1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
#include <qimage.h>
#include <qpen.h>
#include <qpainter.h>
#include "qwt_painter.h"
#include "qwt_double_interval.h"
#include "qwt_scale_map.h"
#include "qwt_color_map.h"
#include "plot_waterfall.h"
#if QT_VERSION < 0x040000
typedef Q3ValueVector<QRgb> QwtColorTable;
#else
typedef QVector<QRgb> QwtColorTable;
#endif
class PlotWaterfallImage: public QImage
{
// This class hides some Qt3/Qt4 API differences
public:
PlotWaterfallImage(const QSize &size, QwtColorMap::Format format):
#if QT_VERSION < 0x040000
QImage(size, format == QwtColorMap::RGB ? 32 : 8)
#else
QImage(size, format == QwtColorMap::RGB
? QImage::Format_ARGB32 : QImage::Format_Indexed8 )
#endif
{
}
PlotWaterfallImage(const QImage &other):
QImage(other)
{
}
void initColorTable(const QImage& other)
{
#if QT_VERSION < 0x040000
const unsigned int numColors = other.numColors();
setNumColors(numColors);
for ( unsigned int i = 0; i < numColors; i++ )
setColor(i, other.color(i));
#else
setColorTable(other.colorTable());
#endif
}
#if QT_VERSION < 0x040000
void setColorTable(const QwtColorTable &colorTable)
{
setNumColors(colorTable.size());
for ( unsigned int i = 0; i < colorTable.size(); i++ )
setColor(i, colorTable[i]);
}
QwtColorTable colorTable() const
{
QwtColorTable table(numColors());
for ( int i = 0; i < numColors(); i++ )
table[i] = color(i);
return table;
}
#endif
};
class PlotWaterfall::PrivateData
{
public:
PrivateData()
{
data = NULL;
colorMap = new QwtLinearColorMap();
}
~PrivateData()
{
delete colorMap;
}
WaterfallData *data;
QwtColorMap *colorMap;
};
/*!
Sets the following item attributes:
- QwtPlotItem::AutoScale: true
- QwtPlotItem::Legend: false
The z value is initialized by 8.0.
\param title Title
\sa QwtPlotItem::setItemAttribute(), QwtPlotItem::setZ()
*/
PlotWaterfall::PlotWaterfall(WaterfallData* data, const QString &title):
QwtPlotRasterItem(title)
{
d_data = new PrivateData();
d_data->data = data;
// setCachePolicy(QwtPlotRasterItem::PaintCache);
setItemAttribute(QwtPlotItem::AutoScale, true);
setItemAttribute(QwtPlotItem::Legend, false);
setZ(8.0);
}
//! Destructor
PlotWaterfall::~PlotWaterfall()
{
delete d_data;
}
const WaterfallData* PlotWaterfall::data()const{
return d_data->data;
}
//! \return QwtPlotItem::Rtti_PlotSpectrogram
int PlotWaterfall::rtti() const
{
return QwtPlotItem::Rtti_PlotSpectrogram;
}
/*!
Change the color map
Often it is useful to display the mapping between intensities and
colors as an additional plot axis, showing a color bar.
\param colorMap Color Map
\sa colorMap(), QwtScaleWidget::setColorBarEnabled(),
QwtScaleWidget::setColorMap()
*/
void PlotWaterfall::setColorMap(const QwtColorMap &colorMap)
{
delete d_data->colorMap;
d_data->colorMap = colorMap.copy();
invalidateCache();
itemChanged();
}
/*!
\return Color Map used for mapping the intensity values to colors
\sa setColorMap()
*/
const QwtColorMap &PlotWaterfall::colorMap() const
{
return *d_data->colorMap;
}
/*!
\return Bounding rect of the data
\sa QwtRasterData::boundingRect
*/
QwtDoubleRect PlotWaterfall::boundingRect() const
{
return d_data->data->boundingRect();
}
/*!
\brief Returns the recommended raster for a given rect.
F.e the raster hint is used to limit the resolution of
the image that is rendered.
\param rect Rect for the raster hint
\return data().rasterHint(rect)
*/
QSize PlotWaterfall::rasterHint(const QwtDoubleRect &rect) const
{
return d_data->data->rasterHint(rect);
}
/*!
\brief Render an image from the data and color map.
The area is translated into a rect of the paint device.
For each pixel of this rect the intensity is mapped
into a color.
\param xMap X-Scale Map
\param yMap Y-Scale Map
\param area Area that should be rendered in scale coordinates.
\return A QImage::Format_Indexed8 or QImage::Format_ARGB32 depending
on the color map.
\sa QwtRasterData::intensity(), QwtColorMap::rgb(),
QwtColorMap::colorIndex()
*/
QImage PlotWaterfall::renderImage(
const QwtScaleMap &xMap, const QwtScaleMap &yMap,
const QwtDoubleRect &area) const
{
if ( area.isEmpty() )
return QImage();
QRect rect = transform(xMap, yMap, area);
QwtScaleMap xxMap = xMap;
QwtScaleMap yyMap = yMap;
const QSize res = d_data->data->rasterHint(area);
if ( res.isValid() )
{
/*
It is useless to render an image with a higher resolution
than the data offers. Of course someone will have to
scale this image later into the size of the given rect, but f.e.
in case of postscript this will done on the printer.
*/
rect.setSize(rect.size().boundedTo(res));
int px1 = rect.x();
int px2 = rect.x() + rect.width();
if ( xMap.p1() > xMap.p2() )
qSwap(px1, px2);
double sx1 = area.x();
double sx2 = area.x() + area.width();
if ( xMap.s1() > xMap.s2() )
qSwap(sx1, sx2);
int py1 = rect.y();
int py2 = rect.y() + rect.height();
if ( yMap.p1() > yMap.p2() )
qSwap(py1, py2);
double sy1 = area.y();
double sy2 = area.y() + area.height();
if ( yMap.s1() > yMap.s2() )
qSwap(sy1, sy2);
xxMap.setPaintInterval(px1, px2);
xxMap.setScaleInterval(sx1, sx2);
yyMap.setPaintInterval(py1, py2);
yyMap.setScaleInterval(sy1, sy2);
}
PlotWaterfallImage image(rect.size(), d_data->colorMap->format());
const QwtDoubleInterval intensityRange = d_data->data->range();
if ( !intensityRange.isValid() )
return image;
d_data->data->initRaster(area, rect.size());
if ( d_data->colorMap->format() == QwtColorMap::RGB )
{
for ( int y = rect.top(); y <= rect.bottom(); y++ )
{
const double ty = yyMap.invTransform(y);
QRgb *line = (QRgb *)image.scanLine(y - rect.top());
for ( int x = rect.left(); x <= rect.right(); x++ )
{
const double tx = xxMap.invTransform(x);
*line++ = d_data->colorMap->rgb(intensityRange,
d_data->data->value(tx, ty));
}
}
}
else if ( d_data->colorMap->format() == QwtColorMap::Indexed )
{
image.setColorTable(d_data->colorMap->colorTable(intensityRange));
for ( int y = rect.top(); y <= rect.bottom(); y++ )
{
const double ty = yyMap.invTransform(y);
unsigned char *line = image.scanLine(y - rect.top());
for ( int x = rect.left(); x <= rect.right(); x++ )
{
const double tx = xxMap.invTransform(x);
*line++ = d_data->colorMap->colorIndex(intensityRange,
d_data->data->value(tx, ty));
}
}
}
d_data->data->discardRaster();
// Mirror the image in case of inverted maps
const bool hInvert = xxMap.p1() > xxMap.p2();
const bool vInvert = yyMap.p1() < yyMap.p2();
if ( hInvert || vInvert )
{
#ifdef __GNUC__
#endif
#if QT_VERSION < 0x040000
image = image.mirror(hInvert, vInvert);
#else
image = image.mirrored(hInvert, vInvert);
#endif
}
return image;
}
/*!
\brief Draw the spectrogram
\param painter Painter
\param xMap Maps x-values into pixel coordinates.
\param yMap Maps y-values into pixel coordinates.
\param canvasRect Contents rect of the canvas in painter coordinates
\sa setDisplayMode, renderImage,
QwtPlotRasterItem::draw, drawContourLines
*/
void PlotWaterfall::draw(QPainter *painter,
const QwtScaleMap &xMap, const QwtScaleMap &yMap,
const QRect &canvasRect) const
{
QwtPlotRasterItem::draw(painter, xMap, yMap, canvasRect);
}
|