#include #include #include #include #include //test for sse3 #ifndef LV_HAVE_SSE3 void qa_32fc_power_spectral_density_32f_aligned16::t1() { printf("sse3 not available... no test performed\n"); } #else void qa_32fc_power_spectral_density_32f_aligned16::t1() { volk_environment_init(); clock_t start, end; double total; const int vlen = 3201; const int ITERS = 10000; __VOLK_ATTR_ALIGNED(16) std::complex input0[vlen]; __VOLK_ATTR_ALIGNED(16) float output_generic[vlen]; __VOLK_ATTR_ALIGNED(16) float output_sse3[vlen]; const float scalar = vlen; const float rbw = 1.7; float* inputLoad = (float*)input0; for(int i = 0; i < 2*vlen; ++i) { inputLoad[i] = (((float) (rand() - (RAND_MAX/2))) / static_cast((RAND_MAX/2))); } printf("32fc_power_spectral_density_32f_aligned\n"); start = clock(); for(int count = 0; count < ITERS; ++count) { volk_32fc_power_spectral_density_32f_aligned16_manual(output_generic, input0, scalar, rbw, vlen, "generic"); } end = clock(); total = (double)(end-start)/(double)CLOCKS_PER_SEC; printf("generic_time: %f\n", total); start = clock(); for(int count = 0; count < ITERS; ++count) { volk_32fc_power_spectral_density_32f_aligned16_manual(output_sse3, input0, scalar, rbw, vlen, "sse3"); } end = clock(); total = (double)(end-start)/(double)CLOCKS_PER_SEC; printf("sse3_time: %f\n", total); for(int i = 0; i < 1; ++i) { //printf("inputs: %d, %d\n", input0[i*2], input0[i*2 + 1]); //printf("generic... %d, ssse3... %d\n", output0[i], output1[i]); } for(int i = 0; i < vlen; ++i) { //printf("%d...%d\n", output0[i], output01[i]); CPPUNIT_ASSERT_DOUBLES_EQUAL(output_generic[i], output_sse3[i], fabs(output_generic[i]*1e-4)); } } #endif