1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
#
# Copyright 2005 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
__all__ = ['tv_rx']
import math
from usrpm import usrp_dbid
import db_base
import db_instantiator
def int_seq_to_str(seq):
"""convert a sequence of integers into a string"""
return ''.join (map (chr, seq))
def str_to_int_seq(str):
"""convert a string to a list of integers"""
return map (ord, str)
def control_byte_1():
RS = 0 # 0 = 166.66kHz reference
ATP = 7 # Disable internal AGC
return 0x80 | ATP<<3 | RS
def control_byte_2():
STBY = 0 # powered on
XTO = 1 # turn off xtal out, which we don't have
ATC = 0 # not clear exactly, possibly speeds up or slows down AGC, which we are not using
c = 0xc2 | ATC<<5 | STBY<<4 | XTO
return c
def bandswitch_byte(freq,bw):
if(bw>7.5e6):
P5 = 1
else:
P5 = 0
if freq < 121e6:
CP = 0
BS = 1
elif freq < 141e6:
CP = 1
BS = 1
elif freq < 166e6:
CP = 2
BS = 1
elif freq < 182e6:
CP = 3
BS = 1
elif freq < 286e6:
CP = 0
BS = 2
elif freq < 386e6:
CP = 1
BS = 2
elif freq < 446e6:
CP = 2
BS = 2
elif freq < 466e6:
CP = 3
BS = 2
elif freq < 506e6:
CP = 0
BS = 8
elif freq < 761e6:
CP = 1
BS = 8
elif freq < 846e6:
CP = 2
BS = 8
else: # limit is ~905 MHz
CP = 3
BS = 8
return CP<<6 | P5 << 4 | BS
class db_dtt754(db_base.db_base):
def __init__(self, usrp, which):
"""
Control custom DTT75403-based daughterboard.
@param usrp: instance of usrp.source_c
@param which: which side: 0 or 1 corresponding to RX_A or RX_B respectively
@type which: int
"""
# sets _u and _which
db_base.db_base.__init__(self, usrp, which)
self._i2c_addr = (0x60, 0x62)[which]
self.bw = 7e6
self._IF = 36e6
self.f_ref = 166.6666e3
self._inverted = False
g = self.gain_range() # initialize gain
self.set_gain(float(g[0]+g[1]) / 2)
self.bypass_adc_buffers(False)
# Gain setting
def _set_rfagc(self,gain):
assert gain <= 60 and gain >= 0
# FIXME this has a 0.5V step between gain = 60 and gain = 59.
# Why are there two cases instead of a single linear case?
if gain == 60:
voltage = 4
else:
voltage = gain/60.0 * 2.25 + 1.25
dacword = int(4096*voltage/1.22/3.3) # 1.22 = opamp gain
assert dacword>=0 and dacword<4096
self._u.write_aux_dac(self._which, 1, dacword)
def _set_ifagc(self,gain):
assert gain <= 35 and gain >= 0
voltage = gain/35.0 * 2.1 + 1.4
dacword = int(4096*voltage/1.22/3.3) # 1.22 = opamp gain
assert dacword>=0 and dacword<4096
self._u.write_aux_dac(self._which, 0, dacword)
def _set_pga(self,pga_gain):
assert pga_gain >=0 and pga_gain <=20
if(self._which == 0):
self._u.set_pga (0, pga_gain)
else:
self._u.set_pga (2, pga_gain)
def gain_range(self):
return (0, 115, 1)
def set_gain(self,gain):
assert gain>=0 and gain<=115
if gain>60:
rfgain = 60
gain = gain - 60
else:
rfgain = gain
gain = 0
if gain > 35:
ifgain = 35
gain = gain - 35
else:
ifgain = gain
gain = 0
pgagain = gain
self._set_rfagc(rfgain)
self._set_ifagc(ifgain)
self._set_pga(pgagain)
def freq_range(self):
return (44e6, 900e6, 10e3)
def set_freq(self, target_freq):
"""
@returns (ok, actual_baseband_freq) where:
ok is True or False and indicates success or failure,
actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
"""
r = self.freq_range()
if target_freq < r[0] or target_freq > r[1]:
return (False, 0)
target_lo_freq = target_freq + self._IF; # High side mixing
divisor = int(0.5+(target_lo_freq / self.f_ref))
actual_lo_freq = self.f_ref*divisor
if (divisor & ~0x7fff) != 0: # must be 15-bits or less
return (False, 0)
# build i2c command string
buf = [0] * 5
buf[0] = (divisor >> 8) & 0xff # DB1
buf[1] = divisor & 0xff # DB2
buf[2] = control_byte_1()
buf[3] = bandswitch_byte(actual_lo_freq,self.bw)
buf[4] = control_byte_2()
ok = self._u.write_i2c(self._i2c_addr, int_seq_to_str (buf))
self.freq = actual_lo_freq - self._IF
return (ok, actual_lo_freq)
def is_quadrature(self):
"""
Return True if this board requires both I & Q analog channels.
This bit of info is useful when setting up the USRP Rx mux register.
"""
return False
def spectrum_inverted(self):
"""
The 43.75 MHz version is inverted
"""
return self._inverted
def set_bw(self,bw):
"""
Choose the SAW filter bandwidth, either 7MHz or 8MHz)
"""
self.bw = bw
self.set_freq(self.freq)
# hook this daughterboard class into the auto-instantiation framework
# With DTT75403
db_instantiator.add(usrp_dbid.DTT754,
lambda usrp, which : (db_dtt754(usrp, which),))
|