summaryrefslogtreecommitdiff
path: root/yaksh/bash_stdio_evaluator.py
diff options
context:
space:
mode:
authorankitjavalkar2016-11-10 12:36:13 +0530
committerankitjavalkar2016-11-10 12:43:14 +0530
commita09df642d4f3623ee517aaed2eac1372ebacc0e0 (patch)
tree7bfb5c55066bf7bda56dfeb02eeb4dbc2f0a2bef /yaksh/bash_stdio_evaluator.py
parent4904a8305e7e83a00cef718a42bbbf8e7d5f8740 (diff)
downloadonline_test-a09df642d4f3623ee517aaed2eac1372ebacc0e0.tar.gz
online_test-a09df642d4f3623ee517aaed2eac1372ebacc0e0.tar.bz2
online_test-a09df642d4f3623ee517aaed2eac1372ebacc0e0.zip
Add point based weightage for partial grading instead of percentage based partial grading
Diffstat (limited to 'yaksh/bash_stdio_evaluator.py')
-rw-r--r--yaksh/bash_stdio_evaluator.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/yaksh/bash_stdio_evaluator.py b/yaksh/bash_stdio_evaluator.py
index 2826a6b..fab19bf 100644
--- a/yaksh/bash_stdio_evaluator.py
+++ b/yaksh/bash_stdio_evaluator.py
@@ -23,7 +23,7 @@ class BashStdioEvaluator(StdIOEvaluator):
delete_files(self.files)
super(BashStdioEvaluator, self).teardown()
- def compile_code(self, user_answer, file_paths, expected_input, expected_output, marks):
+ def compile_code(self, user_answer, file_paths, expected_input, expected_output, weightage):
if file_paths:
self.files = copy_files(file_paths)
if not isfile(self.submit_code_path):
@@ -34,9 +34,9 @@ class BashStdioEvaluator(StdIOEvaluator):
self.write_to_submit_code_file(self.submit_code_path, user_answer)
def check_code(self, user_answer, file_paths, partial_grading,
- expected_input, expected_output, marks):
+ expected_input, expected_output, weightage):
success = False
- test_case_marks = 0.0
+ test_case_weightage = 0.0
expected_input = str(expected_input).replace('\r', '')
proc = subprocess.Popen("bash ./Test.sh",
@@ -49,5 +49,5 @@ class BashStdioEvaluator(StdIOEvaluator):
expected_input,
expected_output
)
- test_case_marks = float(marks) if partial_grading and success else 0.0
- return success, err, test_case_marks
+ test_case_weightage = float(weightage) if partial_grading and success else 0.0
+ return success, err, test_case_weightage