1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
#!/usr/bin/env python
#
# Copyright 2004,2007,2010,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gr_unittest
import analog_swig as analog
import math
class test_sig_source(gr_unittest.TestCase):
def setUp(self):
self.tb = gr.top_block()
def tearDown(self):
self.tb = None
def test_const_f(self):
tb = self.tb
expected_result = (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5)
src1 = analog.sig_source_f(1e6, analog.GR_CONST_WAVE, 0, 1.5)
op = gr.head(gr.sizeof_float, 10)
dst1 = gr.vector_sink_f()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertEqual(expected_result, dst_data)
def test_const_i(self):
tb = self.tb
expected_result = (1, 1, 1, 1)
src1 = analog.sig_source_i(1e6, analog.GR_CONST_WAVE, 0, 1)
op = gr.head(gr.sizeof_int, 4)
dst1 = gr.vector_sink_i()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertEqual(expected_result, dst_data)
def test_sine_f(self):
tb = self.tb
sqrt2 = math.sqrt(2) / 2
expected_result = (0, sqrt2, 1, sqrt2, 0, -sqrt2, -1, -sqrt2, 0)
src1 = analog.sig_source_f(8, analog.GR_SIN_WAVE, 1.0, 1.0)
op = gr.head(gr.sizeof_float, 9)
dst1 = gr.vector_sink_f()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5)
def test_cosine_f(self):
tb = self.tb
sqrt2 = math.sqrt(2) / 2
expected_result = (1, sqrt2, 0, -sqrt2, -1, -sqrt2, 0, sqrt2, 1)
src1 = analog.sig_source_f(8, analog.GR_COS_WAVE, 1.0, 1.0)
op = gr.head(gr.sizeof_float, 9)
dst1 = gr.vector_sink_f()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5)
def test_sqr_c(self):
tb = self.tb #arg6 is a bit before -PI/2
expected_result = (1j, 1j, 0, 0, 1, 1, 1+0j, 1+1j, 1j)
src1 = analog.sig_source_c(8, analog.GR_SQR_WAVE, 1.0, 1.0)
op = gr.head(gr.sizeof_gr_complex, 9)
dst1 = gr.vector_sink_c()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertEqual(expected_result, dst_data)
def test_tri_c(self):
tb = self.tb
expected_result = (1+.5j, .75+.75j, .5+1j, .25+.75j, 0+.5j,
.25+.25j, .5+0j, .75+.25j, 1+.5j)
src1 = analog.sig_source_c(8, analog.GR_TRI_WAVE, 1.0, 1.0)
op = gr.head(gr.sizeof_gr_complex, 9)
dst1 = gr.vector_sink_c()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 5)
def test_saw_c(self):
tb = self.tb
expected_result = (.5+.25j, .625+.375j, .75+.5j, .875+.625j,
0+.75j, .125+.875j, .25+1j, .375+.125j, .5+.25j)
src1 = analog.sig_source_c(8, analog.GR_SAW_WAVE, 1.0, 1.0)
op = gr.head(gr.sizeof_gr_complex, 9)
dst1 = gr.vector_sink_c()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 5)
def test_sqr_f(self):
tb = self.tb
expected_result = (0, 0, 0, 0, 1, 1, 1, 1, 0)
src1 = analog.sig_source_f(8, analog.GR_SQR_WAVE, 1.0, 1.0)
op = gr.head(gr.sizeof_float, 9)
dst1 = gr.vector_sink_f()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertEqual(expected_result, dst_data)
def test_tri_f(self):
tb = self.tb
expected_result = (1, .75, .5, .25, 0, .25, .5, .75, 1)
src1 = analog.sig_source_f(8, analog.GR_TRI_WAVE, 1.0, 1.0)
op = gr.head(gr.sizeof_float, 9)
dst1 = gr.vector_sink_f()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5)
def test_saw_f(self):
tb = self.tb
expected_result = (.5, .625, .75, .875, 0, .125, .25, .375, .5)
src1 = analog.sig_source_f(8, analog.GR_SAW_WAVE, 1.0, 1.0)
op = gr.head(gr.sizeof_float, 9)
dst1 = gr.vector_sink_f()
tb.connect(src1, op)
tb.connect(op, dst1)
tb.run()
dst_data = dst1.data()
self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5)
if __name__ == '__main__':
gr_unittest.run(test_sig_source, "test_sig_source.xml")
|