module halfband_ideal (
    input                           clock,
    input                           reset,
    input                           enable,
    input                           strobe_in,
    input   wire    signed  [17:0]  data_in,
    output  reg                     strobe_out,
    output  reg     signed  [17:0]  data_out
) ;

    parameter                       decim   = 1 ;
    parameter                       rate    = 2 ;

    reg signed              [40:0]  temp ;
    reg signed              [17:0]  delay[30:0] ;
    reg signed              [17:0]  coeffs[30:0] ;
    reg                     [7:0]   count ;
    integer                         i ;

    initial begin
        for( i = 0 ; i < 31 ; i = i + 1 ) begin
            coeffs[i] = 18'd0 ;
        end
        coeffs[0]   = -1390 ;
        coeffs[2]   = 1604 ;
        coeffs[4]   = -1896 ;
        coeffs[6]   = 2317 ;
        coeffs[8]   = -2979 ;
        coeffs[10]  = 4172 ;
        coeffs[12]  = -6953 ;
        coeffs[14]  = 20860 ;
        coeffs[15]  = 32768 ;
        coeffs[16]  = 20860 ;
        coeffs[18]  = -6953 ;
        coeffs[20]  = 4172 ;
        coeffs[22]  = -2979 ;
        coeffs[24]  = 2317 ;
        coeffs[26]  = -1896 ;
        coeffs[28]  = 1604 ;
        coeffs[30]  = -1390 ;
    end

    always @(posedge clock) begin
        if( reset ) begin
            count <= 0 ;
            for( i = 0 ; i < 31 ; i = i + 1 ) begin
                delay[i] <= 18'd0 ;
            end
            temp        <= 41'd0 ;
            data_out    <= 18'd0 ;
            strobe_out  <= 1'b0 ;
        end else if( enable ) begin

            if( (decim && (count == rate-1)) || !decim ) 
                strobe_out <= strobe_in ;
            else
                strobe_out <= 1'b0 ;
            

            if( strobe_in ) begin
                // Increment decimation count
                count <= count + 1 ;

                // Shift the input
                for( i = 30 ; i > 0 ; i = i - 1 ) begin
                    delay[i] = delay[i-1] ;
                end
                delay[0] = data_in ;

                // clear the temp reg
                temp = 18'd0 ;
                if( (decim && (count == rate-1)) || !decim ) begin
                    count <= 0 ;
                    for( i = 0 ; i < 31 ; i = i + 1 ) begin
                        // Multiply Accumulate
                        temp = temp + delay[i]*coeffs[i] ;
                    end
                    // Assign data output
                    data_out <= temp >>> 15 ;
                end
            end
        end
    end
endmodule