
Developer Guide for CONMELEON C1 Hardware
by Herwig Eichler, June 2015

visit http://www.conmeleon.org/ for more information Page 1 of 28

http://www.conmeleon.org/

Terms and Conditions

This document and its contents (conmeleon logo, conmeleon font and “automation power for
everyone” slogan are excluded) are provided for your personal use for creation and contribution of
applications based on the conmeleon PLC. This document and its contents (text, images) therefore
are provided under the Creative Commons Attribution-ShareAlike 4.0 Unported License.

Creative Commons Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0) License

The conmeleon logo, conmeleon font and the “automation power for everyone” slogan are
copyright conmeleon.org (Herwig Eichler, Oliver Soukup and Michael Walgram) 2015.

All other trademarks, service marks, registered trademarks, and registered service marks are the
property of their respective owners.

visit http://www.conmeleon.org/ for more information Page 2 of 28

http://www.conmeleon.org/
http://creativecommons.org/licenses/by-sa/4.0/

Table of Contents

 1 The CONMELEON Hardware..5
 2 Digital IO...8
 2.1 Digital Input Circuit..9
 2.2 Digital Output Circuit..10
 2.3 Interfacing the GPIO via SYSFS..11
 2.3.1 Programming the GPIO via SYSFS..11
 3 Analog IO...12
 3.1 Analog Input Circuit...12
 3.2 Interfacing the SPI Bus with Linux Kernel Device Driver..14
 3.2.1 Enabling the SPI Driver... 14
 3.2.2 Create SPI Permissions.. 18
 3.3 Interfacing the SPI Bus with BCM2835 Library..20
 3.3.1 Enabling the Device Tree Support..21
 3.3.2 Installing the BCM2835 Library...22
 3.4 ADS1018 SPI Communication and Configuration..22
 3.4.1 ADS1018 Configuration Register Settings..24
 3.4.2 Example Code using BCM2835 Library..25
 3.4.3 Converting the Read Integer Value to Voltage..26

visit http://www.conmeleon.org/ for more information Page 3 of 28

http://www.conmeleon.org/

Illustration Index
Figure 1: CONMELEON C1 board connectors...5
Figure 2: Raspberry Pi 40 Pin connection header pinout (Source: http://www.rs-online.com)..........7
Figure 3: CONMELEON C1 24V Digital Input Circuit..9
Figure 4: CONMELEON C1 Digital Output Circuit..10
Figure 5: ADS1018 pinout..12
Figure 6: CONMELEON C1 analog input circuit...13
Figure 7: Raspberry Pi Configuration Utility..15
Figure 8: Edit /boot/config.txt..17
Figure 9: Create 90-spi.rules file for spidev..19
Figure 10: Enable Device Tree Support..21

visit http://www.conmeleon.org/ for more information Page 4 of 28

http://www.conmeleon.org/

 1 The CONMELEON Hardware

The CONMELEON IO boards (e.g. the CONMELEON C1) are extensions for the
Raspberry Pi B+ or 2B models with 40 pin connection headers. They provide digital inputs
and outputs as well as analog ones. Depending on the IO board type, the number of inputs
and outputs is different. This guide is explicitly dealing with the CONMELEON C1
hardware.

The CONMELEON C1 board has the following connectors.

Name Description

PWR Power supply connector, apply 24V DC, triple check the correct
polarity

DI 1 Digital input 1, 24V HTL logic level

DI 2 Digital input 2, 24V HTL logic level

DI 3 Digital input 3, 24V HTL logic level

DI 4 Digital input 4, 24V HTL logic level

DO 1 Digital output 1, relay normally open

DO 2 Digital output 2, relay normally open

visit http://www.conmeleon.org/ for more information Page 5 of 28

Figure 1: CONMELEON C1 board connectors

http://www.conmeleon.org/

DO 3 Digital output 3, relay normally open

DO 4 Digital output 4, relay normally open

AI 1 Analog input 1, 0..10V DC

AI 2 Analog input 2, 0..10V DC

AI 3 Analog input 3, 0..10V DC

AI 4 Analog input 4, 0..10V DC

Raspberry Pi 2 B
connector

Attach the Raspberry Pi 2 B to this 40 pin header. The microSD
card should face upwards (in direction of PWR) and the ethernet
connector should face downwards

PWR LED This LED glows in red color, if the supply voltage is applied to the
PWR connector

DI 1 LED This LED glows in green color, if the voltage at DI 1 is applied

DI 2 LED This LED glows in green color, if the voltage at DI 2 is applied

DI 3 LED This LED glows in green color, if the voltage at DI 3 is applied

DI 4 LED This LED glows in green color, if the voltage at DI 4 is applied

DO1 LED This LED glows in green color, if the relay at DO 1 is switched on

DO2 LED This LED glows in green color, if the relay at DO 2 is switched on

DO3 LED This LED glows in green color, if the relay at DO 3 is switched on

DO4 LED This LED glows in green color, if the relay at DO 4 is switched on

The following figure shows the pinout of the Raspberry Pi B+ and 2B (40 pin header) for
completeness. Pleas note that the figure shows the pins of the Raspberry Pi, they will be
mirrored on the CONMELEON C1 board (Pin 1 3,3V will be on the right and Pin 2 5V will
be on the left).

visit http://www.conmeleon.org/ for more information Page 6 of 28

http://www.conmeleon.org/

There is also a great pinout at Gadgetoid

http://pi.gadgetoid.com/pinout

visit http://www.conmeleon.org/ for more information Page 7 of 28

Figure 2: Raspberry Pi 40 Pin connection header pinout (Source: http://www.rs-online.com)

http://www.conmeleon.org/
http://pi.gadgetoid.com/pinout
http://www.rs-online.com/designspark/electronics/eng/blog/introducing-the-raspberry-pi-b-plus

 2 Digital IO

If you are new to GPIO usage on the Raspberry Pi, the following link might be useful.

https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/REA
DME.md

The following table shows the IO assignment of the C1 board to the Raspberry Pi's header
connector.

Raspberry Pi
Header Pin (physical)

GPIO Number
BCM2836

CONMELEON C1
Screw Terminal

38 20 Digital IN 1 (24V)

40 21 Digital IN 2 (24V)

15 22 Digital IN 3 (24V)

16 23 Digital IN 4 (24V)

18 24 Digital OUT 1 (Relay)

22 25 Digital OUT 2 (Relay)

37 26 Digital OUT 3 (Relay)

13 27 Digital OUT 4 (Relay)

We will need the GPIO numbers later, when accessing the digital IO via software.

visit http://www.conmeleon.org/ for more information Page 8 of 28

http://www.conmeleon.org/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md

 2.1 Digital Input Circuit

Figure 3 shows the circuit details.

The digital inputs are operated at a HTL level of 24V. Therefore the GPIO inputs of the
Raspberry Pi are protected and isolated by Toshiba TLP290 photo couplers.

The resistors R12, R14, R16 and R18 are limiting the forward current for the LED of the
photo coupler. R13, R15, R17 and R19 are providing an additional threshold for the
forward current to get a slightly higher diode forward voltage than the normal 1,1 V. R1,
R2, R3 and R20 are normal pull-up resistors to get a defined logic level at the GPIO pins
of the Raspberry Pi. Due to the input circuit, the digital inputs are inverted. For 0V at the
input you will get true at the GPIO input and 24V at the input will lead to false.

The voltage at the digital inputs needs to be at least 5,5V to get a logical TRUE.

visit http://www.conmeleon.org/ for more information Page 9 of 28

Figure 3: CONMELEON C1 24V Digital Input Circuit

http://www.conmeleon.org/

 2.2 Digital Output Circuit

The CONMELEON C1 board has 4 digital outputs, which are able to switch higher loads
with built in relays (type OMRON G5Q-14, single pole double throw with 5 VDC rated coil
voltage).

The maximum resistive load the relays are able to switch is 3A @ 30VDC or 3A @
230VAC.

To be able to switch the inductive load of the relay coil with the Raspberry Pi GPIO's a
Darlington transistor array (IC1 ULN2803) is used. The current switching condition of every
output is shown with LED's (LED1, LED2, LED3 and LED4). Please note the current
limiting resistors R21, R22, R23 and R25 for the LED's to allow a maximum LED current of
20mA. The capacitor C1 is used as a decoupling capacitor to keep off voltage spikes from
the power supply pins of IC1.

visit http://www.conmeleon.org/ for more information Page 10 of 28

Figure 4: CONMELEON C1 Digital Output Circuit

http://www.conmeleon.org/

 2.3 Interfacing the GPIO via SYSFS

SYSFS has the advantage that it is part of the Linux Kernel and therefore available on
almost every Linux based platform. SYSFS is providing access (reading and writing) via
simple file handling.

Per default the GPIO files (e.g. /sys/class/gpio/export) are owned by the root user, but also
belong to the gpio group. If you want to use the remote debugging features in Eclipse CDT,
it is quite helpful to add the user, which is accessing the Raspberry Pi to the gpio group.
SSH into your Raspberry Pi and enter the following command:

herwig@CONMELEON ~ $ sudo adduser herwig gpio
Adding user `herwig' to group `gpio' ...
Adding user herwig to group gpio
Done.

Please note that with this configuration it is still not possible to access the GPIO's with an
executable with any other user than root. This behavior is by default for security reasons.

You can launch a root shell on the Raspberry Pi with the following command:

herwig@CONMELEON ~ $ sudo -i

Within this shell you can start your executable and you will have full access to the SYSFS
GPIO related files.

 2.3.1 Programming the GPIO via SYSFS

The programming of the GPIO to use them as digital inputs or outputs is pretty straight
forward. In general you have to follow the following procedure:

1. Export the pin to be able to use it
Write the GPIO pin number (e.g. 20 for DI 1 of the CONMELEON C1 board) to the
file /sys/class/gpio/export

2. Set the pin direction to input or output
Write “in” or “out” to the file /sys/class/gpio/gpio20/direction

3. Write or read the pin value
Read or write “1” for true and “0” for false to the file /sys/class/gpio/gpio20/value

4. Unexport the pin if you don't need it anymore
Write the GPIO pin number (e.g. 20 for DI 1 of the CONMELEON C1 board) to the
file /sys/class/gpio/unexport

visit http://www.conmeleon.org/ for more information Page 11 of 28

http://www.conmeleon.org/

 3 Analog IO

The CONMELEON C1 board provides analog inputs only.

 3.1 Analog Input Circuit

The CONMELEON C1 board uses a 12bit 4 channel ΔΣ ADC (Analog Digital Converter)
which is connected via SPI bus to the Raspberry Pi. The ADC is a ADS1018 from Texas
Instruments, with a programmable data rate up to 3300 samples per second and an
internal programmable gain amplifier. The channels are configured in single ended mode
and allow an input voltage level from 0V to +10V.

Figure 5 shows the pinout of the ADS1018.

The maximum input voltage level of the ADS1018 is limited to VDD + 0,3 V. As you can
see in Figure 6 the VDD voltage of the CONMELEON C1 board is 3,3V. Therefore a
voltage divider (e.g. R4 and R5 for AIN0) is used to scale down the nominal maximum
input voltage of 10V to the allowed 3,3V.

Never apply larger voltages than 10V DC to any of the analog inputs of the
CONMELEON C1 board! Higher voltages will destroy the ADS1018!

visit http://www.conmeleon.org/ for more information Page 12 of 28

Figure 5: ADS1018 pinout

http://www.conmeleon.org/

Raspberry Pi
Header Pin (physical)

ADS1018 pin Description

19 10 DIN / MOSI

21 9 DOUT / MISO

23 1 SCLK

26 2 CS

visit http://www.conmeleon.org/ for more information Page 13 of 28

Figure 6: CONMELEON C1 analog input circuit

http://www.conmeleon.org/

 3.2 Interfacing the SPI Bus with Linux Kernel Device Driver

A nice startup for the SPI bus on the Raspberry Pi is available at
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md

A great tutorial on interfacing an ADC via SPI bus on the Raspberry Pi can be found here
http://hertaville.com/interfacing-an-spi-adc-mcp3008-chip-to-the-raspberry-pi- using-c/

Hussam Al-Hertani uses a MCP3008 from Microchip for his tutorial instead of the TI
ADS1018, but nevertheless the general procedure is the same.

We will use the linux kernel SPI driver kernel module for accessing the SPI interface. This
is slower than driver memory mapping or direct register access of the BCM2836 SoC of
the Raspberry Pi 2 B but it is highly portable and for our applications the speed is way
enough.

We need to enable the SPI kernel driver first, just in case this is not done yet.

 3.2.1 Enabling the SPI Driver

The most easy way to enable the SPI driver is via the raspi-config utility. Which can be
started with the following command:

herwig@conmeleon ~ $ sudo raspi-config

The SPI driver can be found in the advanced options.

visit http://www.conmeleon.org/ for more information Page 14 of 28

http://www.conmeleon.org/
http://hertaville.com/2013/07/24/interfacing-an-spi-adc-mcp3008-chip-to-the-raspberry-pi-using-c/
http://hertaville.com/interfacing-an-spi-adc-mcp3008-chip-to-the-raspberry-pi-using-c.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md

Figure 7: Raspberry Pi Configuration Utility

Just answer that you want to enable the SPI driver and that the kernel module should be
loaded at boot time and you are done.

If you want to do the driver enabling the hard way, you can follow the instructions below.

First check if the driver is already loaded. SSH into the device and enter the following
command

herwig@conmeleon ~ $ ls /dev/spidev*

This command should produce the following output

herwig@conmeleon ~ $ ls /dev/spidev*
/dev/spidev0.0 /dev/spidev0.1

visit http://www.conmeleon.org/ for more information Page 15 of 28

http://www.conmeleon.org/

If it is not, you can double check if the kernel driver is loaded with the command

herwig@conmeleon ~ $ lsmod
Module Size Used by
uio_pdrv_genirq 2958 0
uio 8119 1 uio_pdrv_genirq
snd_bcm2835 18850 0
snd_pcm 75388 1 snd_bcm2835
snd_timer 17784 1 snd_pcm
snd 51667 3 snd_bcm2835,snd_timer,snd_pcm
fuse 82155 1
ipv6 333229 22

If you don't see an entry called spi_bcm2708, you can be 100% sure, that the kernel driver
is not loaded.

Kernels starting from version 3.18 don't support the original /etc/modprobe.d/raspi-
blacklist.conf file anymore.

To check your kernel version enter the following command.

herwig@conmeleon ~ $ cat /proc/version
Linux version 3.18.7-v7+ (dc4@dc4-XPS13-9333) (gcc version 4.8.3
20140303 (prerelease) (crosstool-NG linaro-1.13.1+bzr2650 - Linaro GCC
2014.03)) #755 SMP PREEMPT Thu Feb 12 17:20:48 GMT 2015

Edit the file /boot/config.txt instead.

herwig@conmeleon ~ $ sudo nano /boot/config.txt

Add the line shown in Figure 8 at the bottom of the file.

visit http://www.conmeleon.org/ for more information Page 16 of 28

http://www.conmeleon.org/

Save the file with Ctrl+O and exit with Ctrl+X.

Reboot the Raspberry Pi with

herwig@conmeleon ~ $ sudo reboot now

You should now see the two SPI devices /dev/spidev0.0 and /dev/spidev0.1.

The chip select input pin of the ADS1018 is connected to pin 26 of the
Raspberry Pi, which is CE1. Therefore the ADS1018 can be addressed
via /dev/spidev0.1

visit http://www.conmeleon.org/ for more information Page 17 of 28

Figure 8: Edit /boot/config.txt

http://www.conmeleon.org/

 3.2.2 Create SPI Permissions

Per default the SPI devices on the Raspberry Pi can be accessed with user root only. We'd
want to change this, because life will be much easier when using the remote debugger of
Eclipse CDT for development.

First create a new “spi” group.

herwig@conmeleon ~ $ sudo groupadd -f --system spi

Next step is to add the user, who should have access to the SPI devices to the new group.

herwig@conmeleon ~ $ sudo groupadd -f --system spi

herwig@CONMELEON ~ $ sudo adduser herwig spi
Adding user `herwig' to group `spi' ...
Adding user herwig to group spi
Done.
herwig@CONMELEON ~ $

Now we will have to assign the spidev subsystem to the spi group we just created.
For this we will have to create the file /etc/udev/rules.d/90-spi.rules.

herwig@CONMELEON ~ $ cd /etc/udev/rules.d/
herwig@CONMELEON /etc/udev/rules.d $ sudo nano 90-spi.rules

Enter the line as shown in Figure 9.

visit http://www.conmeleon.org/ for more information Page 18 of 28

http://www.conmeleon.org/

Save the file with Ctrl+O and exit with Ctrl+X. Reboot the Raspberry Pi to apply the
changes.

visit http://www.conmeleon.org/ for more information Page 19 of 28

Figure 9: Create 90-spi.rules file for spidev

http://www.conmeleon.org/

 3.3 Interfacing the SPI Bus with BCM2835 Library

The BCM2835 library is an alternative to the Linux Kernel device driver approach. It is
much faster, because it is addressing the BCM2835 (or BCM2836 of the Raspberry Pi 2)
registers directly. The disadvantage is, that it is coded especially for the Raspberry Pi and
is not portable to other Linux based platforms (e.g. the BeagleBone Black).
To be able to use the library with the BCM2836 of the Raspberry Pi 2 B we will need at
least library version 1.39.

The library and a lot of useful documentation can be found at

http://www.airspayce.com/mikem/bcm2835/index.html

visit http://www.conmeleon.org/ for more information Page 20 of 28

http://www.conmeleon.org/
http://www.airspayce.com/mikem/bcm2835/index.html

 3.3.1 Enabling the Device Tree Support

The BCM2835 library needs the support for the device tree enabled to work properly. It is
also necessary to disable the SPI Kernel Driver, otherwise it will interfere with the library,
which is accessing the registers of the BCM2835 (BCM2836) chip directly. The best way to
enable the device tree support is via the raspi-config utility. The device tree support can be
activated by selecting 8 advanced options and then A5 Device Tree.

Reboot after the change.

Now you can check if the device tree is enabled properly. Change to the /proc/device-
tree/soc directory and check if the ranges file is present.

herwig@CONMELEON ~ $ cd /proc/device-tree/soc/
herwig@CONMELEON /proc/device-tree/soc $ ls ranges
ranges
herwig@CONMELEON /proc/device-tree/soc $

visit http://www.conmeleon.org/ for more information Page 21 of 28

Figure 10: Enable Device Tree Support

http://www.conmeleon.org/

 3.3.2 Installing the BCM2835 Library

So first of all the BCM2835 library needs to be built on the Raspberry Pi 2 B.

herwig@conmeleon ~ $ wget
http://www.airspayce.com/mikem/bcm2835/bcm2835-1.46.tar.gz
herwig@conmeleon ~ $ tar zxvf bcm2835-1.46.tar.gz
herwig@conmeleon ~ $ cd bcm2835-1.46/
herwig@conmeleon ~/bcm2835-1.46 $./configure
herwig@conmeleon ~/bcm2835-1.46 $ make
herwig@conmeleon ~/bcm2835-1.46 $ sudo make check
herwig@conmeleon ~/bcm2835-1.46 $ sudo make install

This will build and install the library libbcm2835.a into the /usr/local/lib directory and copy
the file bcm2835.h to the /usr/local/include directory. It will also install the kernel module it
is using.

 3.4 ADS1018 SPI Communication and Configuration

The ADS1018 data sheet is providing lots of information.

One of the important things is the maximum clock rate of the SCLK signal. This value is
given with a minimum clock period of 250 ns (parameter tsclk given on page 5 of the data
sheet).So we must not set the bus SCLK frequency of the Raspberry Pi higher than 4
MHz. As the maximum data rate of the ADS1018 is 3300 samples per second, a SCLK
frequency of around 1 MHz should be fine.

The SPI bus of the Raspberry Pi SoC provides possible clock rates in multiples of two:

clock divider clock speed

2 125 MHz

4 62,5 MHz

8 31,2 MHz

16 15,6 MHz

32 7,8 MHz

64 3,9 MHz

128 1953 kHz

256 976 kHz

512 488 kHz

1024 244 kHz

visit http://www.conmeleon.org/ for more information Page 22 of 28

http://www.conmeleon.org/

2048 122 kHz

4096 61 kHz

8192 30,5 kHz

16384 15,2 kHz

32768 7629 Hz

If you choose a clock rate which is not in the list (e.g. 1 MHz) it will be reduced to the next
lower valid setting (e.g. 976kHz) automatically.

The ADS1018 must be operated in SPI mode 1 (clock polarity CPOL = 0, clock phase
CPHA = 1). This gives how data will be exchanged between the ADS1018 and the
Raspberry Pi SPI bus driver chip.

CPOL = 0
The clock starts in “low” state and the leading edge is rising, the following
edge is falling

CPOL = 1
The clock starts in “high” state and the leading edge is falling, the
following edge is rising

CPHA = 0 Data is sampled on the leading edge

CPHA = 1 Data is sampled on the trailing edge

So a valid signal on the MISO or MOSI line needs to be present at the rising edge of the
clock and will be latched to the internal register at the falling edge of the clock.

visit http://www.conmeleon.org/ for more information Page 23 of 28

http://www.conmeleon.org/

 3.4.1 ADS1018 Configuration Register Settings

Both the configuration register and the conversion (data) register will be written and read
with MSB (Most Significant Byte) first.

The following table shows the configuration register settings recommended for the
CONMELEON C1 board.

bit
number

value name in
datasheet

description

MSB 15 0 SS trigger bit for starting
single shot
conversion

14 1 MUX2 channel selection,
we use only single
ended, AIN0 = 100,
AIN1 = 101, AIN2 =

110, AIN3 = 111

13 0 MUX1

12 0 MUX0

11 0 PGA2 programmable gain
amplifier, we set the
full scale voltage to

4,096V = 001

10 0 PGA1

9 1 PGA0

8 1 MODE single shot (1) or
continuous (0)

sampling

LSB 7 1 DR2 data rate (sampling
speed), we set to full
speed at 3300 sps

6 1 DR1

5 0 DR0

4 0 TS_MODE read the internal
temperature sensor
(1), but we will use
the normal analog

inputs (0)

3 1 PULL_UP_EN internal weak pull up
resistor active (1) or

inactive (0)

2 0 NOP1 no operation

1 1 NOP0

0 1 NOT USED always 1

visit http://www.conmeleon.org/ for more information Page 24 of 28

http://www.conmeleon.org/

If we convert the MSB and LSB to hex values we will get:

reading channel AI 1 (AIN0 in ADS1018 language):
MSB = 0x43 (C3 with single shot trigger bit 15 set) and LSB = 0xCB

reading channel AI 2 (AIN1):
MSB = 0x53 (D3 with single shot trigger bit 15 set) and LSB = 0xCB

reading channel AI 3 (AIN2):
MSB = 0x63 (E3 with single shot trigger bit 15 set) and LSB = 0xCB

reading channel AI 4 (AIN3):
MSB = 0x73 (F3 with single shot trigger bit 15 set) and LSB = 0xCB

 3.4.2 Example Code using BCM2835 Library

The following C/C++ code snippet shows a very easy data transfer to and from the
ADS1018 just reading the first input channel AIN0.

#include "bcm2835.h"
#include <unistd.h> // needed for usleep() function

int main() {

if (!bcm2835_init())
 return 1;
bcm2835_spi_begin();
bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
bcm2835_spi_setDataMode(BCM2835_SPI_MODE1);
bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_256);
bcm2835_spi_chipSelect(BCM2835_SPI_CS1);
bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS1, LOW);

char TxData[4];
char RxData[4];

// we are transferring data in 32 bit mode, according to the ADS1018
// datasheet, we should write the configuration register two times in a

row

// read channel AIN0 in single shot mode

TxData[0] = 0xC3;
TxData[1] = 0xCB;
TxData[2] = 0xC3;
TxData[3] = 0xCB;
RxData[0] = 0x00;
RxData[1] = 0x00;
RxData[2] = 0x00;
RxData[3] = 0x00;

// do the whole thing 10 times, just because we can

visit http://www.conmeleon.org/ for more information Page 25 of 28

http://www.conmeleon.org/

for (int i = 0; i < 10; i++) {
// configure for a single shot conversion, reading makes no sense
// because the conversion is not finished yet
bcm2835_spi_writenb(TxData, 4);
// data rate is set to 3300 samples per second, so we will get one

every 303 mysec minimum, so we wait for 350 microseconds and now we can also
read the data, the BCM3835 library is not providing a readnb() function, so we
use transfernb instead

usleep(350);
// now we remove the single shot conversion trigger bit, because we

don't want to wait another 350 microseconds
TxData[0] = 0x43;
TxData[2] = 0x43;
bcm2835_spi_transfernb(TxData,RxData, 4);
// the answer of the ADS1018 will give MSB of conversion value in

RxData[0], LSB of conversion value in RxData[1], MSB of current configuration
register RxData[2], LSB of current configuration register RxData[3]

// please note that the ADS1018 will always return the single shot
trigger bit as 0, so if you transfer the MSB 0xC3 you will receive the MSB 0x43
from the ADS1018

printf("Read cycle %d, bytes read from ADS1018 channel 0: %2.2X,
%2.2X, %2.2X, %2.2X\n", i, RxData[0], RxData[1], RxData[2], RxData[3]);

}
// BCM2835 library clean up

bcm2835_spi_end();
bcm2835_close();
return 0;

}

 3.4.3 Converting the Read Integer Value to Voltage

The ADS1018 provides the converted value of the input in twos complement value. Due to
the fact, that we don't use differential inputs but single ended ones, we will loose one bit of
the 12 bits resolution of the ADS1018. Another fact is that the ADS1018 internal reference
voltage (the same as the supply voltage by design) for conversion is 3,3 V. The next
possible setting of the programmable gain amplifier is 4,096 V so we loose again, because
we will not get a full scale output from the ADS1018.

First we need to rearrange our two 8 Bit MSB and LSB value of the conversion register to
a new 16 Bit value. This can be done with a little bit shifting and some other magical
tricks ;-).

The following C/C++ code snippet deals with this matter:

unsigned int nRawVoltage = 0;
// used for bit shifting, unsigned int will be 16 Bits on most systems, at least
is is on the Raspberry Pi

// copy data register bytes to 16 bit integer
// shift MSB 8 bits to the left and or in LSB
nRawVoltage = (RxData[0] << 8) | RxData[1];

// now shift integer 4 bits to the right, because the 12 bit voltage value of

visit http://www.conmeleon.org/ for more information Page 26 of 28

http://www.conmeleon.org/

the ADS1018 is left aligned
nRawVoltage >>= 4;

Now we have our 16 Bit integer value exactly how we wanted it to be.

The next things to consider are the following points:

• We have an input voltage divider in the analog input circuit providing a factor of 3,0
and we want to know the voltage level at the input itself (something between 0 V
and 10V) so we need this factor of 3.0 for our voltage calculation.

• We have set a full scale voltage with the programmable gain amplifier of 4,096V

• The reference voltage for conversion is 3,3 V (the supply voltage of the ADS1018)

To make the formula a bit more readable, we will use the following abbreviations.

Uref ADS1018 reference voltage (3,3V)

Ufs full scale voltage (4,096V)

Uinput input voltage to be converted

Uraw 16 bit raw value received from the ADS1018

fd input voltage divider factor (3,0)

ADCresADS1018 resolution (12 bit)

U input=

U raw∗f d∗U fs

U ref

∗U ref

2(ADCres−1)
=
U raw∗f d∗U fs

2(ADCres−1)
=
U raw∗3,0∗4,096

2(12−1) =U raw∗0,006

Now the only thing we have to do is convert the 16 bit integer value to a floating point type
to be able to calculate.

visit http://www.conmeleon.org/ for more information Page 27 of 28

http://www.conmeleon.org/

The following C++ (sorry no static_cast in C language ;-)) code snippet shows a possible
conversion function. You will need to pass a 4 byte character array holding the reply of the
ADS1018 e.g. RxData from the SPI interface example above:

float getVoltageValue(char* paData) {

float fFullscaleVoltage = 4.096;
float fVoltageDivider = 3.0;
unsigned int nRawVoltage = 0; // used for bit shifting

// copy data register bytes to 16 bit integer
// shift MSB 8 bits to the left and or in LSB
nRawVoltage = (paData[0] << 8) | paData[1];

// now shift integer 4 bits to the right, because the 12 bit voltage value
of the ADS1018 is left aligned

nRawVoltage >>= 4;

return
(static_cast<float>(nRawVoltage))*fVoltageDivider*fFullscaleVoltage/2048.0;
}

visit http://www.conmeleon.org/ for more information Page 28 of 28

http://www.conmeleon.org/

	1 The CONMELEON Hardware
	2 Digital IO
	2.1 Digital Input Circuit
	2.2 Digital Output Circuit
	2.3 Interfacing the GPIO via SYSFS
	2.3.1 Programming the GPIO via SYSFS

	3 Analog IO
	3.1 Analog Input Circuit
	3.2 Interfacing the SPI Bus with Linux Kernel Device Driver
	3.2.1 Enabling the SPI Driver
	3.2.2 Create SPI Permissions

	3.3 Interfacing the SPI Bus with BCM2835 Library
	3.3.1 Enabling the Device Tree Support
	3.3.2 Installing the BCM2835 Library

	3.4 ADS1018 SPI Communication and Configuration
	3.4.1 ADS1018 Configuration Register Settings
	3.4.2 Example Code using BCM2835 Library
	3.4.3 Converting the Read Integer Value to Voltage

