+ POSTGIS_TEMPLATE='template_postgis'
+
+.. setting:: POSTGIS_VERSION
+
+``POSTGIS_VERSION``
+^^^^^^^^^^^^^^^^^^^
+
+.. versionadded:: 1.1
+
+When GeoDjango's spatial backend initializes on PostGIS, it has to perform
+a SQL query to determine the version in order to figure out what
+features are available. Advanced users wishing to prevent this additional
+query may set the version manually using a 3-tuple of integers specifying
+the major, minor, and subminor version numbers for PostGIS. For example,
+to configure for PostGIS 1.5.2 you would use::
+
+ POSTGIS_VERSION = (1, 5, 2)
+
+Obtaining Sufficient Privileges
+-------------------------------
+
+Depending on your configuration, this section describes several methods to
+configure a database user with sufficient privileges to run tests for
+GeoDjango applications on PostgreSQL. If your
+:ref:`spatial database template `
+was created like in the instructions, then your testing database user
+only needs to have the ability to create databases. In other configurations,
+you may be required to use a database superuser.
+
+Create Database User
+^^^^^^^^^^^^^^^^^^^^
+
+To make database user with the ability to create databases, use the
+following command::
+
+ $ createuser --createdb -R -S
+
+The ``-R -S`` flags indicate that we do not want the user to have the ability
+to create additional users (roles) or to be a superuser, respectively.
+
+Alternatively, you may alter an existing user's role from the SQL shell
+(assuming this is done from an existing superuser account)::
+
+ postgres# ALTER ROLE CREATEDB NOSUPERUSER NOCREATEROLE;
+
+Create Database Superuser
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This may be done at the time the user is created, for example::
+
+ $ createuser --superuser
+
+Or you may alter the user's role from the SQL shell (assuming this
+is done from an existing superuser account)::
+
+ postgres# ALTER ROLE SUPERUSER;
+
+
+Create Local PostgreSQL Database
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+1. Initialize database: ``initdb -D /path/to/user/db``
+
+2. If there's already a Postgres instance on the machine, it will need
+ to use a different TCP port than 5432. Edit ``postgresql.conf`` (in
+ ``/path/to/user/db``) to change the database port (e.g. ``port = 5433``).
+
+3. Start this database ``pg_ctl -D /path/to/user/db start``
+
+Windows
+-------
+
+On Windows platforms the pgAdmin III utility may also be used as
+a simple way to add superuser privileges to your database user.
+
+By default, the PostGIS installer on Windows includes a template
+spatial database entitled ``template_postgis``.
+
+.. _testing-spatialite:
+
+SpatiaLite
+==========
+
+.. versionadded:: 1.1
+
+You will need to download the `initialization SQL`__ script for SpatiaLite::
+
+ $ wget http://www.gaia-gis.it/spatialite/init_spatialite-2.3.zip
+ $ unzip init_spatialite-2.3.zip
+
+If ``init_spatialite-2.3.sql`` is in the same path as your project's ``manage.py``,
+then all you have to do is::
+
+ $ python manage.py test
+
+Settings
+--------
+
+.. setting:: SPATIALITE_SQL
+
+``SPATIALITE_SQL``
+^^^^^^^^^^^^^^^^^^
+
+.. versionadded:: 1.1
+
+By default, the GeoDjango test runner looks for the SpatiaLite SQL in the
+same directory where it was invoked (by default the same directory where
+``manage.py`` is located). If you want to use a different location, then
+you may add the following to your settings::
+
+ SPATIALITE_SQL='/path/to/init_spatialite-2.3.sql'
+
+__ http://www.gaia-gis.it/spatialite/init_spatialite-2.3.zip
+
+.. _testing-1.1:
+
+Testing GeoDjango Applications in 1.1
+=====================================
+
+In Django 1.1, to accommodate the extra steps required to scaffalod a
+spatial database automatically, a test runner customized for GeoDjango
+must be used. To use this runner, configure :setting:`TEST_RUNNER` as follows::
+
+ TEST_RUNNER='django.contrib.gis.tests.run_tests'
+
+.. note::
+
+ In order to create a spatial database, the :setting:`USER` setting
+ (or :setting:`TEST_USER`, if optionally defined on Oracle) requires
+ elevated privileges. When using PostGIS or MySQL, the database user
+ must have at least the ability to create databases. When testing on Oracle,
+ the user should be a superuser.
+
+.. _geodjango-tests:
+
+GeoDjango Tests
+===============
+
+.. versionchanged:: 1.2.4
+
+GeoDjango's test suite may be run in one of two ways, either by itself or
+with the rest of Django's :ref:`unit-tests`.
+
+.. note::
+
+ The :setting:`TEST_RUNNER` previously used to execute the GeoDjango
+ test suite,:func:`django.contrib.gis.tests.run_gis_tests`, was deprecated
+ in favor of the :class:`django.contrib.gis.tests.GeoDjangoTestSuiteRunner`
+ class.
+
+Run only GeoDjango tests
+------------------------
+
+To run *only* the tests for GeoDjango, the :setting:`TEST_RUNNER`
+setting must be changed to use the
+:class:`~django.contrib.gis.tests.GeoDjangoTestSuiteRunner`::
+
+ TEST_RUNNER = 'django.contrib.gis.tests.GeoDjangoTestSuiteRunner'
+
+Example
+^^^^^^^
+
+First, you'll need a bare-bones settings file, like below, that is
+customized with your spatial database name and user::
+
+ TEST_RUNNER = 'django.contrib.gis.tests.GeoDjangoTestSuiteRunner'
+
+ DATABASES = {
+ 'default': {
+ 'ENGINE': 'django.contrib.gis.db.backends.postgis',
+ 'NAME': 'a_spatial_database',
+ 'USER': 'db_user'
+ }
+ }
+
+Assuming the above is in a file called ``postgis.py`` that is in the
+the same directory as ``manage.py`` of your Django project, then
+you may run the tests with the following command::
+
+ $ python manage.py test --settings=postgis
+
+Run with ``runtests.py``
+------------------------
+
+To have the GeoDjango tests executed when
+:ref:`running the Django test suite ` with ``runtests.py``
+all of the databases in the settings file must be using one of the
+:ref:`spatial database backends `.
+
+.. warning::
+
+ Do not change the :setting:`TEST_RUNNER` setting
+ when running the GeoDjango tests with ``runtests.py``.
+
+Example
+^^^^^^^
+
+The following is an example bare-bones settings file with spatial backends
+that can be used to run the entire Django test suite, including those
+in :mod:`django.contrib.gis`::
+
+ DATABASES = {
+ 'default': {
+ 'ENGINE': 'django.contrib.gis.db.backends.postgis',
+ 'NAME': 'geodjango',
+ 'USER': 'geodjango',
+ },
+ 'other': {
+ 'ENGINE': 'django.contrib.gis.db.backends.postgis',
+ 'NAME': 'other',
+ 'USER': 'geodjango',
+ }
+ }
+
+Assuming the settings above were in a ``postgis.py`` file in the same
+directory as ``runtests.py``, then all Django and GeoDjango tests would
+be performed when executing the command::
+
+ $ ./runtests.py --settings=postgis
diff --git a/parts/django/docs/ref/contrib/gis/tutorial.txt b/parts/django/docs/ref/contrib/gis/tutorial.txt
new file mode 100644
index 0000000..9deeb78
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/tutorial.txt
@@ -0,0 +1,758 @@
+==================
+GeoDjango Tutorial
+==================
+
+Introduction
+============
+
+GeoDjango is an add-on for Django that turns it into a world-class geographic
+Web framework. GeoDjango strives to make at as simple as possible to create
+geographic Web applications, like location-based services. Some features include:
+
+* Django model fields for `OGC`_ geometries.
+* Extensions to Django's ORM for the querying and manipulation of spatial data.
+* Loosely-coupled, high-level Python interfaces for GIS geometry operations and
+ data formats.
+* Editing of geometry fields inside the admin.
+
+This tutorial assumes a familiarity with Django; thus, if you're brand new to
+Django please read through the :doc:`regular tutorial ` to introduce
+yourself with basic Django concepts.
+
+.. note::
+
+ GeoDjango has special prerequisites overwhat is required by Django --
+ please consult the :ref:`installation documentation `
+ for more details.
+
+This tutorial will guide you through the creation of a geographic Web
+application for viewing the `world borders`_. [#]_ Some of the code
+used in this tutorial is taken from and/or inspired by the `GeoDjango
+basic apps`_ project. [#]_
+
+.. note::
+
+ Proceed through the tutorial sections sequentially for step-by-step
+ instructions.
+
+.. _OGC: http://www.opengeospatial.org/
+.. _world borders: http://thematicmapping.org/downloads/world_borders.php
+.. _GeoDjango basic apps: http://code.google.com/p/geodjango-basic-apps/
+
+Setting Up
+==========
+
+Create a Spatial Database
+-------------------------
+
+.. note::
+
+ MySQL and Oracle users can skip this section because spatial types
+ are already built into the database.
+
+First, a spatial database needs to be created for our project. If using
+PostgreSQL and PostGIS, then the following commands will
+create the database from a :ref:`spatial database template `::
+
+ $ createdb -T template_postgis geodjango
+
+.. note::
+
+ This command must be issued by a database user that has permissions to
+ create a database. Here is an example set of commands to create such
+ a user::
+
+ $ sudo su - postgres
+ $ createuser --createdb geo
+ $ exit
+
+ Replace ``geo`` to correspond to the system login user name will be
+ connecting to the database. For example, ``johndoe`` if that is the
+ system user that will be running GeoDjango.
+
+Users of SQLite and SpatiaLite should consult the instructions on how
+to create a :ref:`SpatiaLite database `.
+
+Create GeoDjango Project
+------------------------
+
+Use the ``django-admin.py`` script like normal to create a ``geodjango`` project::
+
+ $ django-admin.py startproject geodjango
+
+With the project initialized, now create a ``world`` Django application within
+the ``geodjango`` project::
+
+ $ cd geodjango
+ $ python manage.py startapp world
+
+Configure ``settings.py``
+-------------------------
+
+The ``geodjango`` project settings are stored in the ``settings.py`` file. Edit
+the database connection settings appropriately::
+
+ DATABASES = {
+ 'default': {
+ 'ENGINE': 'django.contrib.gis.db.backends.postgis',
+ 'NAME': 'geodjango',
+ 'USER': 'geo',
+ }
+ }
+
+.. note::
+
+ These database settings are for Django 1.2 and above.
+
+In addition, modify the :setting:`INSTALLED_APPS` setting to include
+:mod:`django.contrib.admin`, :mod:`django.contrib.gis`,
+and ``world`` (our newly created application)::
+
+ INSTALLED_APPS = (
+ 'django.contrib.auth',
+ 'django.contrib.contenttypes',
+ 'django.contrib.sessions',
+ 'django.contrib.sites',
+ 'django.contrib.admin',
+ 'django.contrib.gis',
+ 'world'
+ )
+
+Geographic Data
+===============
+
+.. _worldborders:
+
+World Borders
+-------------
+
+The world borders data is available in this `zip file`__. Create a data directory
+in the ``world`` application, download the world borders data, and unzip.
+On GNU/Linux platforms the following commands should do it::
+
+ $ mkdir world/data
+ $ cd world/data
+ $ wget http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
+ $ unzip TM_WORLD_BORDERS-0.3.zip
+ $ cd ../..
+
+The world borders ZIP file contains a set of data files collectively known as
+an `ESRI Shapefile`__, one of the most popular geospatial data formats. When
+unzipped the world borders data set includes files with the following extensions:
+
+* ``.shp``: Holds the vector data for the world borders geometries.
+* ``.shx``: Spatial index file for geometries stored in the ``.shp``.
+* ``.dbf``: Database file for holding non-geometric attribute data
+ (e.g., integer and character fields).
+* ``.prj``: Contains the spatial reference information for the geographic
+ data stored in the shapefile.
+
+__ http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
+__ http://en.wikipedia.org/wiki/Shapefile
+
+Use ``ogrinfo`` to examine spatial data
+---------------------------------------
+
+The GDAL ``ogrinfo`` utility is excellent for examining metadata about
+shapefiles (or other vector data sources)::
+
+ $ ogrinfo world/data/TM_WORLD_BORDERS-0.3.shp
+ INFO: Open of `world/data/TM_WORLD_BORDERS-0.3.shp'
+ using driver `ESRI Shapefile' successful.
+ 1: TM_WORLD_BORDERS-0.3 (Polygon)
+
+Here ``ogrinfo`` is telling us that the shapefile has one layer, and that
+layer contains polygon data. To find out more we'll specify the layer name
+and use the ``-so`` option to get only important summary information::
+
+ $ ogrinfo -so world/data/TM_WORLD_BORDERS-0.3.shp TM_WORLD_BORDERS-0.3
+ INFO: Open of `world/data/TM_WORLD_BORDERS-0.3.shp'
+ using driver `ESRI Shapefile' successful.
+
+ Layer name: TM_WORLD_BORDERS-0.3
+ Geometry: Polygon
+ Feature Count: 246
+ Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)
+ Layer SRS WKT:
+ GEOGCS["GCS_WGS_1984",
+ DATUM["WGS_1984",
+ SPHEROID["WGS_1984",6378137.0,298.257223563]],
+ PRIMEM["Greenwich",0.0],
+ UNIT["Degree",0.0174532925199433]]
+ FIPS: String (2.0)
+ ISO2: String (2.0)
+ ISO3: String (3.0)
+ UN: Integer (3.0)
+ NAME: String (50.0)
+ AREA: Integer (7.0)
+ POP2005: Integer (10.0)
+ REGION: Integer (3.0)
+ SUBREGION: Integer (3.0)
+ LON: Real (8.3)
+ LAT: Real (7.3)
+
+This detailed summary information tells us the number of features in the layer
+(246), the geographical extent, the spatial reference system ("SRS WKT"),
+as well as detailed information for each attribute field. For example,
+``FIPS: String (2.0)`` indicates that there's a ``FIPS`` character field
+with a maximum length of 2; similarly, ``LON: Real (8.3)`` is a floating-point
+field that holds a maximum of 8 digits up to three decimal places. Although
+this information may be found right on the `world borders`_ Web site, this shows
+you how to determine this information yourself when such metadata is not
+provided.
+
+Geographic Models
+=================
+
+Defining a Geographic Model
+---------------------------
+
+Now that we've examined our world borders data set using ``ogrinfo``, we can
+create a GeoDjango model to represent this data::
+
+ from django.contrib.gis.db import models
+
+ class WorldBorders(models.Model):
+ # Regular Django fields corresponding to the attributes in the
+ # world borders shapefile.
+ name = models.CharField(max_length=50)
+ area = models.IntegerField()
+ pop2005 = models.IntegerField('Population 2005')
+ fips = models.CharField('FIPS Code', max_length=2)
+ iso2 = models.CharField('2 Digit ISO', max_length=2)
+ iso3 = models.CharField('3 Digit ISO', max_length=3)
+ un = models.IntegerField('United Nations Code')
+ region = models.IntegerField('Region Code')
+ subregion = models.IntegerField('Sub-Region Code')
+ lon = models.FloatField()
+ lat = models.FloatField()
+
+ # GeoDjango-specific: a geometry field (MultiPolygonField), and
+ # overriding the default manager with a GeoManager instance.
+ mpoly = models.MultiPolygonField()
+ objects = models.GeoManager()
+
+ # So the model is pluralized correctly in the admin.
+ class Meta:
+ verbose_name_plural = "World Borders"
+
+ # Returns the string representation of the model.
+ def __unicode__(self):
+ return self.name
+
+Two important things to note:
+
+1. The ``models`` module is imported from :mod:`django.contrib.gis.db`.
+2. The model overrides its default manager with
+ :class:`~django.contrib.gis.db.models.GeoManager`; this is *required*
+ to perform spatial queries.
+
+When declaring a geometry field on your model the default spatial reference system
+is WGS84 (meaning the `SRID`__ is 4326) -- in other words, the field coordinates are in
+longitude/latitude pairs in units of degrees. If you want the coordinate system to be
+different, then SRID of the geometry field may be customized by setting the ``srid``
+with an integer corresponding to the coordinate system of your choice.
+
+__ http://en.wikipedia.org/wiki/SRID
+
+Run ``syncdb``
+--------------
+
+After you've defined your model, it needs to be synced with the spatial database.
+First, let's look at the SQL that will generate the table for the ``WorldBorders``
+model::
+
+ $ python manage.py sqlall world
+
+This management command should produce the following output::
+
+ BEGIN;
+ CREATE TABLE "world_worldborders" (
+ "id" serial NOT NULL PRIMARY KEY,
+ "name" varchar(50) NOT NULL,
+ "area" integer NOT NULL,
+ "pop2005" integer NOT NULL,
+ "fips" varchar(2) NOT NULL,
+ "iso2" varchar(2) NOT NULL,
+ "iso3" varchar(3) NOT NULL,
+ "un" integer NOT NULL,
+ "region" integer NOT NULL,
+ "subregion" integer NOT NULL,
+ "lon" double precision NOT NULL,
+ "lat" double precision NOT NULL
+ )
+ ;
+ SELECT AddGeometryColumn('world_worldborders', 'mpoly', 4326, 'MULTIPOLYGON', 2);
+ ALTER TABLE "world_worldborders" ALTER "mpoly" SET NOT NULL;
+ CREATE INDEX "world_worldborders_mpoly_id" ON "world_worldborders" USING GIST ( "mpoly" GIST_GEOMETRY_OPS );
+ COMMIT;
+
+If satisfied, you may then create this table in the database by running the
+``syncdb`` management command::
+
+ $ python manage.py syncdb
+ Creating table world_worldborders
+ Installing custom SQL for world.WorldBorders model
+
+The ``syncdb`` command may also prompt you to create an admin user; go ahead and
+do so (not required now, may be done at any point in the future using the
+``createsuperuser`` management command).
+
+Importing Spatial Data
+======================
+
+This section will show you how to take the data from the world borders
+shapefile and import it into GeoDjango models using the :ref:`ref-layermapping`.
+There are many different different ways to import data in to a
+spatial database -- besides the tools included within GeoDjango, you
+may also use the following to populate your spatial database:
+
+* `ogr2ogr`_: Command-line utility, included with GDAL, that
+ supports loading a multitude of vector data formats into
+ the PostGIS, MySQL, and Oracle spatial databases.
+* `shp2pgsql`_: This utility is included with PostGIS and only supports
+ ESRI shapefiles.
+
+.. _ogr2ogr: http://www.gdal.org/ogr2ogr.html
+.. _shp2pgsql: http://postgis.refractions.net/documentation/manual-1.5/ch04.html#shp2pgsql_usage
+
+.. _gdalinterface:
+
+GDAL Interface
+--------------
+
+Earlier we used the the ``ogrinfo`` to explore the contents of the world borders
+shapefile. Included within GeoDjango is an interface to GDAL's powerful OGR
+library -- in other words, you'll be able explore all the vector data sources
+that OGR supports via a Pythonic API.
+
+First, invoke the Django shell::
+
+ $ python manage.py shell
+
+If the :ref:`worldborders` data was downloaded like earlier in the
+tutorial, then we can determine the path using Python's built-in
+``os`` module::
+
+ >>> import os
+ >>> from geodjango import world
+ >>> world_shp = os.path.abspath(os.path.join(os.path.dirname(world.__file__),
+ ... 'data/TM_WORLD_BORDERS-0.3.shp'))
+
+Now, the world borders shapefile may be opened using GeoDjango's
+:class:`~django.contrib.gis.gdal.DataSource` interface::
+
+ >>> from django.contrib.gis.gdal import *
+ >>> ds = DataSource(world_shp)
+ >>> print ds
+ / ... /geodjango/world/data/TM_WORLD_BORDERS-0.3.shp (ESRI Shapefile)
+
+Data source objects can have different layers of geospatial features; however,
+shapefiles are only allowed to have one layer::
+
+ >>> print len(ds)
+ 1
+ >>> lyr = ds[0]
+ >>> print lyr
+ TM_WORLD_BORDERS-0.3
+
+You can see what the geometry type of the layer is and how many features it
+contains::
+
+ >>> print lyr.geom_type
+ Polygon
+ >>> print len(lyr)
+ 246
+
+.. note::
+
+ Unfortunately the shapefile data format does not allow for greater
+ specificity with regards to geometry types. This shapefile, like
+ many others, actually includes ``MultiPolygon`` geometries in its
+ features. You need to watch out for this when creating your models
+ as a GeoDjango ``PolygonField`` will not accept a ``MultiPolygon``
+ type geometry -- thus a ``MultiPolygonField`` is used in our model's
+ definition instead.
+
+The :class:`~django.contrib.gis.gdal.Layer` may also have a spatial reference
+system associated with it -- if it does, the ``srs`` attribute will return a
+:class:`~django.contrib.gis.gdal.SpatialReference` object::
+
+ >>> srs = lyr.srs
+ >>> print srs
+ GEOGCS["GCS_WGS_1984",
+ DATUM["WGS_1984",
+ SPHEROID["WGS_1984",6378137.0,298.257223563]],
+ PRIMEM["Greenwich",0.0],
+ UNIT["Degree",0.0174532925199433]]
+ >>> srs.proj4 # PROJ.4 representation
+ '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs '
+
+Here we've noticed that the shapefile is in the popular WGS84 spatial reference
+system -- in other words, the data uses units of degrees longitude and latitude.
+
+In addition, shapefiles also support attribute fields that may contain
+additional data. Here are the fields on the World Borders layer:
+
+ >>> print lyr.fields
+ ['FIPS', 'ISO2', 'ISO3', 'UN', 'NAME', 'AREA', 'POP2005', 'REGION', 'SUBREGION', 'LON', 'LAT']
+
+Here we are examining the OGR types (e.g., whether a field is an integer or
+a string) associated with each of the fields:
+
+ >>> [fld.__name__ for fld in lyr.field_types]
+ ['OFTString', 'OFTString', 'OFTString', 'OFTInteger', 'OFTString', 'OFTInteger', 'OFTInteger', 'OFTInteger', 'OFTInteger', 'OFTReal', 'OFTReal']
+
+You can iterate over each feature in the layer and extract information from both
+the feature's geometry (accessed via the ``geom`` attribute) as well as the
+feature's attribute fields (whose **values** are accessed via ``get()``
+method)::
+
+ >>> for feat in lyr:
+ ... print feat.get('NAME'), feat.geom.num_points
+ ...
+ Guernsey 18
+ Jersey 26
+ South Georgia South Sandwich Islands 338
+ Taiwan 363
+
+:class:`~django.contrib.gis.gdal.Layer` objects may be sliced::
+
+ >>> lyr[0:2]
+ [, ]
+
+And individual features may be retrieved by their feature ID::
+
+ >>> feat = lyr[234]
+ >>> print feat.get('NAME')
+ San Marino
+
+Here the boundary geometry for San Marino is extracted and looking
+exported to WKT and GeoJSON::
+
+ >>> geom = feat.geom
+ >>> print geom.wkt
+ POLYGON ((12.415798 43.957954,12.450554 ...
+ >>> print geom.json
+ { "type": "Polygon", "coordinates": [ [ [ 12.415798, 43.957954 ], [ 12.450554, 43.979721 ], ...
+
+
+``LayerMapping``
+----------------
+
+We're going to dive right in -- create a file called ``load.py`` inside the
+``world`` application, and insert the following::
+
+ import os
+ from django.contrib.gis.utils import LayerMapping
+ from models import WorldBorders
+
+ world_mapping = {
+ 'fips' : 'FIPS',
+ 'iso2' : 'ISO2',
+ 'iso3' : 'ISO3',
+ 'un' : 'UN',
+ 'name' : 'NAME',
+ 'area' : 'AREA',
+ 'pop2005' : 'POP2005',
+ 'region' : 'REGION',
+ 'subregion' : 'SUBREGION',
+ 'lon' : 'LON',
+ 'lat' : 'LAT',
+ 'mpoly' : 'MULTIPOLYGON',
+ }
+
+ world_shp = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data/TM_WORLD_BORDERS-0.3.shp'))
+
+ def run(verbose=True):
+ lm = LayerMapping(WorldBorders, world_shp, world_mapping,
+ transform=False, encoding='iso-8859-1')
+
+ lm.save(strict=True, verbose=verbose)
+
+A few notes about what's going on:
+
+* Each key in the ``world_mapping`` dictionary corresponds to a field in the
+ ``WorldBorders`` model, and the value is the name of the shapefile field
+ that data will be loaded from.
+* The key ``mpoly`` for the geometry field is ``MULTIPOLYGON``, the
+ geometry type we wish to import as. Even if simple polygons are encountered
+ in the shapefile they will automatically be converted into collections prior
+ to insertion into the database.
+* The path to the shapefile is not absolute -- in other words, if you move the
+ ``world`` application (with ``data`` subdirectory) to a different location,
+ then the script will still work.
+* The ``transform`` keyword is set to ``False`` because the data in the
+ shapefile does not need to be converted -- it's already in WGS84 (SRID=4326).
+* The ``encoding`` keyword is set to the character encoding of string values in
+ the shapefile. This ensures that string values are read and saved correctly
+ from their original encoding system.
+
+Afterwards, invoke the Django shell from the ``geodjango`` project directory::
+
+ $ python manage.py shell
+
+Next, import the ``load`` module, call the ``run`` routine, and watch ``LayerMapping``
+do the work::
+
+ >>> from world import load
+ >>> load.run()
+
+
+.. _ogrinspect-intro:
+
+Try ``ogrinspect``
+------------------
+Now that you've seen how to define geographic models and import data with the
+:ref:`ref-layermapping`, it's possible to further automate this process with
+use of the :djadmin:`ogrinspect` management command. The :djadmin:`ogrinspect`
+command introspects a GDAL-supported vector data source (e.g., a shapefile) and
+generates a model definition and ``LayerMapping`` dictionary automatically.
+
+The general usage of the command goes as follows::
+
+ $ python manage.py ogrinspect [options] [options]
+
+Where ``data_source`` is the path to the GDAL-supported data source and
+``model_name`` is the name to use for the model. Command-line options may
+be used to further define how the model is generated.
+
+For example, the following command nearly reproduces the ``WorldBorders`` model
+and mapping dictionary created above, automatically::
+
+ $ python manage.py ogrinspect world/data/TM_WORLD_BORDERS-0.3.shp WorldBorders --srid=4326 --mapping --multi
+
+A few notes about the command-line options given above:
+
+* The ``--srid=4326`` option sets the SRID for the geographic field.
+* The ``--mapping`` option tells ``ogrinspect`` to also generate a
+ mapping dictionary for use with :class:`~django.contrib.gis.utils.LayerMapping`.
+* The ``--multi`` option is specified so that the geographic field is a
+ :class:`~django.contrib.gis.db.models.MultiPolygonField` instead of just a
+ :class:`~django.contrib.gis.db.models.PolygonField`.
+
+The command produces the following output, which may be copied
+directly into the ``models.py`` of a GeoDjango application::
+
+ # This is an auto-generated Django model module created by ogrinspect.
+ from django.contrib.gis.db import models
+
+ class WorldBorders(models.Model):
+ fips = models.CharField(max_length=2)
+ iso2 = models.CharField(max_length=2)
+ iso3 = models.CharField(max_length=3)
+ un = models.IntegerField()
+ name = models.CharField(max_length=50)
+ area = models.IntegerField()
+ pop2005 = models.IntegerField()
+ region = models.IntegerField()
+ subregion = models.IntegerField()
+ lon = models.FloatField()
+ lat = models.FloatField()
+ geom = models.MultiPolygonField(srid=4326)
+ objects = models.GeoManager()
+
+ # Auto-generated `LayerMapping` dictionary for WorldBorders model
+ worldborders_mapping = {
+ 'fips' : 'FIPS',
+ 'iso2' : 'ISO2',
+ 'iso3' : 'ISO3',
+ 'un' : 'UN',
+ 'name' : 'NAME',
+ 'area' : 'AREA',
+ 'pop2005' : 'POP2005',
+ 'region' : 'REGION',
+ 'subregion' : 'SUBREGION',
+ 'lon' : 'LON',
+ 'lat' : 'LAT',
+ 'geom' : 'MULTIPOLYGON',
+ }
+
+Spatial Queries
+===============
+
+Spatial Lookups
+---------------
+GeoDjango extends the Django ORM and allows the use of spatial lookups.
+Let's do an example where we find the ``WorldBorder`` model that contains
+a point. First, fire up the management shell::
+
+ $ python manage.py shell
+
+Now, define a point of interest [#]_::
+
+ >>> pnt_wkt = 'POINT(-95.3385 29.7245)'
+
+The ``pnt_wkt`` string represents the point at -95.3385 degrees longitude,
+and 29.7245 degrees latitude. The geometry is in a format known as
+Well Known Text (WKT), an open standard issued by the Open Geospatial
+Consortium (OGC). [#]_ Import the ``WorldBorders`` model, and perform
+a ``contains`` lookup using the ``pnt_wkt`` as the parameter::
+
+ >>> from world.models import WorldBorders
+ >>> qs = WorldBorders.objects.filter(mpoly__contains=pnt_wkt)
+ >>> qs
+ []
+
+Here we retrieved a ``GeoQuerySet`` that has only one model: the one
+for the United States (which is what we would expect). Similarly,
+a :ref:`GEOS geometry object ` may also be used -- here the ``intersects``
+spatial lookup is combined with the ``get`` method to retrieve
+only the ``WorldBorders`` instance for San Marino instead of a queryset::
+
+ >>> from django.contrib.gis.geos import Point
+ >>> pnt = Point(12.4604, 43.9420)
+ >>> sm = WorldBorders.objects.get(mpoly__intersects=pnt)
+ >>> sm
+
+
+The ``contains`` and ``intersects`` lookups are just a subset of what's
+available -- the :ref:`ref-gis-db-api` documentation has more.
+
+Automatic Spatial Transformations
+---------------------------------
+When querying the spatial database GeoDjango automatically transforms
+geometries if they're in a different coordinate system. In the following
+example, the coordinate will be expressed in terms of `EPSG SRID 32140`__,
+a coordinate system specific to south Texas **only** and in units of
+**meters** and not degrees::
+
+ >>> from django.contrib.gis.geos import *
+ >>> pnt = Point(954158.1, 4215137.1, srid=32140)
+
+Note that ``pnt`` may also constructed with EWKT, an "extended" form of
+WKT that includes the SRID::
+
+ >>> pnt = GEOSGeometry('SRID=32140;POINT(954158.1 4215137.1)')
+
+When using GeoDjango's ORM, it will automatically wrap geometry values
+in transformation SQL, allowing the developer to work at a higher level
+of abstraction::
+
+ >>> qs = WorldBorders.objects.filter(mpoly__intersects=pnt)
+ >>> qs.query.as_sql() # Generating the SQL
+ ('SELECT "world_worldborders"."id", "world_worldborders"."name", "world_worldborders"."area",
+ "world_worldborders"."pop2005", "world_worldborders"."fips", "world_worldborders"."iso2",
+ "world_worldborders"."iso3", "world_worldborders"."un", "world_worldborders"."region",
+ "world_worldborders"."subregion", "world_worldborders"."lon", "world_worldborders"."lat",
+ "world_worldborders"."mpoly" FROM "world_worldborders"
+ WHERE ST_Intersects("world_worldborders"."mpoly", ST_Transform(%s, 4326))',
+ (,))
+ >>> qs # printing evaluates the queryset
+ []
+
+__ http://spatialreference.org/ref/epsg/32140/
+
+Lazy Geometries
+---------------
+Geometries come to GeoDjango in a standardized textual representation. Upon
+access of the geometry field, GeoDjango creates a `GEOS geometry object `,
+exposing powerful functionality, such as serialization properties for
+popular geospatial formats::
+
+ >>> sm = WorldBorders.objects.get(name='San Marino')
+ >>> sm.mpoly
+
+ >>> sm.mpoly.wkt # WKT
+ MULTIPOLYGON (((12.4157980000000006 43.9579540000000009, 12.4505540000000003 43.9797209999999978, ...
+ >>> sm.mpoly.wkb # WKB (as Python binary buffer)
+
+ >>> sm.mpoly.geojson # GeoJSON (requires GDAL)
+ '{ "type": "MultiPolygon", "coordinates": [ [ [ [ 12.415798, 43.957954 ], [ 12.450554, 43.979721 ], ...
+
+This includes access to all of the advanced geometric operations provided by
+the GEOS library::
+
+ >>> pnt = Point(12.4604, 43.9420)
+ >>> sm.mpoly.contains(pnt)
+ True
+ >>> pnt.contains(sm.mpoly)
+ False
+
+``GeoQuerySet`` Methods
+-----------------------
+
+
+Putting your data on the map
+============================
+
+Google
+------
+
+Geographic Admin
+----------------
+
+GeoDjango extends :doc:`Django's admin application `
+to enable support for editing geometry fields.
+
+Basics
+^^^^^^
+
+GeoDjango also supplements the Django admin by allowing users to create
+and modify geometries on a JavaScript slippy map (powered by `OpenLayers`_).
+
+Let's dive in again -- create a file called ``admin.py`` inside the
+``world`` application, and insert the following::
+
+ from django.contrib.gis import admin
+ from models import WorldBorders
+
+ admin.site.register(WorldBorders, admin.GeoModelAdmin)
+
+Next, edit your ``urls.py`` in the ``geodjango`` project folder to look
+as follows::
+
+ from django.conf.urls.defaults import *
+ from django.contrib.gis import admin
+
+ admin.autodiscover()
+
+ urlpatterns = patterns('',
+ (r'^admin/', include(admin.site.urls)),
+ )
+
+Start up the Django development server::
+
+ $ python manage.py runserver
+
+Finally, browse to ``http://localhost:8000/admin/``, and log in with the admin
+user created after running ``syncdb``. Browse to any of the ``WorldBorders``
+entries -- the borders may be edited by clicking on a polygon and dragging
+the vertexes to the desired position.
+
+.. _OpenLayers: http://openlayers.org/
+.. _Open Street Map: http://openstreetmap.org/
+.. _Vector Map Level 0: http://earth-info.nga.mil/publications/vmap0.html
+.. _Metacarta: http://metacarta.com
+
+.. _osmgeoadmin-intro:
+
+``OSMGeoAdmin``
+^^^^^^^^^^^^^^^
+
+With the :class:`~django.contrib.gis.admin.OSMGeoAdmin`, GeoDjango uses
+a `Open Street Map`_ layer in the admin.
+This provides more context (including street and thoroughfare details) than
+available with the :class:`~django.contrib.gis.admin.GeoModelAdmin`
+(which uses the `Vector Map Level 0`_ WMS data set hosted at `Metacarta`_).
+
+First, there are some important requirements and limitations:
+
+* :class:`~django.contrib.gis.admin.OSMGeoAdmin` requires that the
+ :ref:`spherical mercator projection be added `
+ to the to be added to the ``spatial_ref_sys`` table (PostGIS 1.3 and
+ below, only).
+* The PROJ.4 datum shifting files must be installed (see the
+ :ref:`PROJ.4 installation instructions ` for more details).
+
+If you meet these requirements, then just substitute in the ``OSMGeoAdmin``
+option class in your ``admin.py`` file::
+
+ admin.site.register(WorldBorders, admin.OSMGeoAdmin)
+
+.. rubric:: Footnotes
+
+.. [#] Special thanks to Bjørn Sandvik of `thematicmapping.org `_ for providing and maintaining this data set.
+.. [#] GeoDjango basic apps was written by Dane Springmeyer, Josh Livni, and Christopher Schmidt.
+.. [#] Here the point is for the `University of Houston Law Center `_ .
+.. [#] Open Geospatial Consortium, Inc., `OpenGIS Simple Feature Specification For SQL `_, Document 99-049.
diff --git a/parts/django/docs/ref/contrib/gis/utils.txt b/parts/django/docs/ref/contrib/gis/utils.txt
new file mode 100644
index 0000000..9f8e518
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/utils.txt
@@ -0,0 +1,32 @@
+.. _ref-gis-utils:
+
+===================
+GeoDjango Utilities
+===================
+
+.. module:: django.contrib.gis.utils
+ :synopsis: GeoDjango's collection of utilities.
+
+The :mod:`django.contrib.gis.utils` module contains various utilities that are
+useful in creating geospatial Web applications.
+
+.. toctree::
+ :maxdepth: 2
+
+ geoip
+ layermapping
+ ogrinspect
+
+GeoIP
+=====
+
+Interface to the MaxMind GeoIP library for performing IP-based geolocation
+from GeoDjango. See :ref:`GeoIP reference ` documentation for
+more information.
+
+LayerMapping
+============
+
+The :class:`~django.contrib.gis.utils.LayerMapping` simplifies the process
+of importing spatial data and attributes into your GeoDjango models.
+
--
cgit