/********** Copyright 1990 Regents of the University of California. All rights reserved. Author: 1988 Wayne A. Christopher, U. C. Berkeley CAD Group Modified: 2000 AlansFixes, 2013/2015 patch by Krzysztof Blaszkowski **********/ /* * This module replaces the old "writedata" routines in nutmeg. * Unlike the writedata routines, the OUT routines are only called by * the simulator routines, and only call routines in nutmeg. The rest * of nutmeg doesn't deal with OUT at all. */ /************************************************************************** * 08.June.2020 - RP, BM - Added OS (Windows and Linux) dependent * preprocessors and sockets ************************************************************************** * 29.May.2020 - RP, BM - Read all the IPs and ports from NGHDL_COMMON_IP * file from /tmp folder. It connects to each of the ghdlserver and sends * CLOSE_FROM_NGSPICE message to terminate themselves **************************************************************************/ #include "ngspice/ngspice.h" /*05.June.2020 - BM - Added follwing includes for Windows OS */ #ifdef _WIN32 #undef BOOLEAN /* Undefine it due to conflicting definitions in Windows OS */ #include #include #endif #include "ngspice/cpdefs.h" #include "ngspice/ftedefs.h" #include "ngspice/dvec.h" #include "ngspice/plot.h" #include "ngspice/sim.h" #include "ngspice/inpdefs.h" /* for INPtables */ #include "ngspice/ifsim.h" #include "ngspice/jobdefs.h" #include "ngspice/iferrmsg.h" #include "circuits.h" #include "outitf.h" #include "variable.h" #include "ngspice/cktdefs.h" #include "ngspice/inpdefs.h" #include "breakp2.h" #include "runcoms.h" #include "plotting/graf.h" #include "../misc/misc_time.h" /* 10.Mar.2917 - RM - Added the following #include */ #include #include #include #include #include #include /* 27.May.2020 - BM - Added the following #include */ #ifdef __linux__ #include #include #include #include #endif extern char *spice_analysis_get_name(int index); extern char *spice_analysis_get_description(int index); static int beginPlot(JOB *analysisPtr, CKTcircuit *circuitPtr, char *cktName, char *analName, char *refName, int refType, int numNames, char **dataNames, int dataType, bool windowed, runDesc **runp); static int addDataDesc(runDesc *run, char *name, int type, int ind, int meminit); static int addSpecialDesc(runDesc *run, char *name, char *devname, char *param, int depind, int meminit); static void fileInit(runDesc *run); static void fileInit_pass2(runDesc *run); static void fileStartPoint(FILE *fp, bool bin, int num); static void fileAddRealValue(FILE *fp, bool bin, double value); static void fileAddComplexValue(FILE *fp, bool bin, IFcomplex value); static void fileEndPoint(FILE *fp, bool bin); static void fileEnd(runDesc *run); static void plotInit(runDesc *run); static void plotAddRealValue(dataDesc *desc, double value); static void plotAddComplexValue(dataDesc *desc, IFcomplex value); static void plotEnd(runDesc *run); static bool parseSpecial(char *name, char *dev, char *param, char *ind); static bool name_eq(char *n1, char *n2); static bool getSpecial(dataDesc *desc, runDesc *run, IFvalue *val); static void freeRun(runDesc *run); static int InterpFileAdd(runDesc *plotPtr, IFvalue *refValue, IFvalue *valuePtr); static int InterpPlotAdd(runDesc *plotPtr, IFvalue *refValue, IFvalue *valuePtr); /*Output data to spice module*/ #ifdef TCL_MODULE #include "ngspice/tclspice.h" #elif defined SHARED_MODULE extern int sh_ExecutePerLoop(void); extern void sh_vecinit(runDesc *run); #endif /*Suppressing progress info in -o option */ #ifndef HAS_WINGUI extern bool orflag; #endif // fixme // ugly hack to work around missing api to specify the "type" of signals int fixme_onoise_type = SV_NOTYPE; int fixme_inoise_type = SV_NOTYPE; #define DOUBLE_PRECISION 15 static clock_t lastclock, currclock; static double *rowbuf; static size_t column, rowbuflen; static bool shouldstop = FALSE; /* Tell simulator to stop next time it asks. */ static bool interpolated = FALSE; static double *valueold, *valuenew; #ifdef SHARED_MODULE static bool savenone = FALSE; #endif /* 28.May.2020 - RP, BM - Closing the GHDL server after simulation is over */ static void close_server() { FILE *fptr; char ip_filename[48]; #ifdef __linux__ sprintf(ip_filename, "/tmp/NGHDL_COMMON_IP_%d.txt", getpid()); #elif _WIN32 WSADATA WSAData; SOCKADDR_IN addr; WSAStartup(MAKEWORD(2, 2), &WSAData); sprintf(ip_filename, "C:\\Windows\\Temp\\NGHDL_COMMON_IP_%d.txt", getpid()); #endif fptr = fopen(ip_filename, "r"); if(fptr) { char server_ip[20], *message = "CLOSE_FROM_NGSPICE"; int port = -1, sock = -1, try_limit = 0, skip_flag = 0; struct sockaddr_in serv_addr; serv_addr.sin_family = AF_INET; /* scan server ip and port to send close message */ while(fscanf(fptr, "%s %d\n", server_ip, &port) == 2) { /* Create socket descriptor */ try_limit = 10, skip_flag = 0; while(try_limit > 0) { if((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) { sleep(0.2); try_limit--; if(try_limit == 0) { perror("\nClient Termination - Socket Failed: "); skip_flag = 1; } } else break; } if (skip_flag) continue; serv_addr.sin_port = htons(port); serv_addr.sin_addr.s_addr = inet_addr(server_ip); /* connect with the server */ try_limit = 10, skip_flag = 0; while(try_limit > 0) { if(connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) { sleep(0.2); try_limit--; if(try_limit == 0) { perror("\nClient Termination - Connection Failed: "); skip_flag = 1; } } else break; } if (skip_flag) continue; /* send close message to the server */ #ifdef __linux__ send(sock, message, strlen(message), 0); close(sock); #elif _WIN32 send(sock, message, strlen(message) + 1, 0); closesocket(sock); #endif } } #ifdef _WIN32 WSACleanup(); #endif fclose(fptr); remove(ip_filename); } // The two "begin plot" routines share all their internals... int OUTpBeginPlot(CKTcircuit *circuitPtr, JOB *analysisPtr, IFuid analName, IFuid refName, int refType, int numNames, IFuid *dataNames, int dataType, runDesc **plotPtr) { char *name; if (ft_curckt->ci_ckt == circuitPtr) name = ft_curckt->ci_name; else name = "circuit name"; return (beginPlot(analysisPtr, circuitPtr, name, analName, refName, refType, numNames, dataNames, dataType, FALSE, plotPtr)); } int OUTwBeginPlot(CKTcircuit *circuitPtr, JOB *analysisPtr, IFuid analName, IFuid refName, int refType, int numNames, IFuid *dataNames, int dataType, runDesc **plotPtr) { return (beginPlot(analysisPtr, circuitPtr, "circuit name", analName, refName, refType, numNames, dataNames, dataType, TRUE, plotPtr)); } static int beginPlot(JOB *analysisPtr, CKTcircuit *circuitPtr, char *cktName, char *analName, char *refName, int refType, int numNames, char **dataNames, int dataType, bool windowed, runDesc **runp) { runDesc *run; struct save_info *saves; bool *savesused = NULL; int numsaves; int i, j, depind = 0; char namebuf[BSIZE_SP], parambuf[BSIZE_SP], depbuf[BSIZE_SP]; char *ch, tmpname[BSIZE_SP]; bool saveall = TRUE; bool savealli = FALSE; char *an_name; int initmem; /*to resume a run saj *All it does is reassign the file pointer and return (requires *runp to be NULL if this is not needed) */ if (dataType == 666 && numNames == 666) { run = *runp; run->writeOut = ft_getOutReq(&run->fp, &run->runPlot, &run->binary, run->type, run->name); } else { /*end saj*/ /* Check to see if we want to print informational data. */ if (cp_getvar("printinfo", CP_BOOL, NULL, 0)) fprintf(cp_err, "(debug printing enabled)\n"); /* Check to see if we want to save only interpolated data. */ if (cp_getvar("interp", CP_BOOL, NULL, 0)) { interpolated = TRUE; fprintf(cp_out, "Warning: Interpolated raw file data!\n\n"); } *runp = run = TMALLOC(struct runDesc, 1); /* First fill in some general information. */ run->analysis = analysisPtr; run->circuit = circuitPtr; run->name = copy(cktName); run->type = copy(analName); run->windowed = windowed; run->numData = 0; an_name = spice_analysis_get_name(analysisPtr->JOBtype); ft_curckt->ci_last_an = an_name; /* Now let's see which of these things we need. First toss in the * reference vector. Then toss in anything that getSaves() tells * us to save that we can find in the name list. Finally unpack * the remaining saves into parameters. */ numsaves = ft_getSaves(&saves); if (numsaves) { savesused = TMALLOC(bool, numsaves); saveall = FALSE; for (i = 0; i < numsaves; i++) { if (saves[i].analysis && !cieq(saves[i].analysis, an_name)) { /* ignore this one this time around */ savesused[i] = TRUE; continue; } /* Check for ".save all" and new synonym ".save allv" */ if (cieq(saves[i].name, "all") || cieq(saves[i].name, "allv")) { saveall = TRUE; savesused[i] = TRUE; saves[i].used = 1; continue; } /* And now for the new ".save alli" option */ if (cieq(saves[i].name, "alli")) { savealli = TRUE; savesused[i] = TRUE; saves[i].used = 1; continue; } #ifdef SHARED_MODULE /* this may happen if shared ngspice*/ if (cieq(saves[i].name, "none")) { savenone = TRUE; saveall = TRUE; savesused[i] = TRUE; saves[i].used = 1; continue; } #endif } } if (numsaves && !saveall) initmem = numsaves; else initmem = numNames; /* Pass 0. */ if (refName) { addDataDesc(run, refName, refType, -1, initmem); for (i = 0; i < numsaves; i++) if (!savesused[i] && name_eq(saves[i].name, refName)) { savesused[i] = TRUE; saves[i].used = 1; } } else { run->refIndex = -1; } /* Pass 1. */ if (numsaves && !saveall) { for (i = 0; i < numsaves; i++) if (!savesused[i]) for (j = 0; j < numNames; j++) if (name_eq(saves[i].name, dataNames[j])) { addDataDesc(run, dataNames[j], dataType, j, initmem); savesused[i] = TRUE; saves[i].used = 1; break; } } else { for (i = 0; i < numNames; i++) if (!refName || !name_eq(dataNames[i], refName)) /* Save the node as long as it's an internal device node */ if (!strstr(dataNames[i], "#internal") && !strstr(dataNames[i], "#source") && !strstr(dataNames[i], "#drain") && !strstr(dataNames[i], "#collector") && !strstr(dataNames[i], "#emitter") && !strstr(dataNames[i], "#base")) { addDataDesc(run, dataNames[i], dataType, i, initmem); } } /* Pass 1 and a bit. This is a new pass which searches for all the internal device nodes, and saves the terminal currents instead */ if (savealli) { depind = 0; for (i = 0; i < numNames; i++) { if (strstr(dataNames[i], "#internal") || strstr(dataNames[i], "#source") || strstr(dataNames[i], "#drain") || strstr(dataNames[i], "#collector") || strstr(dataNames[i], "#emitter") || strstr(dataNames[i], "#base")) { tmpname[0] = '@'; tmpname[1] = '\0'; strncat(tmpname, dataNames[i], BSIZE_SP-1); ch = strchr(tmpname, '#'); if (strstr(ch, "#collector")) { strcpy(ch, "[ic]"); } else if (strstr(ch, "#base")) { strcpy(ch, "[ib]"); } else if (strstr(ch, "#emitter")) { strcpy(ch, "[ie]"); if (parseSpecial(tmpname, namebuf, parambuf, depbuf)) addSpecialDesc(run, tmpname, namebuf, parambuf, depind, initmem); strcpy(ch, "[is]"); } else if (strstr(ch, "#drain")) { strcpy(ch, "[id]"); if (parseSpecial(tmpname, namebuf, parambuf, depbuf)) addSpecialDesc(run, tmpname, namebuf, parambuf, depind, initmem); strcpy(ch, "[ig]"); } else if (strstr(ch, "#source")) { strcpy(ch, "[is]"); if (parseSpecial(tmpname, namebuf, parambuf, depbuf)) addSpecialDesc(run, tmpname, namebuf, parambuf, depind, initmem); strcpy(ch, "[ib]"); } else if (strstr(ch, "#internal") && (tmpname[1] == 'd')) { strcpy(ch, "[id]"); } else { fprintf(cp_err, "Debug: could output current for %s\n", tmpname); continue; } if (parseSpecial(tmpname, namebuf, parambuf, depbuf)) { if (*depbuf) { fprintf(stderr, "Warning : unexpected dependent variable on %s\n", tmpname); } else { addSpecialDesc(run, tmpname, namebuf, parambuf, depind, initmem); } } } } } /* Pass 2. */ for (i = 0; i < numsaves; i++) { if (savesused[i]) continue; if (!parseSpecial(saves[i].name, namebuf, parambuf, depbuf)) { if (saves[i].analysis) fprintf(cp_err, "Warning: can't parse '%s': ignored\n", saves[i].name); continue; } /* Now, if there's a dep variable, do we already have it? */ if (*depbuf) { for (j = 0; j < run->numData; j++) if (name_eq(depbuf, run->data[j].name)) break; if (j == run->numData) { /* Better add it. */ for (j = 0; j < numNames; j++) if (name_eq(depbuf, dataNames[j])) break; if (j == numNames) { fprintf(cp_err, "Warning: can't find '%s': value '%s' ignored\n", depbuf, saves[i].name); continue; } addDataDesc(run, dataNames[j], dataType, j, initmem); savesused[i] = TRUE; saves[i].used = 1; depind = j; } else { depind = run->data[j].outIndex; } } addSpecialDesc(run, saves[i].name, namebuf, parambuf, depind, initmem); } if (numsaves) { for (i = 0; i < numsaves; i++) { tfree(saves[i].analysis); tfree(saves[i].name); } tfree(saves); tfree(savesused); } if (numNames && ((run->numData == 1 && run->refIndex != -1) || (run->numData == 0 && run->refIndex == -1))) { fprintf(cp_err, "Error: no data saved for %s; analysis not run\n", spice_analysis_get_description(analysisPtr->JOBtype)); return E_NOTFOUND; } /* Now that we have our own data structures built up, let's see what * nutmeg wants us to do. */ run->writeOut = ft_getOutReq(&run->fp, &run->runPlot, &run->binary, run->type, run->name); if (run->writeOut) { fileInit(run); } else { plotInit(run); if (refName) run->runPlot->pl_ndims = 1; } } /* define storage for old and new data, to allow interpolation */ if (interpolated && run->circuit->CKTcurJob->JOBtype == 4) { valueold = TMALLOC(double, run->numData); for (i = 0; i < run->numData; i++) valueold[i] = 0.0; valuenew = TMALLOC(double, run->numData); } /*Start BLT, initilises the blt vectors saj*/ #ifdef TCL_MODULE blt_init(run); #elif defined SHARED_MODULE sh_vecinit(run); #endif return (OK); } /* Initialze memory for the list of all vectors in the current plot. Add a standard vector to this plot */ static int addDataDesc(runDesc *run, char *name, int type, int ind, int meminit) { dataDesc *data; /* initialize memory (for all vectors or given by 'save') */ if (!run->numData) { /* even if input 0, do a malloc */ run->data = TMALLOC(dataDesc, ++meminit); run->maxData = meminit; } /* If there is need for more memory */ else if (run->numData == run->maxData) { run->maxData = (int)(run->maxData * 1.1) + 1; run->data = TREALLOC(dataDesc, run->data, run->maxData); } data = &run->data[run->numData]; /* so freeRun will get nice NULL pointers for the fields we don't set */ memset(data, 0, sizeof(dataDesc)); data->name = copy(name); data->type = type; data->gtype = GRID_LIN; data->regular = TRUE; data->outIndex = ind; /* It's the reference vector. */ if (ind == -1) run->refIndex = run->numData; run->numData++; return (OK); } /* Initialze memory for the list of all vectors in the current plot. Add a special vector (e.g. @q1[ib]) to this plot */ static int addSpecialDesc(runDesc *run, char *name, char *devname, char *param, int depind, int meminit) { dataDesc *data; char *unique, *freeunique; /* unique char * from back-end */ int ret; if (!run->numData) { /* even if input 0, do a malloc */ run->data = TMALLOC(dataDesc, ++meminit); run->maxData = meminit; } else if (run->numData == run->maxData) { run->maxData = (int)(run->maxData * 1.1) + 1; run->data = TREALLOC(dataDesc, run->data, run->maxData); } data = &run->data[run->numData]; /* so freeRun will get nice NULL pointers for the fields we don't set */ memset(data, 0, sizeof(dataDesc)); data->name = copy(name); freeunique = unique = copy(devname); /* unique will be overridden, if it already exists */ ret = INPinsertNofree(&unique, ft_curckt->ci_symtab); data->specName = unique; if (ret == E_EXISTS) tfree(freeunique); data->specParamName = copy(param); data->specIndex = depind; data->specType = -1; data->specFast = NULL; data->regular = FALSE; run->numData++; return (OK); } static void OUTpD_memory(runDesc *run, IFvalue *refValue, IFvalue *valuePtr) { int i, n = run->numData; for (i = 0; i < n; i++) { dataDesc *d; #ifdef TCL_MODULE /*Locks the blt vector to stop access*/ blt_lockvec(i); #endif d = &run->data[i]; if (d->outIndex == -1) { if (d->type == IF_REAL) plotAddRealValue(d, refValue->rValue); else if (d->type == IF_COMPLEX) plotAddComplexValue(d, refValue->cValue); } else if (d->regular) { if (d->type == IF_REAL) plotAddRealValue(d, valuePtr->v.vec.rVec[d->outIndex]); else if (d->type == IF_COMPLEX) plotAddComplexValue(d, valuePtr->v.vec.cVec[d->outIndex]); } else { IFvalue val; /* should pre-check instance */ if (!getSpecial(d, run, &val)) continue; if (d->type == IF_REAL) plotAddRealValue(d, val.rValue); else if (d->type == IF_COMPLEX) plotAddComplexValue(d, val.cValue); else fprintf(stderr, "OUTpData: unsupported data type\n"); } #ifdef TCL_MODULE /*relinks and unlocks vector*/ blt_relink(i, d->vec); #endif } } int OUTpData(runDesc *plotPtr, IFvalue *refValue, IFvalue *valuePtr) { runDesc *run = plotPtr; // FIXME int i; run->pointCount++; #ifdef TCL_MODULE steps_completed = run->pointCount; #endif /* interpolated batch mode output to file in transient analysis */ if (interpolated && run->circuit->CKTcurJob->JOBtype == 4 && run->writeOut) { InterpFileAdd(run, refValue, valuePtr); return (OK); } /* interpolated interactive or control mode output to plot in transient analysis */ else if (interpolated && run->circuit->CKTcurJob->JOBtype == 4 && !(run->writeOut)) { InterpPlotAdd(run, refValue, valuePtr); return (OK); } /* standard batch mode output to file */ else if (run->writeOut) { if (run->pointCount == 1) fileInit_pass2(run); fileStartPoint(run->fp, run->binary, run->pointCount); if (run->refIndex != -1) { if (run->isComplex) { fileAddComplexValue(run->fp, run->binary, refValue->cValue); /* While we're looking at the reference value, print it to the screen every quarter of a second, to give some feedback without using too much CPU time */ #ifndef HAS_WINGUI if (!orflag && !ft_norefprint) { currclock = clock(); if ((currclock-lastclock) > (0.25*CLOCKS_PER_SEC)) { fprintf(stderr, " Reference value : % 12.5e\r", refValue->cValue.real); lastclock = currclock; } } #endif } else { /* And the same for a non-complex value */ fileAddRealValue(run->fp, run->binary, refValue->rValue); #ifndef HAS_WINGUI if (!orflag && !ft_norefprint) { currclock = clock(); if ((currclock-lastclock) > (0.25*CLOCKS_PER_SEC)) { fprintf(stderr, " Reference value : % 12.5e\r", refValue->rValue); lastclock = currclock; } } #endif } } for (i = 0; i < run->numData; i++) { /* we've already printed reference vec first */ if (run->data[i].outIndex == -1) continue; #ifdef TCL_MODULE blt_add(i, refValue ? refValue->rValue : NAN); #endif if (run->data[i].regular) { if (run->data[i].type == IF_REAL) fileAddRealValue(run->fp, run->binary, valuePtr->v.vec.rVec [run->data[i].outIndex]); else if (run->data[i].type == IF_COMPLEX) fileAddComplexValue(run->fp, run->binary, valuePtr->v.vec.cVec [run->data[i].outIndex]); else fprintf(stderr, "OUTpData: unsupported data type\n"); } else { IFvalue val; /* should pre-check instance */ if (!getSpecial(&run->data[i], run, &val)) { /* If this is the first data point, print a warning for any unrecognized variables, since this has not already been checked */ if (run->pointCount == 1) fprintf(stderr, "Warning: unrecognized variable - %s\n", run->data[i].name); if (run->isComplex) { val.cValue.real = 0; val.cValue.imag = 0; fileAddComplexValue(run->fp, run->binary, val.cValue); } else { val.rValue = 0; fileAddRealValue(run->fp, run->binary, val.rValue); } continue; } if (run->data[i].type == IF_REAL) fileAddRealValue(run->fp, run->binary, val.rValue); else if (run->data[i].type == IF_COMPLEX) fileAddComplexValue(run->fp, run->binary, val.cValue); else fprintf(stderr, "OUTpData: unsupported data type\n"); } #ifdef TCL_MODULE blt_add(i, valuePtr->v.vec.rVec [run->data[i].outIndex]); #endif } fileEndPoint(run->fp, run->binary); /* Check that the write to disk completed successfully, otherwise abort */ if (ferror(run->fp)) { fprintf(stderr, "Warning: rawfile write error !!\n"); shouldstop = TRUE; } } else { OUTpD_memory(run, refValue, valuePtr); /* This is interactive mode. Update the screen with the reference variable just the same */ #ifndef HAS_WINGUI if (!orflag && !ft_norefprint) { currclock = clock(); if ((currclock-lastclock) > (0.25*CLOCKS_PER_SEC)) { if (run->isComplex) { fprintf(stderr, " Reference value : % 12.5e\r", refValue ? refValue->cValue.real : NAN); } else { fprintf(stderr, " Reference value : % 12.5e\r", refValue ? refValue->rValue : NAN); } lastclock = currclock; } } #endif gr_iplot(run->runPlot); } if (ft_bpcheck(run->runPlot, run->pointCount) == FALSE) shouldstop = TRUE; #ifdef TCL_MODULE Tcl_ExecutePerLoop(); #elif defined SHARED_MODULE sh_ExecutePerLoop(); #endif return (OK); } int OUTwReference(void *plotPtr, IFvalue *valuePtr, void **refPtr) { NG_IGNORE(refPtr); NG_IGNORE(valuePtr); NG_IGNORE(plotPtr); return (OK); } int OUTwData(runDesc *plotPtr, int dataIndex, IFvalue *valuePtr, void *refPtr) { NG_IGNORE(refPtr); NG_IGNORE(valuePtr); NG_IGNORE(dataIndex); NG_IGNORE(plotPtr); return (OK); } int OUTwEnd(runDesc *plotPtr) { NG_IGNORE(plotPtr); return (OK); } int OUTendPlot(runDesc *plotPtr) { if (plotPtr->writeOut) { fileEnd(plotPtr); } else { gr_end_iplot(); plotEnd(plotPtr); } tfree(valueold); tfree(valuenew); freeRun(plotPtr); return (OK); } int OUTbeginDomain(runDesc *plotPtr, IFuid refName, int refType, IFvalue *outerRefValue) { NG_IGNORE(outerRefValue); NG_IGNORE(refType); NG_IGNORE(refName); NG_IGNORE(plotPtr); return (OK); } int OUTendDomain(runDesc *plotPtr) { NG_IGNORE(plotPtr); return (OK); } int OUTattributes(runDesc *plotPtr, IFuid varName, int param, IFvalue *value) { runDesc *run = plotPtr; // FIXME GRIDTYPE type; struct dvec *d; NG_IGNORE(value); if (param == OUT_SCALE_LIN) type = GRID_LIN; else if (param == OUT_SCALE_LOG) type = GRID_XLOG; else return E_UNSUPP; if (run->writeOut) { if (varName) { int i; for (i = 0; i < run->numData; i++) if (!strcmp(varName, run->data[i].name)) run->data[i].gtype = type; } else { run->data[run->refIndex].gtype = type; } } else { if (varName) { for (d = run->runPlot->pl_dvecs; d; d = d->v_next) if (!strcmp(varName, d->v_name)) d->v_gridtype = type; } else if (param == PLOT_COMB) { for (d = run->runPlot->pl_dvecs; d; d = d->v_next) d->v_plottype = PLOT_COMB; } else { run->runPlot->pl_scale->v_gridtype = type; } } return (OK); } /* The file writing routines. */ static void fileInit(runDesc *run) { char buf[513]; int i; size_t n; lastclock = clock(); /* This is a hack. */ run->isComplex = FALSE; for (i = 0; i < run->numData; i++) if (run->data[i].type == IF_COMPLEX) run->isComplex = TRUE; n = 0; sprintf(buf, "Title: %s\n", run->name); n += strlen(buf); fputs(buf, run->fp); sprintf(buf, "Date: %s\n", datestring()); n += strlen(buf); fputs(buf, run->fp); sprintf(buf, "Plotname: %s\n", run->type); n += strlen(buf); fputs(buf, run->fp); sprintf(buf, "Flags: %s\n", run->isComplex ? "complex" : "real"); n += strlen(buf); fputs(buf, run->fp); sprintf(buf, "No. Variables: %d\n", run->numData); n += strlen(buf); fputs(buf, run->fp); sprintf(buf, "No. Points: "); n += strlen(buf); fputs(buf, run->fp); fflush(run->fp); /* Gotta do this for LATTICE. */ if (run->fp == stdout || (run->pointPos = ftell(run->fp)) <= 0) run->pointPos = (long) n; fprintf(run->fp, "0 \n"); /* Save 8 spaces here. */ /*fprintf(run->fp, "Command: version %s\n", ft_sim->version);*/ fprintf(run->fp, "Variables:\n"); printf("No. of Data Columns : %d \n", run->numData); } static int guess_type(const char *name) { int type; if (substring("#branch", name)) type = SV_CURRENT; else if (cieq(name, "time")) type = SV_TIME; else if (cieq(name, "frequency")) type = SV_FREQUENCY; else if (ciprefix("inoise", name)) type = fixme_inoise_type; else if (ciprefix("onoise", name)) type = fixme_onoise_type; else if (cieq(name, "temp-sweep")) type = SV_TEMP; else if (cieq(name, "res-sweep")) type = SV_RES; else if ((*name == '@') && substring("[g", name)) /* token starting with [g */ type = SV_ADMITTANCE; else if ((*name == '@') && substring("[c", name)) type = SV_CAPACITANCE; else if ((*name == '@') && substring("[i", name)) type = SV_CURRENT; else if ((*name == '@') && substring("[q", name)) type = SV_CHARGE; else if ((*name == '@') && substring("[p]", name)) /* token is exactly [p] */ type = SV_POWER; else type = SV_VOLTAGE; return type; } static void fileInit_pass2(runDesc *run) { int i, type; for (i = 0; i < run->numData; i++) { char *name = run->data[i].name; type = guess_type(name); if (type == SV_CURRENT) { char *branch = strstr(name, "#branch"); if (branch) *branch = '\0'; fprintf(run->fp, "\t%d\ti(%s)\t%s", i, name, ft_typenames(type)); if (branch) *branch = '#'; } else if (type == SV_VOLTAGE) { fprintf(run->fp, "\t%d\tv(%s)\t%s", i, name, ft_typenames(type)); } else { fprintf(run->fp, "\t%d\t%s\t%s", i, name, ft_typenames(type)); } if (run->data[i].gtype == GRID_XLOG) fprintf(run->fp, "\tgrid=3"); fprintf(run->fp, "\n"); } fprintf(run->fp, "%s:\n", run->binary ? "Binary" : "Values"); fflush(run->fp); /* Allocate Row buffer */ if (run->binary) { rowbuflen = (size_t) (run->numData); if (run->isComplex) rowbuflen *= 2; rowbuf = TMALLOC(double, rowbuflen); } else { rowbuflen = 0; rowbuf = NULL; } } static void fileStartPoint(FILE *fp, bool bin, int num) { if (!bin) fprintf(fp, "%d\t", num - 1); /* reset buffer pointer to zero */ column = 0; } static void fileAddRealValue(FILE *fp, bool bin, double value) { if (bin) rowbuf[column++] = value; else fprintf(fp, "\t%.*e\n", DOUBLE_PRECISION, value); } static void fileAddComplexValue(FILE *fp, bool bin, IFcomplex value) { if (bin) { rowbuf[column++] = value.real; rowbuf[column++] = value.imag; } else { fprintf(fp, "\t%.*e,%.*e\n", DOUBLE_PRECISION, value.real, DOUBLE_PRECISION, value.imag); } } static void fileEndPoint(FILE *fp, bool bin) { /* write row buffer to file */ /* otherwise the data has already been written */ if (bin) fwrite(rowbuf, sizeof(double), rowbuflen, fp); } /* Here's the hack... Run back and fill in the number of points. */ static void fileEnd(runDesc *run) { /* 28.May.2020 - RP, BM - Check if any orphan test benches are running. If any are * found, force them to exit. */ /* 28.May.2020 - BM */ close_server(); /* End 28.May.2020 */ if (run->fp != stdout) { long place = ftell(run->fp); fseek(run->fp, run->pointPos, SEEK_SET); fprintf(run->fp, "%d", run->pointCount); fprintf(stdout, "\nNo. of Data Rows : %d\n", run->pointCount); fseek(run->fp, place, SEEK_SET); } else { /* Yet another hack-around */ fprintf(stderr, "@@@ %ld %d\n", run->pointPos, run->pointCount); } fflush(run->fp); tfree(rowbuf); } /* The plot maintenance routines. */ static void plotInit(runDesc *run) { struct plot *pl = plot_alloc(run->type); struct dvec *v; int i; pl->pl_title = copy(run->name); pl->pl_name = copy(run->type); pl->pl_date = copy(datestring()); pl->pl_ndims = 0; plot_new(pl); plot_setcur(pl->pl_typename); run->runPlot = pl; /* This is a hack. */ /* if any of them complex, make them all complex */ run->isComplex = FALSE; for (i = 0; i < run->numData; i++) if (run->data[i].type == IF_COMPLEX) run->isComplex = TRUE; for (i = 0; i < run->numData; i++) { dataDesc *dd = &run->data[i]; char *name; if (isdigit_c(dd->name[0])) name = tprintf("V(%s)", dd->name); else name = copy(dd->name); v = dvec_alloc(name, guess_type(name), run->isComplex ? (VF_COMPLEX | VF_PERMANENT) : (VF_REAL | VF_PERMANENT), 0, NULL); vec_new(v); dd->vec = v; } } /* prepare the vector length data for memory allocation If new, and tran or pss, length is TSTOP / TSTEP plus some margin. If allocated length is exceeded, check progress. When > 20% then extrapolate memory needed, if less than 20% then just double the size. If not tran or pss, return fixed value (1024) of memory to be added. */ static inline int vlength2delta(int len) { #ifdef SHARED_MODULE if (savenone) /* We need just a vector length of 1 */ return 1; #endif /* TSTOP / TSTEP */ int points = ft_curckt->ci_ckt->CKTtimeListSize; /* transient and pss analysis (points > 0) upon start */ if (len == 0 && points > 0) { /* number of timesteps plus some overhead */ return points + 100; } /* transient and pss if original estimate is exceeded */ else if (points > 0) { /* check where we are */ double timerel = ft_curckt->ci_ckt->CKTtime / ft_curckt->ci_ckt->CKTfinalTime; /* return an estimate of the appropriate number of time points, if more than 20% of the anticipated total time has passed */ if (timerel > 0.2) return (int)(len / timerel) - len + 1; /* If not, just double the available memory */ else return len; } /* other analysis types that do not set CKTtimeListSize */ else return 1024; } static void plotAddRealValue(dataDesc *desc, double value) { struct dvec *v = desc->vec; #ifdef SHARED_MODULE if (savenone) /* always save new data to same location */ v->v_length = 0; #endif if (v->v_length >= v->v_alloc_length) dvec_extend(v, v->v_length + vlength2delta(v->v_length)); if (isreal(v)) { v->v_realdata[v->v_length] = value; } else { /* a real parading as a VF_COMPLEX */ v->v_compdata[v->v_length].cx_real = value; v->v_compdata[v->v_length].cx_imag = 0.0; } v->v_length++; v->v_dims[0] = v->v_length; /* va, must be updated */ } static void plotAddComplexValue(dataDesc *desc, IFcomplex value) { struct dvec *v = desc->vec; #ifdef SHARED_MODULE if (savenone) v->v_length = 0; #endif if (v->v_length >= v->v_alloc_length) dvec_extend(v, v->v_length + vlength2delta(v->v_length)); v->v_compdata[v->v_length].cx_real = value.real; v->v_compdata[v->v_length].cx_imag = value.imag; v->v_length++; v->v_dims[0] = v->v_length; /* va, must be updated */ } static void plotEnd(runDesc *run) { /* 28.May.2020 - BM, RP */ close_server(); /* End 28.May.2020 */ fprintf(stdout, "\nNo. of Data Rows : %d\n", run->pointCount); } /* ParseSpecial takes something of the form "@name[param,index]" and rips * out name, param, andstrchr. */ static bool parseSpecial(char *name, char *dev, char *param, char *ind) { char *s; *dev = *param = *ind = '\0'; if (*name != '@') return FALSE; name++; s = dev; while (*name && (*name != '[')) *s++ = *name++; *s = '\0'; if (!*name) return TRUE; name++; s = param; while (*name && (*name != ',') && (*name != ']')) *s++ = *name++; *s = '\0'; if (*name == ']') return (!name[1] ? TRUE : FALSE); else if (!*name) return FALSE; name++; s = ind; while (*name && (*name != ']')) *s++ = *name++; *s = '\0'; if (*name && !name[1]) return TRUE; else return FALSE; } /* This routine must match two names with or without a V() around them. */ static bool name_eq(char *n1, char *n2) { char buf1[BSIZE_SP], buf2[BSIZE_SP], *s; if ((s = strchr(n1, '(')) != NULL) { strcpy(buf1, s); if ((s = strchr(buf1, ')')) == NULL) return FALSE; *s = '\0'; n1 = buf1; } if ((s = strchr(n2, '(')) != NULL) { strcpy(buf2, s); if ((s = strchr(buf2, ')')) == NULL) return FALSE; *s = '\0'; n2 = buf2; } return (strcmp(n1, n2) ? FALSE : TRUE); } static bool getSpecial(dataDesc *desc, runDesc *run, IFvalue *val) { IFvalue selector; struct variable *vv; selector.iValue = desc->specIndex; if (INPaName(desc->specParamName, val, run->circuit, &desc->specType, desc->specName, &desc->specFast, ft_sim, &desc->type, &selector) == OK) { desc->type &= (IF_REAL | IF_COMPLEX); /* mask out other bits */ return TRUE; } if ((vv = if_getstat(run->circuit, &desc->name[1])) != NULL) { /* skip @ sign */ desc->type = IF_REAL; if (vv->va_type == CP_REAL) val->rValue = vv->va_real; else if (vv->va_type == CP_NUM) val->rValue = vv->va_num; else if (vv->va_type == CP_BOOL) val->rValue = (vv->va_bool ? 1.0 : 0.0); else return FALSE; /* not a real */ tfree(vv); return TRUE; } return FALSE; } static void freeRun(runDesc *run) { int i; for (i = 0; i < run->numData; i++) { tfree(run->data[i].name); tfree(run->data[i].specParamName); } tfree(run->data); tfree(run->type); tfree(run->name); tfree(run); } int OUTstopnow(void) { if (ft_intrpt || shouldstop) { ft_intrpt = shouldstop = FALSE; return (1); } return (0); } /* Print out error messages. */ static struct mesg { char *string; long flag; } msgs[] = { { "Warning", ERR_WARNING } , { "Fatal error", ERR_FATAL } , { "Panic", ERR_PANIC } , { "Note", ERR_INFO } , { NULL, 0 } }; void OUTerror(int flags, char *format, IFuid *names) { struct mesg *m; char buf[BSIZE_SP], *s, *bptr; int nindex = 0; if ((flags == ERR_INFO) && cp_getvar("printinfo", CP_BOOL, NULL, 0)) return; for (m = msgs; m->flag; m++) if (flags & m->flag) fprintf(cp_err, "%s: ", m->string); for (s = format, bptr = buf; *s; s++) { if (*s == '%' && (s == format || s[-1] != '%') && s[1] == 's') { if (names[nindex]) strcpy(bptr, names[nindex]); else strcpy(bptr, "(null)"); bptr += strlen(bptr); s++; nindex++; } else { *bptr++ = *s; } } *bptr = '\0'; fprintf(cp_err, "%s\n", buf); fflush(cp_err); } void OUTerrorf(int flags, const char *format, ...) { struct mesg *m; va_list args; if ((flags == ERR_INFO) && cp_getvar("printinfo", CP_BOOL, NULL, 0)) return; for (m = msgs; m->flag; m++) if (flags & m->flag) fprintf(cp_err, "%s: ", m->string); va_start (args, format); vfprintf(cp_err, format, args); fputc('\n', cp_err); fflush(cp_err); va_end(args); } static int InterpFileAdd(runDesc *run, IFvalue *refValue, IFvalue *valuePtr) { int i; static double timeold = 0.0, timenew = 0.0, timestep = 0.0; bool nodata = FALSE; bool interpolatenow = FALSE; if (run->pointCount == 1) { fileInit_pass2(run); timestep = run->circuit->CKTinitTime + run->circuit->CKTstep; } if (run->refIndex != -1) { /* Save first time step */ if (refValue->rValue == run->circuit->CKTinitTime) { timeold = refValue->rValue; fileStartPoint(run->fp, run->binary, run->pointCount); fileAddRealValue(run->fp, run->binary, run->circuit->CKTinitTime); interpolatenow = nodata = FALSE; } /* Save last time step */ else if (refValue->rValue == run->circuit->CKTfinalTime) { timeold = refValue->rValue; fileStartPoint(run->fp, run->binary, run->pointCount); fileAddRealValue(run->fp, run->binary, run->circuit->CKTfinalTime); interpolatenow = nodata = FALSE; } /* Save exact point */ else if (refValue->rValue == timestep) { timeold = refValue->rValue; fileStartPoint(run->fp, run->binary, run->pointCount); fileAddRealValue(run->fp, run->binary, timestep); timestep += run->circuit->CKTstep; interpolatenow = nodata = FALSE; } else if (refValue->rValue > timestep) { /* add the next time step value to the vector */ fileStartPoint(run->fp, run->binary, run->pointCount); timenew = refValue->rValue; fileAddRealValue(run->fp, run->binary, timestep); timestep += run->circuit->CKTstep; nodata = FALSE; interpolatenow = TRUE; } else { /* Do not save this step */ run->pointCount--; timeold = refValue->rValue; nodata = TRUE; interpolatenow = FALSE; } #ifndef HAS_WINGUI if (!orflag && !ft_norefprint) { currclock = clock(); if ((currclock-lastclock) > (0.25*CLOCKS_PER_SEC)) { fprintf(stderr, " Reference value : % 12.5e\r", refValue->rValue); lastclock = currclock; } } #endif } for (i = 0; i < run->numData; i++) { /* we've already printed reference vec first */ if (run->data[i].outIndex == -1) continue; #ifdef TCL_MODULE blt_add(i, refValue ? refValue->rValue : NAN); #endif if (run->data[i].regular) { /* Store value or interpolate and store or do not store any value to file */ if (!interpolatenow && !nodata) { /* store the first or last value */ valueold[i] = valuePtr->v.vec.rVec [run->data[i].outIndex]; fileAddRealValue(run->fp, run->binary, valueold[i]); } else if (interpolatenow) { /* Interpolate time if actual time is greater than proposed next time step */ double newval; valuenew[i] = valuePtr->v.vec.rVec [run->data[i].outIndex]; newval = (timestep - run->circuit->CKTstep - timeold)/(timenew - timeold) * (valuenew[i] - valueold[i]) + valueold[i]; fileAddRealValue(run->fp, run->binary, newval); valueold[i] = valuenew[i]; } else if (nodata) /* Just keep the transient output value corresponding to timeold, but do not store to file */ valueold[i] = valuePtr->v.vec.rVec [run->data[i].outIndex]; } else { IFvalue val; /* should pre-check instance */ if (!getSpecial(&run->data[i], run, &val)) { /* If this is the first data point, print a warning for any unrecognized variables, since this has not already been checked */ if (run->pointCount == 1) fprintf(stderr, "Warning: unrecognized variable - %s\n", run->data[i].name); val.rValue = 0; fileAddRealValue(run->fp, run->binary, val.rValue); continue; } if (!interpolatenow && !nodata) { /* store the first or last value */ valueold[i] = val.rValue; fileAddRealValue(run->fp, run->binary, valueold[i]); } else if (interpolatenow) { /* Interpolate time if actual time is greater than proposed next time step */ double newval; valuenew[i] = val.rValue; newval = (timestep - run->circuit->CKTstep - timeold)/(timenew - timeold) * (valuenew[i] - valueold[i]) + valueold[i]; fileAddRealValue(run->fp, run->binary, newval); valueold[i] = valuenew[i]; } else if (nodata) /* Just keep the transient output value corresponding to timeold, but do not store to file */ valueold[i] = val.rValue; } #ifdef TCL_MODULE blt_add(i, valuePtr->v.vec.rVec [run->data[i].outIndex]); #endif } fileEndPoint(run->fp, run->binary); /* Check that the write to disk completed successfully, otherwise abort */ if (ferror(run->fp)) { fprintf(stderr, "Warning: rawfile write error !!\n"); shouldstop = TRUE; } if (ft_bpcheck(run->runPlot, run->pointCount) == FALSE) shouldstop = TRUE; #ifdef TCL_MODULE Tcl_ExecutePerLoop(); #elif defined SHARED_MODULE sh_ExecutePerLoop(); #endif return(OK); } static int InterpPlotAdd(runDesc *run, IFvalue *refValue, IFvalue *valuePtr) { int i, iscale = -1; static double timeold = 0.0, timenew = 0.0, timestep = 0.0; bool nodata = FALSE; bool interpolatenow = FALSE; if (run->pointCount == 1) timestep = run->circuit->CKTinitTime + run->circuit->CKTstep; /* find the scale vector */ for (i = 0; i < run->numData; i++) if (run->data[i].outIndex == -1) { iscale = i; break; } if (iscale == -1) fprintf(stderr, "Error: no scale vector found\n"); #ifdef TCL_MODULE /*Locks the blt vector to stop access*/ blt_lockvec(iscale); #endif /* Save first time step */ if (refValue->rValue == run->circuit->CKTinitTime) { timeold = refValue->rValue; plotAddRealValue(&run->data[iscale], refValue->rValue); interpolatenow = nodata = FALSE; } /* Save last time step */ else if (refValue->rValue == run->circuit->CKTfinalTime) { timeold = refValue->rValue; plotAddRealValue(&run->data[iscale], run->circuit->CKTfinalTime); interpolatenow = nodata = FALSE; } /* Save exact point */ else if (refValue->rValue == timestep) { timeold = refValue->rValue; plotAddRealValue(&run->data[iscale], timestep); timestep += run->circuit->CKTstep; interpolatenow = nodata = FALSE; } else if (refValue->rValue > timestep) { /* add the next time step value to the vector */ timenew = refValue->rValue; plotAddRealValue(&run->data[iscale], timestep); timestep += run->circuit->CKTstep; nodata = FALSE; interpolatenow = TRUE; } else { /* Do not save this step */ run->pointCount--; timeold = refValue->rValue; nodata = TRUE; interpolatenow = FALSE; } #ifdef TCL_MODULE /*relinks and unlocks vector*/ blt_relink(iscale, (run->data[iscale]).vec); #endif #ifndef HAS_WINGUI if (!orflag && !ft_norefprint) { currclock = clock(); if ((currclock-lastclock) > (0.25*CLOCKS_PER_SEC)) { fprintf(stderr, " Reference value : % 12.5e\r", refValue->rValue); lastclock = currclock; } } #endif for (i = 0; i < run->numData; i++) { if (i == iscale) continue; #ifdef TCL_MODULE /*Locks the blt vector to stop access*/ blt_lockvec(i); #endif if (run->data[i].regular) { /* Store value or interpolate and store or do not store any value to file */ if (!interpolatenow && !nodata) { /* store the first or last value */ valueold[i] = valuePtr->v.vec.rVec [run->data[i].outIndex]; plotAddRealValue(&run->data[i], valueold[i]); } else if (interpolatenow) { /* Interpolate time if actual time is greater than proposed next time step */ double newval; valuenew[i] = valuePtr->v.vec.rVec [run->data[i].outIndex]; newval = (timestep - run->circuit->CKTstep - timeold)/(timenew - timeold) * (valuenew[i] - valueold[i]) + valueold[i]; plotAddRealValue(&run->data[i], newval); valueold[i] = valuenew[i]; } else if (nodata) /* Just keep the transient output value corresponding to timeold, but do not store to file */ valueold[i] = valuePtr->v.vec.rVec [run->data[i].outIndex]; } else { IFvalue val; /* should pre-check instance */ if (!getSpecial(&run->data[i], run, &val)) continue; if (!interpolatenow && !nodata) { /* store the first or last value */ valueold[i] = val.rValue; plotAddRealValue(&run->data[i], valueold[i]); } else if (interpolatenow) { /* Interpolate time if actual time is greater than proposed next time step */ double newval; valuenew[i] = val.rValue; newval = (timestep - run->circuit->CKTstep - timeold)/(timenew - timeold) * (valuenew[i] - valueold[i]) + valueold[i]; plotAddRealValue(&run->data[i], newval); valueold[i] = valuenew[i]; } else if (nodata) /* Just keep the transient output value corresponding to timeold, but do not store to file */ valueold[i] = val.rValue; } #ifdef TCL_MODULE /*relinks and unlocks vector*/ blt_relink(i, (run->data[i]).vec); #endif } gr_iplot(run->runPlot); if (ft_bpcheck(run->runPlot, run->pointCount) == FALSE) shouldstop = TRUE; #ifdef TCL_MODULE Tcl_ExecutePerLoop(); #elif defined SHARED_MODULE sh_ExecutePerLoop(); #endif return(OK); }