/*
 * $RDCfile: $ $Revision: 1.1.2.6 $ $Date: 2007/11/28 17:15:18 $
 *******************************************************************************
 *
 * FIFO Generator - Verilog Behavioral Model
 *
 *******************************************************************************
 *
 * Copyright(C) 2006 by Xilinx, Inc. All rights reserved.
 * This text/file contains proprietary, confidential
 * information of Xilinx, Inc., is distributed under
 * license from Xilinx, Inc., and may be used, copied
 * and/or disclosed only pursuant to the terms of a valid
 * license agreement with Xilinx, Inc. Xilinx hereby
 * grants you a license to use this text/file solely for
 * design, simulation, implementation and creation of
 * design files limited to Xilinx devices or technologies.
 * Use with non-Xilinx devices or technologies is expressly
 * prohibited and immediately terminates your license unless
 * covered by a separate agreement.
 *
 * Xilinx is providing theis design, code, or information
 * "as-is" solely for use in developing programs and
 * solutions for Xilinx devices, with no obligation on the
 * part of Xilinx to provide support. By providing this design,
 * code, or information as one possible implementation of
 * this feature, application or standard. Xilinx is making no
 * representation that this implementation is free from any
 * claims of infringement. You are responsible for obtaining
 * any rights you may require for your implementation.
 * Xilinx expressly disclaims any warranty whatsoever with
 * respect to the adequacy of the implementation, including
 * but not limited to any warranties or representations that this
 * implementation is free from claims of infringement, implied
 * warranties of merchantability or fitness for a particular
 * purpose.
 *
 * Xilinx products are not intended for use in life support
 * appliances, devices, or systems. Use in such applications is
 * expressly prohibited.
 *
 * This copyright and support notice must be retained as part
 * of this text at all times. (c)Copyright 1995-2006 Xilinx, Inc.
 * All rights reserved.
 *
 *******************************************************************************
 *
 * Filename: FIFO_GENERATOR_V4_3.v
 *
 * Author     : Xilinx
 *
 *******************************************************************************
 * Structure:
 * 
 * fifo_generator_v4_3.vhd
 *    |
 *    +-fifo_generator_v4_3_bhv_as
 *    |
 *    +-fifo_generator_v4_3_bhv_ss
 *    |
 *    +-fifo_generator_v4_3_bhv_preload0
 * 
 *******************************************************************************
 * Description:
 *
 * The Verilog behavioral model for the FIFO Generator.
 *
 *   The behavioral model has three parts:
 *      - The behavioral model for independent clocks FIFOs (_as)
 *      - The behavioral model for common clock FIFOs (_ss)
 *      - The "preload logic" block which implements First-word Fall-through
 * 
 *******************************************************************************
 * Description:
 *  The verilog behavioral model for the FIFO generator core.
 *
 *******************************************************************************
 */

`timescale 1ps/1ps

/*******************************************************************************
 * Declaration of top-level module
 ******************************************************************************/
module FIFO_GENERATOR_V4_3
(
  BACKUP, //not used
  BACKUP_MARKER, //not used
  CLK,
  DIN,
  PROG_EMPTY_THRESH,
  PROG_EMPTY_THRESH_ASSERT,
  PROG_EMPTY_THRESH_NEGATE,
  PROG_FULL_THRESH,
  PROG_FULL_THRESH_ASSERT,
  PROG_FULL_THRESH_NEGATE,
  RD_CLK,
  RD_EN,
  RD_RST, //not used
  RST,
  SRST,
  WR_CLK,
  WR_EN,
  WR_RST, //not used
  INT_CLK,

  ALMOST_EMPTY,
  ALMOST_FULL,
  DATA_COUNT,
  DOUT,
  EMPTY,
  FULL,
  OVERFLOW,
  PROG_EMPTY,
  PROG_FULL,
  RD_DATA_COUNT,
  UNDERFLOW,
  VALID,
  WR_ACK,
  WR_DATA_COUNT,
 
  SBITERR,
  DBITERR
  );

/*
 ******************************************************************************
 * Definition of Parameters
 ******************************************************************************
 *     C_COMMON_CLOCK                : Common Clock (1), Independent Clocks (0)
 *     C_COUNT_TYPE                  :    *not used
 *     C_DATA_COUNT_WIDTH            : Width of DATA_COUNT bus
 *     C_DEFAULT_VALUE               :    *not used
 *     C_DIN_WIDTH                   : Width of DIN bus
 *     C_DOUT_RST_VAL                : Reset value of DOUT
 *     C_DOUT_WIDTH                  : Width of DOUT bus
 *     C_ENABLE_RLOCS                :    *not used
 *     C_FAMILY                      : not used in bhv model
 *     C_FULL_FLAGS_RST_VAL          : Full flags rst val (0 or 1)
 *     C_HAS_ALMOST_EMPTY            : 1=Core has ALMOST_EMPTY flag
 *     C_HAS_ALMOST_FULL             : 1=Core has ALMOST_FULL flag
 *     C_HAS_BACKUP                  :    *not used
 *     C_HAS_DATA_COUNT              : 1=Core has DATA_COUNT bus
 *     C_HAS_INT_CLK                 : not used in bhv model
 *     C_HAS_MEMINIT_FILE            :    *not used
 *     C_HAS_OVERFLOW                : 1=Core has OVERFLOW flag
 *     C_HAS_RD_DATA_COUNT           : 1=Core has RD_DATA_COUNT bus
 *     C_HAS_RD_RST                  :    *not used
 *     C_HAS_RST                     : 1=Core has Async Rst
 *     C_HAS_SRST                    : 1=Core has Sync Rst
 *     C_HAS_UNDERFLOW               : 1=Core has UNDERFLOW flag
 *     C_HAS_VALID                   : 1=Core has VALID flag
 *     C_HAS_WR_ACK                  : 1=Core has WR_ACK flag
 *     C_HAS_WR_DATA_COUNT           : 1=Core has WR_DATA_COUNT bus
 *     C_HAS_WR_RST                  :    *not used
 *     C_IMPLEMENTATION_TYPE         : 0=Common-Clock Bram/Dram
 *                                     1=Common-Clock ShiftRam
 *                                     2=Indep. Clocks Bram/Dram
 *                                     3=Virtex-4 Built-in
 *                                     4=Virtex-5 Built-in
 *     C_INIT_WR_PNTR_VAL            :   *not used
 *     C_MEMORY_TYPE                 : 1=Block RAM
 *                                     2=Distributed RAM
 *                                     3=Shift RAM
 *                                     4=Built-in FIFO
 *     C_MIF_FILE_NAME               :   *not used
 *     C_OPTIMIZATION_MODE           :   *not used
 *     C_OVERFLOW_LOW                : 1=OVERFLOW active low
 *     C_PRELOAD_LATENCY             : Latency of read: 0, 1, 2
 *     C_PRELOAD_REGS                : 1=Use output registers
 *     C_PRIM_FIFO_TYPE              : not used in bhv model
 *     C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
 *     C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
 *     C_PROG_EMPTY_TYPE             : 0=No programmable empty
 *                                     1=Single prog empty thresh constant
 *                                     2=Multiple prog empty thresh constants
 *                                     3=Single prog empty thresh input
 *                                     4=Multiple prog empty thresh inputs
 *     C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
 *     C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
 *     C_PROG_FULL_TYPE              : 0=No prog full
 *                                     1=Single prog full thresh constant
 *                                     2=Multiple prog full thresh constants
 *                                     3=Single prog full thresh input
 *                                     4=Multiple prog full thresh inputs
 *     C_RD_DATA_COUNT_WIDTH         : Width of RD_DATA_COUNT bus
 *     C_RD_DEPTH                    : Depth of read interface (2^N)
 *     C_RD_FREQ                     : not used in bhv model
 *     C_RD_PNTR_WIDTH               : always log2(C_RD_DEPTH)
 *     C_UNDERFLOW_LOW               : 1=UNDERFLOW active low
 *     C_USE_DOUT_RST                : 1=Resets DOUT on RST
 *     C_USE_ECC                     : not used in bhv model
 *     C_USE_EMBEDDED_REG            : 1=Use BRAM embedded output register
 *     C_USE_FIFO16_FLAGS            : not used in bhv model
 *     C_USE_FWFT_DATA_COUNT         : 1=Use extra logic for FWFT data count
 *     C_VALID_LOW                   : 1=VALID active low
 *     C_WR_ACK_LOW                  : 1=WR_ACK active low
 *     C_WR_DATA_COUNT_WIDTH         : Width of WR_DATA_COUNT bus
 *     C_WR_DEPTH                    : Depth of write interface (2^N)
 *     C_WR_FREQ                     : not used in bhv model
 *     C_WR_PNTR_WIDTH               : always log2(C_WR_DEPTH)
 *     C_WR_RESPONSE_LATENCY         :    *not used
 *     C_MSGON_VAL                   :    *not used by bhv model
 ******************************************************************************
 * Definition of Ports
 ******************************************************************************
 *   BACKUP       : Not used
 *   BACKUP_MARKER: Not used
 *   CLK          : Clock
 *   DIN          : Input data bus
 *   PROG_EMPTY_THRESH       : Threshold for Programmable Empty Flag
 *   PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
 *   PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
 *   PROG_FULL_THRESH        : Threshold for Programmable Full Flag
 *   PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
 *   PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
 *   RD_CLK       : Read Domain Clock
 *   RD_EN        : Read enable
 *   RD_RST       : Not used
 *   RST          : Asynchronous Reset
 *   SRST         : Synchronous Reset
 *   WR_CLK       : Write Domain Clock
 *   WR_EN        : Write enable
 *   WR_RST       : Not used
 *   INT_CLK      : Internal Clock
 *   ALMOST_EMPTY : One word remaining in FIFO
 *   ALMOST_FULL  : One empty space remaining in FIFO
 *   DATA_COUNT   : Number of data words in fifo( synchronous to CLK)
 *   DOUT         : Output data bus
 *   EMPTY        : Empty flag
 *   FULL         : Full flag
 *   OVERFLOW     : Last write rejected
 *   PROG_EMPTY   : Programmable Empty Flag
 *   PROG_FULL    : Programmable Full Flag
 *   RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
 *   UNDERFLOW    : Last read rejected
 *   VALID        : Last read acknowledged, DOUT bus VALID
 *   WR_ACK       : Last write acknowledged
 *   WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
 *   SBITERR      : Single Bit ECC Error Detected
 *   DBITERR      : Double Bit ECC Error Detected
 ******************************************************************************
 */

   
  /****************************************************************************
  * Declare user parameters and their defaults
  *****************************************************************************/
  parameter  C_COMMON_CLOCK                 = 0;
  parameter  C_COUNT_TYPE                   = 0; //not used
  parameter  C_DATA_COUNT_WIDTH             = 2;
  parameter  C_DEFAULT_VALUE                = ""; //not used
  parameter  C_DIN_WIDTH                    = 8;
  parameter  C_DOUT_RST_VAL                 = "";
  parameter  C_DOUT_WIDTH                   = 8;
  parameter  C_ENABLE_RLOCS                 = 0; //not used
  parameter  C_FAMILY                       = "virtex2"; //not used in bhv model
  parameter  C_FULL_FLAGS_RST_VAL           = 1;
  parameter  C_HAS_ALMOST_EMPTY             = 0;
  parameter  C_HAS_ALMOST_FULL              = 0;
  parameter  C_HAS_BACKUP                   = 0; //not used
  parameter  C_HAS_DATA_COUNT               = 0;
  parameter  C_HAS_INT_CLK                  = 0; //not used in bhv model
  parameter  C_HAS_MEMINIT_FILE             = 0; //not used
  parameter  C_HAS_OVERFLOW                 = 0;
  parameter  C_HAS_RD_DATA_COUNT            = 0;
  parameter  C_HAS_RD_RST                   = 0; //not used
  parameter  C_HAS_RST                      = 0;
  parameter  C_HAS_SRST                     = 0;
  parameter  C_HAS_UNDERFLOW                = 0;
  parameter  C_HAS_VALID                    = 0;
  parameter  C_HAS_WR_ACK                   = 0;
  parameter  C_HAS_WR_DATA_COUNT            = 0;
  parameter  C_HAS_WR_RST                   = 0; //not used
  parameter  C_IMPLEMENTATION_TYPE          = 0;
  parameter  C_INIT_WR_PNTR_VAL             = 0; //not used
  parameter  C_MEMORY_TYPE                  = 1;
  parameter  C_MIF_FILE_NAME                = ""; //not used
  parameter  C_OPTIMIZATION_MODE            = 0; //not used
  parameter  C_OVERFLOW_LOW                 = 0;
  parameter  C_PRELOAD_LATENCY              = 1;
  parameter  C_PRELOAD_REGS                 = 0;
  parameter  C_PRIM_FIFO_TYPE               = 512; //not used in bhv model
  parameter  C_PROG_EMPTY_THRESH_ASSERT_VAL = 0;
  parameter  C_PROG_EMPTY_THRESH_NEGATE_VAL = 0;
  parameter  C_PROG_EMPTY_TYPE              = 0;
  parameter  C_PROG_FULL_THRESH_ASSERT_VAL  = 0;
  parameter  C_PROG_FULL_THRESH_NEGATE_VAL  = 0;
  parameter  C_PROG_FULL_TYPE               = 0;
  parameter  C_RD_DATA_COUNT_WIDTH          = 2;
  parameter  C_RD_DEPTH                     = 256;
  parameter  C_RD_FREQ                      = 1; //not used in bhv model
  parameter  C_RD_PNTR_WIDTH                = 8;
  parameter  C_UNDERFLOW_LOW                = 0;
  parameter  C_USE_DOUT_RST                 = 0;
  parameter  C_USE_ECC                      = 0; //not used in bhv model
  parameter  C_USE_EMBEDDED_REG             = 0;
  parameter  C_USE_FIFO16_FLAGS             = 0; //not used in bhv model
  parameter  C_USE_FWFT_DATA_COUNT          = 0;
  parameter  C_VALID_LOW                    = 0;
  parameter  C_WR_ACK_LOW                   = 0;
  parameter  C_WR_DATA_COUNT_WIDTH          = 2;
  parameter  C_WR_DEPTH                     = 256;
  parameter  C_WR_FREQ                      = 1; //not used in bhv model
  parameter  C_WR_PNTR_WIDTH                = 8;
  parameter  C_WR_RESPONSE_LATENCY          = 1; //not used
  parameter  C_MSGON_VAL                    = 1; //not used 



  /*****************************************************************************
   * Derived parameters
   ****************************************************************************/
  //There are 2 Verilog behavioral models
  // 0 = Common-Clock FIFO/ShiftRam FIFO
  // 1 = Independent Clocks FIFO
  parameter  C_VERILOG_IMPL = (C_IMPLEMENTATION_TYPE==0 ? 0 :
                               (C_IMPLEMENTATION_TYPE==1 ? 0 :
                                (C_IMPLEMENTATION_TYPE==2 ? 1 : 0)));

  /*****************************************************************************
   * Declare Input and Output Ports
   ****************************************************************************/
  input                              CLK;
  input                              BACKUP;
  input                              BACKUP_MARKER;
  input [C_DIN_WIDTH-1:0]            DIN;
  input [C_RD_PNTR_WIDTH-1:0]        PROG_EMPTY_THRESH;
  input [C_RD_PNTR_WIDTH-1:0]        PROG_EMPTY_THRESH_ASSERT;
  input [C_RD_PNTR_WIDTH-1:0]        PROG_EMPTY_THRESH_NEGATE;
  input [C_WR_PNTR_WIDTH-1:0]        PROG_FULL_THRESH;
  input [C_WR_PNTR_WIDTH-1:0]        PROG_FULL_THRESH_ASSERT;
  input [C_WR_PNTR_WIDTH-1:0]        PROG_FULL_THRESH_NEGATE;
  input                              RD_CLK;
  input                              RD_EN;
  input                              RD_RST;
  input                              RST;
  input                              SRST;
  input                              WR_CLK;
  input                              WR_EN;
  input                              WR_RST;
  input                              INT_CLK;

  output                             ALMOST_EMPTY;
  output                             ALMOST_FULL;
  output [C_DATA_COUNT_WIDTH-1:0]    DATA_COUNT;
  output [C_DOUT_WIDTH-1:0]          DOUT;
  output                             EMPTY;
  output                             FULL;
  output                             OVERFLOW;
  output                             PROG_EMPTY;
  output                             PROG_FULL;
  output                             VALID;
  output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
  output                             UNDERFLOW;
  output                             WR_ACK;
  output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
  output                             SBITERR;
  output                             DBITERR;


  wire                               ALMOST_EMPTY;
  wire                               ALMOST_FULL;
  wire [C_DATA_COUNT_WIDTH-1:0]      DATA_COUNT;
  wire [C_DOUT_WIDTH-1:0]            DOUT;
  wire                               EMPTY;
  wire                               FULL;
  wire                               OVERFLOW;
  wire                               PROG_EMPTY;
  wire                               PROG_FULL;
  wire                               VALID;
  wire [C_RD_DATA_COUNT_WIDTH-1:0]   RD_DATA_COUNT;
  wire                               UNDERFLOW;
  wire                               WR_ACK;
  wire [C_WR_DATA_COUNT_WIDTH-1:0]   WR_DATA_COUNT;


  wire                               RD_CLK_P0_IN;
  wire                               RST_P0_IN;
  wire                               RD_EN_FIFO_IN;
  wire                               RD_EN_P0_IN;

  wire                               ALMOST_EMPTY_FIFO_OUT;
  wire                               ALMOST_FULL_FIFO_OUT;
  wire [C_DATA_COUNT_WIDTH-1:0]      DATA_COUNT_FIFO_OUT;
  wire [C_DOUT_WIDTH-1:0]            DOUT_FIFO_OUT;
  wire                               EMPTY_FIFO_OUT;
  wire                               FULL_FIFO_OUT;
  wire                               OVERFLOW_FIFO_OUT;
  wire                               PROG_EMPTY_FIFO_OUT;
  wire                               PROG_FULL_FIFO_OUT;
  wire                               VALID_FIFO_OUT;
  wire [C_RD_DATA_COUNT_WIDTH-1:0]   RD_DATA_COUNT_FIFO_OUT;
  wire                               UNDERFLOW_FIFO_OUT;
  wire                               WR_ACK_FIFO_OUT;
  wire [C_WR_DATA_COUNT_WIDTH-1:0]   WR_DATA_COUNT_FIFO_OUT;


  //***************************************************************************
  // Internal Signals
  //   The core uses either the internal_ wires or the preload0_ wires depending
  //     on whether the core uses Preload0 or not.
  //   When using preload0, the internal signals connect the internal core to
  //     the preload logic, and the external core's interfaces are tied to the
  //     preload0 signals from the preload logic.
  //***************************************************************************
  wire [C_DOUT_WIDTH-1:0]            DATA_P0_OUT;
  wire                               VALID_P0_OUT;
  wire                               EMPTY_P0_OUT;
  wire                               ALMOSTEMPTY_P0_OUT;
  reg                                EMPTY_P0_OUT_Q;
  reg                                ALMOSTEMPTY_P0_OUT_Q;
  wire                               UNDERFLOW_P0_OUT;
  wire                               RDEN_P0_OUT;
  wire [C_DOUT_WIDTH-1:0]            DATA_P0_IN;
  wire                               EMPTY_P0_IN;
  reg  [31:0]      DATA_COUNT_FWFT;
  reg                               SS_FWFT_WR  ;
  reg                              SS_FWFT_RD ;

  assign SBITERR = 1'b0;
  assign DBITERR = 1'b0;

   
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
generate
case (C_VERILOG_IMPL)
0 : begin : block1
  //Common Clock Behavioral Model
  fifo_generator_v4_3_bhv_ver_ss
  #(
    C_DATA_COUNT_WIDTH,
    C_DIN_WIDTH,
    C_DOUT_RST_VAL,
    C_DOUT_WIDTH,
    C_FULL_FLAGS_RST_VAL,
    C_HAS_ALMOST_EMPTY,
    C_HAS_ALMOST_FULL,
    C_HAS_DATA_COUNT,
    C_HAS_OVERFLOW,
    C_HAS_RD_DATA_COUNT,
    C_HAS_RST,
    C_HAS_SRST,
    C_HAS_UNDERFLOW,
    C_HAS_VALID,
    C_HAS_WR_ACK,
    C_HAS_WR_DATA_COUNT,
    C_IMPLEMENTATION_TYPE,
    C_MEMORY_TYPE,
    C_OVERFLOW_LOW,
    C_PRELOAD_LATENCY,
    C_PRELOAD_REGS,
    C_PROG_EMPTY_THRESH_ASSERT_VAL,
    C_PROG_EMPTY_THRESH_NEGATE_VAL,
    C_PROG_EMPTY_TYPE,
    C_PROG_FULL_THRESH_ASSERT_VAL,
    C_PROG_FULL_THRESH_NEGATE_VAL,
    C_PROG_FULL_TYPE,
    C_RD_DATA_COUNT_WIDTH,
    C_RD_DEPTH,
    C_RD_PNTR_WIDTH,
    C_UNDERFLOW_LOW,
    C_USE_DOUT_RST,
    C_USE_EMBEDDED_REG,
    C_USE_FWFT_DATA_COUNT,
    C_VALID_LOW,
    C_WR_ACK_LOW,
    C_WR_DATA_COUNT_WIDTH,
    C_WR_DEPTH,
    C_WR_PNTR_WIDTH
  )
  gen_ss
  (
    .CLK                      (CLK),
    .RST                      (RST),
    .SRST                     (SRST),
    .DIN                      (DIN),
    .WR_EN                    (WR_EN),
    .RD_EN                    (RD_EN_FIFO_IN),
    .PROG_EMPTY_THRESH        (PROG_EMPTY_THRESH),
    .PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
    .PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
    .PROG_FULL_THRESH         (PROG_FULL_THRESH),
    .PROG_FULL_THRESH_ASSERT  (PROG_FULL_THRESH_ASSERT),
    .PROG_FULL_THRESH_NEGATE  (PROG_FULL_THRESH_NEGATE),
    .DOUT                     (DOUT_FIFO_OUT),
    .FULL                     (FULL_FIFO_OUT),
    .ALMOST_FULL              (ALMOST_FULL_FIFO_OUT),
    .WR_ACK                   (WR_ACK_FIFO_OUT),
    .OVERFLOW                 (OVERFLOW_FIFO_OUT),
    .EMPTY                    (EMPTY_FIFO_OUT),
    .ALMOST_EMPTY             (ALMOST_EMPTY_FIFO_OUT),
    .VALID                    (VALID_FIFO_OUT),
    .UNDERFLOW                (UNDERFLOW_FIFO_OUT),
    .DATA_COUNT               (DATA_COUNT_FIFO_OUT),
    .PROG_FULL                (PROG_FULL_FIFO_OUT),
    .PROG_EMPTY               (PROG_EMPTY_FIFO_OUT)
   );
end
1 : begin : block1
  //Independent Clocks Behavioral Model
  fifo_generator_v4_3_bhv_ver_as
  #(
    C_DATA_COUNT_WIDTH,
    C_DIN_WIDTH,
    C_DOUT_RST_VAL,
    C_DOUT_WIDTH,
    C_FULL_FLAGS_RST_VAL,
    C_HAS_ALMOST_EMPTY,
    C_HAS_ALMOST_FULL,
    C_HAS_DATA_COUNT,
    C_HAS_OVERFLOW,
    C_HAS_RD_DATA_COUNT,
    C_HAS_RST,
    C_HAS_UNDERFLOW,
    C_HAS_VALID,
    C_HAS_WR_ACK,
    C_HAS_WR_DATA_COUNT,
    C_IMPLEMENTATION_TYPE,
    C_MEMORY_TYPE,
    C_OVERFLOW_LOW,
    C_PRELOAD_LATENCY,
    C_PRELOAD_REGS,
    C_PROG_EMPTY_THRESH_ASSERT_VAL,
    C_PROG_EMPTY_THRESH_NEGATE_VAL,
    C_PROG_EMPTY_TYPE,
    C_PROG_FULL_THRESH_ASSERT_VAL,
    C_PROG_FULL_THRESH_NEGATE_VAL,
    C_PROG_FULL_TYPE,
    C_RD_DATA_COUNT_WIDTH,
    C_RD_DEPTH,
    C_RD_PNTR_WIDTH,
    C_UNDERFLOW_LOW,
    C_USE_DOUT_RST,
    C_USE_EMBEDDED_REG,
    C_USE_FWFT_DATA_COUNT,
    C_VALID_LOW,
    C_WR_ACK_LOW,
    C_WR_DATA_COUNT_WIDTH,
    C_WR_DEPTH,
    C_WR_PNTR_WIDTH
  )
  gen_as
  (
    .WR_CLK                   (WR_CLK),
    .RD_CLK                   (RD_CLK),
    .RST                      (RST),
    .DIN                      (DIN),
    .WR_EN                    (WR_EN),
    .RD_EN                    (RD_EN_FIFO_IN),
    .PROG_EMPTY_THRESH        (PROG_EMPTY_THRESH),
    .PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
    .PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
    .PROG_FULL_THRESH         (PROG_FULL_THRESH),
    .PROG_FULL_THRESH_ASSERT  (PROG_FULL_THRESH_ASSERT),
    .PROG_FULL_THRESH_NEGATE  (PROG_FULL_THRESH_NEGATE),
    .DOUT                     (DOUT_FIFO_OUT),
    .FULL                     (FULL_FIFO_OUT),
    .ALMOST_FULL              (ALMOST_FULL_FIFO_OUT),
    .WR_ACK                   (WR_ACK_FIFO_OUT),
    .OVERFLOW                 (OVERFLOW_FIFO_OUT),
    .EMPTY                    (EMPTY_FIFO_OUT),
    .ALMOST_EMPTY             (ALMOST_EMPTY_FIFO_OUT),
    .VALID                    (VALID_FIFO_OUT),
    .UNDERFLOW                (UNDERFLOW_FIFO_OUT),
    .RD_DATA_COUNT            (RD_DATA_COUNT_FIFO_OUT),
    .WR_DATA_COUNT            (WR_DATA_COUNT_FIFO_OUT),
    .PROG_FULL                (PROG_FULL_FIFO_OUT),
    .PROG_EMPTY               (PROG_EMPTY_FIFO_OUT)
   );
end

default : begin : block1
  //Independent Clocks Behavioral Model
  fifo_generator_v4_3_bhv_ver_as
  #(
    C_DATA_COUNT_WIDTH,
    C_DIN_WIDTH,
    C_DOUT_RST_VAL,
    C_DOUT_WIDTH,
    C_FULL_FLAGS_RST_VAL,
    C_HAS_ALMOST_EMPTY,
    C_HAS_ALMOST_FULL,
    C_HAS_DATA_COUNT,
    C_HAS_OVERFLOW,
    C_HAS_RD_DATA_COUNT,
    C_HAS_RST,
    C_HAS_UNDERFLOW,
    C_HAS_VALID,
    C_HAS_WR_ACK,
    C_HAS_WR_DATA_COUNT,
    C_IMPLEMENTATION_TYPE,
    C_MEMORY_TYPE,
    C_OVERFLOW_LOW,
    C_PRELOAD_LATENCY,
    C_PRELOAD_REGS,
    C_PROG_EMPTY_THRESH_ASSERT_VAL,
    C_PROG_EMPTY_THRESH_NEGATE_VAL,
    C_PROG_EMPTY_TYPE,
    C_PROG_FULL_THRESH_ASSERT_VAL,
    C_PROG_FULL_THRESH_NEGATE_VAL,
    C_PROG_FULL_TYPE,
    C_RD_DATA_COUNT_WIDTH,
    C_RD_DEPTH,
    C_RD_PNTR_WIDTH,
    C_UNDERFLOW_LOW,
    C_USE_DOUT_RST,
    C_USE_EMBEDDED_REG,
    C_USE_FWFT_DATA_COUNT,
    C_VALID_LOW,
    C_WR_ACK_LOW,
    C_WR_DATA_COUNT_WIDTH,
    C_WR_DEPTH,
    C_WR_PNTR_WIDTH
  )
  gen_as
  (
    .WR_CLK                   (WR_CLK),
    .RD_CLK                   (RD_CLK),
    .RST                      (RST),
    .DIN                      (DIN),
    .WR_EN                    (WR_EN),
    .RD_EN                    (RD_EN_FIFO_IN),
    .PROG_EMPTY_THRESH        (PROG_EMPTY_THRESH),
    .PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
    .PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
    .PROG_FULL_THRESH         (PROG_FULL_THRESH),
    .PROG_FULL_THRESH_ASSERT  (PROG_FULL_THRESH_ASSERT),
    .PROG_FULL_THRESH_NEGATE  (PROG_FULL_THRESH_NEGATE),
    .DOUT                     (DOUT_FIFO_OUT),
    .FULL                     (FULL_FIFO_OUT),
    .ALMOST_FULL              (ALMOST_FULL_FIFO_OUT),
    .WR_ACK                   (WR_ACK_FIFO_OUT),
    .OVERFLOW                 (OVERFLOW_FIFO_OUT),
    .EMPTY                    (EMPTY_FIFO_OUT),
    .ALMOST_EMPTY             (ALMOST_EMPTY_FIFO_OUT),
    .VALID                    (VALID_FIFO_OUT),
    .UNDERFLOW                (UNDERFLOW_FIFO_OUT),
    .RD_DATA_COUNT            (RD_DATA_COUNT_FIFO_OUT),
    .WR_DATA_COUNT            (WR_DATA_COUNT_FIFO_OUT),
    .PROG_FULL                (PROG_FULL_FIFO_OUT),
    .PROG_EMPTY               (PROG_EMPTY_FIFO_OUT)
   );
end

endcase
endgenerate


   //**************************************************************************
   // Connect Internal Signals
   //   (Signals labeled internal_*)
   //  In the normal case, these signals tie directly to the FIFO's inputs and
   //    outputs.
   //  In the case of Preload Latency 0 or 1, there are intermediate
   //    signals between the internal FIFO and the preload logic.
   //**************************************************************************
   
   
   //***********************************************
   // If First-Word Fall-Through, instantiate
   // the preload0 (FWFT) module
   //***********************************************
   generate
      if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin : block2
	 
	 
	 fifo_generator_v4_3_bhv_ver_preload0
	   #(
	     C_DOUT_RST_VAL,
	     C_DOUT_WIDTH,
	     C_HAS_RST,
	     C_USE_DOUT_RST,
	     C_VALID_LOW,
	     C_UNDERFLOW_LOW
	     )
	     fgpl0
	       (
		.RD_CLK           (RD_CLK_P0_IN),
		.RD_RST           (RST_P0_IN),
		.RD_EN            (RD_EN_P0_IN),
		.FIFOEMPTY        (EMPTY_P0_IN),
		.FIFODATA         (DATA_P0_IN),
		.USERDATA         (DATA_P0_OUT),
		.USERVALID        (VALID_P0_OUT),
		.USEREMPTY        (EMPTY_P0_OUT),
		.USERALMOSTEMPTY  (ALMOSTEMPTY_P0_OUT),
		.USERUNDERFLOW    (UNDERFLOW_P0_OUT),
		.RAMVALID         (RAMVALID_P0_OUT),
		.FIFORDEN         (RDEN_P0_OUT)
		);
	 
	 
	 //***********************************************
	 // Connect inputs to preload (FWFT) module
	 //***********************************************
	 //Connect the RD_CLK of the Preload (FWFT) module to CLK if we 
	 // have a common-clock FIFO, or RD_CLK if we have an 
	 // independent clock FIFO
	 assign RD_CLK_P0_IN       = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
	 assign RST_P0_IN          = RST;
	 assign RD_EN_P0_IN        = RD_EN;
	 assign EMPTY_P0_IN        = EMPTY_FIFO_OUT;
	 assign DATA_P0_IN         = DOUT_FIFO_OUT;
	 
	 //***********************************************
	 // Connect outputs from preload (FWFT) module
	 //***********************************************
	 assign DOUT               = DATA_P0_OUT;
	 assign VALID              = VALID_P0_OUT ;
	 assign EMPTY              = EMPTY_P0_OUT;
	 assign ALMOST_EMPTY       = ALMOSTEMPTY_P0_OUT;
	 assign UNDERFLOW          = UNDERFLOW_P0_OUT ;
	 
	 assign RD_EN_FIFO_IN      = RDEN_P0_OUT;
	 
	 
	 //***********************************************
	 // Create DATA_COUNT from First-Word Fall-Through
	 // data count
	 //***********************************************
	 assign DATA_COUNT = (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? 
	   DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] : 
	   DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];  
	 
	 //***********************************************
	 // Create DATA_COUNT from First-Word Fall-Through
	 // data count
	 //***********************************************
	 always @ (posedge RD_CLK or posedge RST) begin
	    if (RST) begin
	       EMPTY_P0_OUT_Q       <= 1;
	       ALMOSTEMPTY_P0_OUT_Q <= 1;
	    end else begin
	       EMPTY_P0_OUT_Q       <= EMPTY_P0_OUT;
	       ALMOSTEMPTY_P0_OUT_Q <= ALMOSTEMPTY_P0_OUT;
	    end
	 end //always
	 
	 
	 //***********************************************
	 // logic for common-clock data count when FWFT is selected
	 //***********************************************
	 initial begin
	    SS_FWFT_RD = 1'b0;
	    DATA_COUNT_FWFT = 0 ;
	    SS_FWFT_WR   = 1'b0 ;
	 end //initial
	 
	 
	 //***********************************************
	 // common-clock data count is implemented as an
	 // up-down counter. SS_FWFT_WR and SS_FWFT_RD
	 // are the up/down enables for the counter.
	 //***********************************************
	 always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT) begin
	    SS_FWFT_RD = RD_EN && VALID_P0_OUT ;	    
	    SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT))  ;
	 end 

	 //***********************************************
	 // common-clock data count is implemented as an
	 // up-down counter for FWFT. This always block 
	 // calculates the counter.
	 //***********************************************
	 always @ (posedge RD_CLK_P0_IN or posedge RST) begin
	    if (RST && (C_HAS_RST == 1) ) begin
	       DATA_COUNT_FWFT      <= 0;
	    end else begin
	       if (SRST && (C_HAS_SRST == 1) ) begin
		  DATA_COUNT_FWFT      <= 0;
               end else begin
		  case ( {SS_FWFT_WR, SS_FWFT_RD})
		    2'b00: DATA_COUNT_FWFT <= DATA_COUNT_FWFT ;
		    2'b01: DATA_COUNT_FWFT <= DATA_COUNT_FWFT - 1 ;
		    2'b10: DATA_COUNT_FWFT <= DATA_COUNT_FWFT + 1 ;
		    2'b11: DATA_COUNT_FWFT <= DATA_COUNT_FWFT ;
		  endcase  
               end //if SRST
	    end //IF RST
	 end //always

	 
      end else begin : block2 //if !(C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
	 
	 //***********************************************
	 // If NOT First-Word Fall-Through, wire the outputs
	 // of the internal _ss or _as FIFO directly to the
	 // output, and do not instantiate the preload0
	 // module.
	 //***********************************************
	 
	 assign RD_CLK_P0_IN       = 0;
	 assign RST_P0_IN          = 0;
	 assign RD_EN_P0_IN        = 0;
	 
	 assign RD_EN_FIFO_IN      = RD_EN;
	 
	 assign DOUT               = DOUT_FIFO_OUT;
	 assign DATA_P0_IN         = 0;
	 assign VALID              = VALID_FIFO_OUT;
	 assign EMPTY              = EMPTY_FIFO_OUT;
	 assign ALMOST_EMPTY       = ALMOST_EMPTY_FIFO_OUT;
	 assign EMPTY_P0_IN        = 0;
	 assign UNDERFLOW          = UNDERFLOW_FIFO_OUT;
	 assign DATA_COUNT         = DATA_COUNT_FIFO_OUT;
	 
      end //if !(C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
   endgenerate


   //***********************************************
   // Connect user flags to internal signals
   //***********************************************
   
   //If we are using extra logic for the FWFT data count, then override the
   //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
   //RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
   generate
      if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3
	 assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
      end //block3
   endgenerate
   
   //If we are using extra logic for the FWFT data count, then override the
   //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
   //Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
   generate
      if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30
	 assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
      end //block30
   endgenerate

   //If we are not using extra logic for the FWFT data count,
   //then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
   //internal FIFO instance  
   generate
      if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
	 assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
      end
   endgenerate

   //Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
   //FIFO instance
   generate
      if (C_USE_FWFT_DATA_COUNT==1) begin : block4
	 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
      end
      else begin : block4
	 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
      end
   endgenerate


   //Connect other flags to the internal FIFO instance
   assign 	FULL        = FULL_FIFO_OUT;
   assign 	ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
   assign 	WR_ACK      = WR_ACK_FIFO_OUT;
   assign 	OVERFLOW    = OVERFLOW_FIFO_OUT;
   assign 	PROG_FULL   = PROG_FULL_FIFO_OUT;
   assign 	PROG_EMPTY  = PROG_EMPTY_FIFO_OUT;


   // if an asynchronous FIFO has been selected, display a message that the FIFO
   //   will not be cycle-accurate in simulation
   initial begin
      if (C_IMPLEMENTATION_TYPE == 2) begin
	 $display("Warning in %m at time %t: When using an asynchronous configuration for the FIFO Generator, the behavioral model is not cycle-accurate. You may wish to choose the structural simulation model instead of the behavioral model. This will ensure accurate behavior and latencies during simulation. You can enable this from CORE Generator by selecting Project -> Project Options -> Generation tab -> Structural Simulation. See the FIFO Generator User Guide for more information.", $time);
      end else if (C_IMPLEMENTATION_TYPE == 3 || C_IMPLEMENTATION_TYPE == 4) begin
	 $display("Failure in %m at time %t: Use of Virtex-4 and Virtex-5 built-in FIFO configurations is currently not supported. Please use the structural simulation model. You can enable this from CORE Generator by selecting Project -> Project Options -> Generation tab -> Structural Simulation. See the FIFO Generator User Guide for more information.", $time);
	 $finish;
      end
   end //initial

endmodule //FIFO_GENERATOR_V4_3



/*******************************************************************************
 * Declaration of Independent-Clocks FIFO Module
 ******************************************************************************/
module fifo_generator_v4_3_bhv_ver_as
  (
   WR_CLK, RD_CLK, RST, DIN, WR_EN, RD_EN,
   PROG_EMPTY_THRESH, PROG_EMPTY_THRESH_ASSERT, PROG_EMPTY_THRESH_NEGATE,
   PROG_FULL_THRESH, PROG_FULL_THRESH_ASSERT, PROG_FULL_THRESH_NEGATE,
   DOUT, FULL, ALMOST_FULL, WR_ACK, OVERFLOW, EMPTY, ALMOST_EMPTY, VALID,
   UNDERFLOW, RD_DATA_COUNT, WR_DATA_COUNT, PROG_FULL, PROG_EMPTY
   );
   
   /***************************************************************************
    * Declare user parameters and their defaults
    ***************************************************************************/
   parameter  C_DATA_COUNT_WIDTH             = 2;
   parameter  C_DIN_WIDTH                    = 8;
   parameter  C_DOUT_RST_VAL                 = "";
   parameter  C_DOUT_WIDTH                   = 8;
   parameter  C_FULL_FLAGS_RST_VAL           = 1;
   parameter  C_HAS_ALMOST_EMPTY             = 0;
   parameter  C_HAS_ALMOST_FULL              = 0;
   parameter  C_HAS_DATA_COUNT               = 0;
   parameter  C_HAS_OVERFLOW                 = 0;
   parameter  C_HAS_RD_DATA_COUNT            = 0;
   parameter  C_HAS_RST                      = 0;
   parameter  C_HAS_UNDERFLOW                = 0;
   parameter  C_HAS_VALID                    = 0;
   parameter  C_HAS_WR_ACK                   = 0;
   parameter  C_HAS_WR_DATA_COUNT            = 0;
   parameter  C_IMPLEMENTATION_TYPE          = 0;
   parameter  C_MEMORY_TYPE                  = 1;
   parameter  C_OVERFLOW_LOW                 = 0;
   parameter  C_PRELOAD_LATENCY              = 1;
   parameter  C_PRELOAD_REGS                 = 0;
   parameter  C_PROG_EMPTY_THRESH_ASSERT_VAL = 0;
   parameter  C_PROG_EMPTY_THRESH_NEGATE_VAL = 0;
   parameter  C_PROG_EMPTY_TYPE              = 0;
   parameter  C_PROG_FULL_THRESH_ASSERT_VAL  = 0;
   parameter  C_PROG_FULL_THRESH_NEGATE_VAL  = 0;
   parameter  C_PROG_FULL_TYPE               = 0;
   parameter  C_RD_DATA_COUNT_WIDTH          = 2;
   parameter  C_RD_DEPTH                     = 256;
   parameter  C_RD_PNTR_WIDTH                = 8;
   parameter  C_UNDERFLOW_LOW                = 0;
   parameter  C_USE_DOUT_RST                 = 0;
   parameter  C_USE_EMBEDDED_REG             = 0;
   parameter  C_USE_FWFT_DATA_COUNT          = 0;
   parameter  C_VALID_LOW                    = 0;
   parameter  C_WR_ACK_LOW                   = 0;
   parameter  C_WR_DATA_COUNT_WIDTH          = 2;
   parameter  C_WR_DEPTH                     = 256;
   parameter  C_WR_PNTR_WIDTH                = 8;

   /***************************************************************************
    * Declare Input and Output Ports
    ***************************************************************************/
   input [C_DIN_WIDTH-1:0] DIN;
   input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
   input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
   input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
   input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
   input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
   input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
   input 		       RD_CLK;
   input 		       RD_EN;
   input 		       RST;
   input 		       WR_CLK;
   input 		       WR_EN;
   output 		       ALMOST_EMPTY;
   output 		       ALMOST_FULL;
   output [C_DOUT_WIDTH-1:0]   DOUT;
   output 		       EMPTY;
   output 		       FULL;
   output 		       OVERFLOW;
   output 		       PROG_EMPTY;
   output 		       PROG_FULL;
   output 		       VALID;
   output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
   output                             UNDERFLOW;
   output                             WR_ACK;
   output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
   
  /*************************************************************************
   * Declare the type for each Input/Output port, and connect each I/O
   * to it's associated internal signal in the behavioral model
   * 
   * The values for the outputs are assigned in assign statements immediately
   * following wire, parameter, and function declarations in this code.
   *************************************************************************/
   //Inputs
   wire [C_DIN_WIDTH-1:0] DIN;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;   
   wire RD_CLK;
   wire RD_EN;
   wire RST;
   wire WR_CLK;
   wire WR_EN;

   //Outputs
   wire ALMOST_EMPTY;
   wire ALMOST_FULL;
   wire [C_DOUT_WIDTH-1:0] DOUT;   
   wire EMPTY;
   wire FULL;
   wire OVERFLOW;
   wire PROG_EMPTY;
   wire PROG_FULL;
   wire VALID;  
   wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
   wire UNDERFLOW;
   wire WR_ACK;   
   wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
   
  
   /***************************************************************************
    * Parameters used as constants
    **************************************************************************/
   //When RST is present, set FULL reset value to '1'.
   //If core has no RST, make sure FULL powers-on as '0'.
   parameter C_DEPTH_RATIO_WR =  
      (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
   parameter C_DEPTH_RATIO_RD =  
      (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
   parameter C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
   parameter C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;

   
   // EXTRA_WORDS = 2 * C_DEPTH_RATIO_WR / C_DEPTH_RATIO_RD
   // WR_DEPTH : RD_DEPTH = 1:2 => EXTRA_WORDS = 1
   // WR_DEPTH : RD_DEPTH = 1:4 => EXTRA_WORDS = 1 (rounded to ceiling)
   // WR_DEPTH : RD_DEPTH = 2:1 => EXTRA_WORDS = 4
   // WR_DEPTH : RD_DEPTH = 4:1 => EXTRA_WORDS = 8
   parameter EXTRA_WORDS = (C_DEPTH_RATIO_RD > 1)? 1:(2 * C_DEPTH_RATIO_WR);
   // extra_words_dc = 2 * C_DEPTH_RATIO_WR / C_DEPTH_RATIO_RD
   //  C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH    | EXTRA_WORDS_DC
   //  -----------------|------------------|-----------------|---------------
   //  1                | 8                | C_RD_PNTR_WIDTH | 0
   //  1                | 4                | C_RD_PNTR_WIDTH | 0
   //  1                | 2                | C_RD_PNTR_WIDTH | 1
   //  1                | 1                | C_WR_PNTR_WIDTH | 2
   //  2                | 1                | C_WR_PNTR_WIDTH | 4
   //  4                | 1                | C_WR_PNTR_WIDTH | 8
   //  8                | 1                | C_WR_PNTR_WIDTH | 16
   parameter EXTRA_WORDS_DC = ( C_DEPTH_RATIO_RD > 2)?
                              0:(2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);  
   

   parameter [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
   
   parameter [31:0] log2_reads_per_write = log2_val(reads_per_write);
   
   parameter [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
   
   parameter [31:0] log2_writes_per_read = log2_val(writes_per_read);



   /**************************************************************************
    * FIFO Contents Tracking and Data Count Calculations
    *************************************************************************/
   
   //Memory which will be used to simulate a FIFO
   reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];

   //The amount of data stored in the FIFO at any time is given
   // by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
   // domain.
   //num_wr_bits is calculated by considering the total words in the FIFO,
   // and the state of the read pointer (which may not have yet crossed clock
   // domains.)
   //num_rd_bits is calculated by considering the total words in the FIFO,
   // and the state of the write pointer (which may not have yet crossed clock
   // domains.)
   reg [31:0]  num_wr_bits;
   reg [31:0]  num_rd_bits;
   reg [31:0]  next_num_wr_bits;
   reg [31:0]  next_num_rd_bits;

   //The write pointer - tracks write operations
   // (Works opposite to core: wr_ptr is a DOWN counter)
   reg [31:0]  wr_ptr;

   //The read pointer - tracks read operations
   // (Works opposite to core: rd_ptr is a DOWN counter)
   reg [31:0]  rd_ptr;

   //Pointers passed into opposite clock domain
   reg [31:0]  wr_ptr_rdclk;
   reg [31:0]  wr_ptr_rdclk_next;
   reg [31:0]  rd_ptr_wrclk;
   reg [31:0]  rd_ptr_wrclk_next;

   //Amount of data stored in the FIFO scaled to the narrowest (deepest) port
   // (Do not include data in FWFT stages)
   //Used to calculate PROG_EMPTY.
   wire [31:0] num_read_words_pe = 
     num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);

   //Amount of data stored in the FIFO scaled to the narrowest (deepest) port
   // (Do not include data in FWFT stages)
   //Used to calculate PROG_FULL.
   wire [31:0] num_write_words_pf =
     num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);

   /**************************
    * Read Data Count
    *************************/

   /* ORIGINAL CODE - Removed 10/24/07 jeo
   //Amount of data stored in the FIFO scaled to read words
   // (Do not include data in FWFT stages)
   //Not used in the code.
   wire [31:0] num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
   
   //Amount of data stored in the FIFO scaled to read words
   // (Include data in FWFT stages)
   //Not used in the code.
   wire [31:0] num_read_words_fwft_dc = (num_rd_bits/C_DOUT_WIDTH+2);
   
   //Not used in the code.
   wire [31:0] num_read_words_dc_i = 
     C_USE_FWFT_DATA_COUNT ? num_read_words_fwft_dc : num_read_words_dc;

   //Not used in the code.
   wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized = 
     num_read_words_dc_i[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
   
   //Not used in the code.
   wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_fwft = 
     num_read_words_dc_i[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];

   //Used to calculate ideal_rd_count (RD_DATA_COUNT)
   wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i = 
     C_USE_FWFT_DATA_COUNT ? num_read_words_sized_fwft : num_read_words_sized;
   */

   reg [31:0] num_read_words_dc;
   reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
   
   always @(num_rd_bits) begin
     if (C_USE_FWFT_DATA_COUNT) begin
	
	//If using extra logic for FWFT Data Counts, 
	// then scale FIFO contents to read domain, 
	// and add two read words for FWFT stages
	//This value is only a temporary value and not used in the code.
        num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
	
        //Trim the read words for use with RD_DATA_COUNT
	num_read_words_sized_i = 
          num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
	
     end else begin
	
	//If not using extra logic for FWFT Data Counts, 
	// then scale FIFO contents to read domain.
	//This value is only a temporary value and not used in the code.
        num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
	
        //Trim the read words for use with RD_DATA_COUNT
	num_read_words_sized_i = 
          num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
	
     end //if (C_USE_FWFT_DATA_COUNT)
   end //always





   
   
   
   /**************************
    * Write Data Count
    *************************/
   /* ORIGINAL CODE - Removed 10/24/07 jeo

   //Calculate the Data Count value for the number of write words, when not
   // using First-Word Fall-Through with extra logic for Data Counts. This 
   // calculates only the number of words in the internal FIFO.
   //The expression (((A-1)/B))+1 divides A/B, but takes the 
   // ceiling of the result.
   //When num_wr_bits==0, set the result manually to prevent division errors.
   wire [31:0] 	num_write_words_dc = 
     (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH) + 1;

   //Calculate the Data Count value for the number of write words, when using
   // First-Word Fall-Through with extra logic for Data Counts. This takes into
   // consideration the number of words that are expected to be stored in the
   // FWFT register stages (it always assumes they are filled).
   //The expression (((A-1)/B))+1 divides A/B, but takes the 
   // ceiling of the result.
   //When num_wr_bits==0, set the result manually to prevent division errors.
   //EXTRA_WORDS_DC is the number of words added to write_words due to FWFT.
   wire [31:0] num_write_words_fwft_dc = 
     (num_wr_bits==0) ? EXTRA_WORDS_DC :  (((num_wr_bits-1)/C_DIN_WIDTH) + 1) + EXTRA_WORDS_DC ;

   wire [31:0] num_write_words_dc_i = 
     C_USE_FWFT_DATA_COUNT ? num_write_words_fwft_dc : num_write_words_dc;
    
    
   
   wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized = 
     num_write_words_dc_i[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
   
   wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_fwft = 
     num_write_words_dc_i[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];

       wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i = C_USE_FWFT_DATA_COUNT?
                                num_write_words_sized_fwft:num_write_words_sized;
   
   */

   reg [31:0] num_write_words_dc;
   reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
   
   always @(num_wr_bits) begin
     if (C_USE_FWFT_DATA_COUNT) begin
	
	//Calculate the Data Count value for the number of write words, 
	// when using First-Word Fall-Through with extra logic for Data 
	// Counts. This takes into consideration the number of words that 
	// are expected to be stored in the FWFT register stages (it always 
	// assumes they are filled).
	//This value is scaled to the Write Domain.
	//The expression (((A-1)/B))+1 divides A/B, but takes the 
	// ceiling of the result.
	//When num_wr_bits==0, set the result manually to prevent 
	// division errors.
	//EXTRA_WORDS_DC is the number of words added to write_words 
	// due to FWFT.
	//This value is only a temporary value and not used in the code.
        num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC :  (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
	
        //Trim the write words for use with WR_DATA_COUNT
	num_write_words_sized_i = 
          num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
	
     end else begin
	
	//Calculate the Data Count value for the number of write words, when NOT
	// using First-Word Fall-Through with extra logic for Data Counts. This 
	// calculates only the number of words in the internal FIFO.
	//The expression (((A-1)/B))+1 divides A/B, but takes the 
	// ceiling of the result.
	//This value is scaled to the Write Domain.
	//When num_wr_bits==0, set the result manually to prevent 
	// division errors.
	//This value is only a temporary value and not used in the code.
        num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
	
        //Trim the read words for use with RD_DATA_COUNT
	num_write_words_sized_i = 
          num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
	
     end //if (C_USE_FWFT_DATA_COUNT)
   end //always

    
    
   /***************************************************************************
    * Internal registers and wires
    **************************************************************************/

   //Temporary signals used for calculating the model's outputs. These
   //are only used in the assign statements immediately following wire,
   //parameter, and function declarations.
   wire [C_DOUT_WIDTH-1:0] ideal_dout_out;   
   wire valid_i;
   wire valid_out;  
   wire underflow_i;

   //Ideal FIFO signals. These are the raw output of the behavioral model,
   //which behaves like an ideal FIFO.
   reg [C_DOUT_WIDTH-1:0] ideal_dout;
   reg [C_DOUT_WIDTH-1:0]  ideal_dout_d1;
   reg 			   ideal_wr_ack;
   reg 			   ideal_valid;
   reg 			   ideal_overflow;
   reg 			   ideal_underflow;
   reg 			   ideal_full;
   reg 			   ideal_empty;
   reg 			   ideal_almost_full;
   reg 			   ideal_almost_empty;
   reg 			   ideal_prog_full;
   reg 			   ideal_prog_empty;
   reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count;
   reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count;

   //Assorted reg values for delayed versions of signals   
   reg 	       valid_d1;
   reg         prog_full_d;
   reg         prog_empty_d;

   //Internal reset signals
   reg 	       rd_rst_asreg    =0;
   reg 	       rd_rst_asreg_d1 =0;
   reg 	       rd_rst_asreg_d2 =0;
   reg 	       rd_rst_reg      =0;
   reg 	       rd_rst_d1       =0;
   reg 	       wr_rst_asreg    =0;
   reg 	       wr_rst_asreg_d1 =0;
   reg 	       wr_rst_asreg_d2 =0;
   reg 	       wr_rst_reg      =0;
   reg 	       wr_rst_d1       =0;

   wire        rd_rst_comb;
   wire        rd_rst_i;
   wire        wr_rst_comb;
   wire        wr_rst_i;   
   
   
   //user specified value for reseting the size of the fifo
   reg [C_DOUT_WIDTH-1:0] 	     dout_reset_val;
   
   //temporary registers for WR_RESPONSE_LATENCY feature
   
   integer                           tmp_wr_listsize;
   integer                           tmp_rd_listsize;
   
   //Signal for registered version of prog full and empty
   
   //Threshold values for Programmable Flags
   integer                           prog_empty_actual_thresh_assert;
   integer                           prog_empty_actual_thresh_negate;
   integer                           prog_full_actual_thresh_assert;
   integer                           prog_full_actual_thresh_negate;
   

  /****************************************************************************
   * Function Declarations
   ***************************************************************************/

  /**************************************************************************
   * write_fifo
   *   This task writes a word to the FIFO memory and updates the 
   * write pointer.
   *   FIFO size is relative to write domain.
  ***************************************************************************/
  task write_fifo;
    begin
      memory[wr_ptr]     <= DIN;
      // (Works opposite to core: wr_ptr is a DOWN counter)
      if (wr_ptr == 0) begin
        wr_ptr          <= C_WR_DEPTH - 1;
      end else begin
        wr_ptr          <= wr_ptr - 1;
      end
    end
  endtask // write_fifo

  /**************************************************************************
   * read_fifo
   *   This task reads a word from the FIFO memory and updates the read 
   * pointer. It's output is the ideal_dout bus.
   *   FIFO size is relative to write domain.
   ***************************************************************************/
  task read_fifo;
    integer i;
    reg [C_DOUT_WIDTH-1:0] tmp_dout;
    reg [C_DIN_WIDTH-1:0]  memory_read;
    reg [31:0]             tmp_rd_ptr;
    reg [31:0]             rd_ptr_high;
    reg [31:0]             rd_ptr_low;
    begin
      // output is wider than input
      if (reads_per_write == 0) begin
        tmp_dout = 0;
        tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
        for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
          tmp_dout = tmp_dout << C_DIN_WIDTH;
          tmp_dout = tmp_dout | memory[tmp_rd_ptr];
	   
          // (Works opposite to core: rd_ptr is a DOWN counter)
          if (tmp_rd_ptr == 0) begin
            tmp_rd_ptr = C_WR_DEPTH - 1;
          end else begin
            tmp_rd_ptr = tmp_rd_ptr - 1;
          end
        end

      // output is symmetric
      end else if (reads_per_write == 1) begin
        tmp_dout = memory[rd_ptr];

      // input is wider than output
      end else begin
        rd_ptr_high = rd_ptr >> log2_reads_per_write;
        rd_ptr_low  = rd_ptr & (reads_per_write - 1);
        memory_read = memory[rd_ptr_high];
        tmp_dout    = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
      end
      ideal_dout <= tmp_dout;
       
      // (Works opposite to core: rd_ptr is a DOWN counter)
      if (rd_ptr == 0) begin
        rd_ptr <= C_RD_DEPTH - 1;
      end else begin
        rd_ptr <= rd_ptr - 1;
      end
    end
  endtask

  /**************************************************************************
  * log2_val
  *   Returns the 'log2' value for the input value for the supported ratios
  ***************************************************************************/
  function [31:0] log2_val;
    input [31:0] binary_val;

    begin
      if (binary_val == 8) begin
        log2_val = 3;
      end else if (binary_val == 4) begin
        log2_val = 2;
      end else begin
        log2_val = 1;
      end
    end
  endfunction

  /***********************************************************************
  * hexstr_conv
  *   Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
  ***********************************************************************/
  function [C_DOUT_WIDTH-1:0] hexstr_conv;
    input [(C_DOUT_WIDTH*8)-1:0] def_data;

    integer index,i,j;
    reg [3:0] bin;

    begin
      index = 0;
      hexstr_conv = 'b0;
      for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
      begin
        case (def_data[7:0])
          8'b00000000 :
          begin
            bin = 4'b0000;
            i = -1;
          end
          8'b00110000 : bin = 4'b0000;
          8'b00110001 : bin = 4'b0001;
          8'b00110010 : bin = 4'b0010;
          8'b00110011 : bin = 4'b0011;
          8'b00110100 : bin = 4'b0100;
          8'b00110101 : bin = 4'b0101;
          8'b00110110 : bin = 4'b0110;
          8'b00110111 : bin = 4'b0111;
          8'b00111000 : bin = 4'b1000;
          8'b00111001 : bin = 4'b1001;
          8'b01000001 : bin = 4'b1010;
          8'b01000010 : bin = 4'b1011;
          8'b01000011 : bin = 4'b1100;
          8'b01000100 : bin = 4'b1101;
          8'b01000101 : bin = 4'b1110;
          8'b01000110 : bin = 4'b1111;
          8'b01100001 : bin = 4'b1010;
          8'b01100010 : bin = 4'b1011;
          8'b01100011 : bin = 4'b1100;
          8'b01100100 : bin = 4'b1101;
          8'b01100101 : bin = 4'b1110;
          8'b01100110 : bin = 4'b1111;
          default :
          begin
            bin = 4'bx;
          end
        endcase
        for( j=0; j<4; j=j+1)
        begin
          if ((index*4)+j < C_DOUT_WIDTH)
          begin
            hexstr_conv[(index*4)+j] = bin[j];
          end
        end
        index = index + 1;
        def_data = def_data >> 8;
      end
    end
  endfunction

  /*************************************************************************
  * Initialize Signals for clean power-on simulation
  *************************************************************************/
   initial begin
      num_wr_bits        = 0;
      num_rd_bits        = 0;
      next_num_wr_bits   = 0;
      next_num_rd_bits   = 0;
      rd_ptr             = C_RD_DEPTH - 1;
      wr_ptr             = C_WR_DEPTH - 1;
      rd_ptr_wrclk       = rd_ptr;
      wr_ptr_rdclk       = wr_ptr;
      dout_reset_val     = hexstr_conv(C_DOUT_RST_VAL);
      ideal_dout         = dout_reset_val;
      ideal_dout_d1      = 0 ;
      ideal_wr_ack       = 1'b0;
      ideal_valid        = 1'b0;
      valid_d1           = 1'b0;
      ideal_overflow     = 1'b0;
      ideal_underflow    = 1'b0;
      ideal_full         = 1'b0;
      ideal_empty        = 1'b1;
      ideal_almost_full  = 1'b0;
      ideal_almost_empty = 1'b1;
      ideal_wr_count     = 0;
      ideal_rd_count     = 0;
      ideal_prog_full    = 1'b0;
      ideal_prog_empty   = 1'b1;
      prog_full_d        = 1'b0;
      prog_empty_d       = 1'b1;
    end


  /*************************************************************************
   * Connect the module inputs and outputs to the internal signals of the 
   * behavioral model.
   *************************************************************************/
   //Inputs
   /*
    wire [C_DIN_WIDTH-1:0] DIN;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;   
   wire RD_CLK;
   wire RD_EN;
   wire RST;
   wire WR_CLK;
   wire WR_EN;
    */

   //Outputs
   assign ALMOST_EMPTY = ideal_almost_empty;
   assign ALMOST_FULL  = ideal_almost_full;

   //Dout may change behavior based on latency
   assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
                          (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
                         ideal_dout_d1: ideal_dout;   
   assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out; 
  
   assign EMPTY = ideal_empty;
   assign FULL  = ideal_full;

   //Overflow may be active-low
   assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
   
   assign PROG_EMPTY = ideal_prog_empty;
   assign PROG_FULL  = ideal_prog_full;

   //Valid may change behavior based on latency or active-low
   assign valid_i   = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
   assign valid_out = (C_PRELOAD_LATENCY==2 &&
                       (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
                       valid_d1: valid_i;  
   assign VALID     = valid_out ? !C_VALID_LOW : C_VALID_LOW;
   
   assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = ideal_rd_count;

   //Underflow may change behavior based on latency or active-low   
   assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
   assign UNDERFLOW   = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;

   //Write acknowledge may be active low
   assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
   
   assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = ideal_wr_count;


  /**************************************************************************
  * Internal reset logic
  **************************************************************************/
  assign wr_rst_comb      = !wr_rst_asreg_d2 && wr_rst_asreg;
  assign rd_rst_comb      = !rd_rst_asreg_d2 && rd_rst_asreg;
  assign wr_rst_i         = C_HAS_RST ? wr_rst_reg : 0;
  assign rd_rst_i         = C_HAS_RST ? rd_rst_reg : 0;


  always @(posedge WR_CLK or posedge RST) begin
    if (RST == 1'b1) begin
      wr_rst_asreg <= 1'b1;
    end else begin
      if (wr_rst_asreg_d1 == 1'b1) begin
        wr_rst_asreg <= 1'b0;
      end else begin
        wr_rst_asreg <= wr_rst_asreg;
      end
    end    
  end   

  always @(posedge WR_CLK) begin
    wr_rst_asreg_d1 <= wr_rst_asreg;
    wr_rst_asreg_d2 <= wr_rst_asreg_d1;
  end
  
  always @(posedge WR_CLK or posedge wr_rst_comb) begin
    if (wr_rst_comb == 1'b1) begin
      wr_rst_reg <= 1'b1;
    end else begin
      wr_rst_reg <= 1'b0;
    end    
  end   

  always @(posedge WR_CLK or posedge wr_rst_i) begin
    if (wr_rst_i == 1'b1) begin
      wr_rst_d1 <= 1'b1;
    end else begin
      wr_rst_d1 <= wr_rst_i;
    end    
  end   
  always @(posedge RD_CLK or posedge RST) begin
    if (RST == 1'b1) begin
      rd_rst_asreg <= 1'b1;
    end else begin
      if (rd_rst_asreg_d1 == 1'b1) begin
        rd_rst_asreg <= 1'b0;
      end else begin
        rd_rst_asreg <= rd_rst_asreg;
      end
    end    
  end   

  always @(posedge RD_CLK) begin
    rd_rst_asreg_d1 <= rd_rst_asreg;
    rd_rst_asreg_d2 <= rd_rst_asreg_d1;
  end
  
  always @(posedge RD_CLK or posedge rd_rst_comb) begin
    if (rd_rst_comb == 1'b1) begin
      rd_rst_reg <= 1'b1;
    end else begin
      rd_rst_reg <= 1'b0;
    end    
  end   
   
  /**************************************************************************
  * Assorted registers for delayed versions of signals
  **************************************************************************/
  //Capture delayed version of valid
  always @(posedge RD_CLK or posedge rd_rst_i) begin
    if (rd_rst_i == 1'b1) begin
      valid_d1 <= 1'b0;
    end else begin
      valid_d1 <= valid_i;
    end    
  end   
   
  //Capture delayed version of dout
  always @(posedge RD_CLK or posedge rd_rst_i) begin
    if (rd_rst_i == 1'b1 && C_USE_DOUT_RST == 1) begin
      ideal_dout_d1 <= dout_reset_val;
    end else begin
      ideal_dout_d1 <= ideal_dout;
    end    
  end   
  
   /**************************************************************************
    * Overflow and Underflow Flag calculation
    *  (handled separately because they don't support rst)
    **************************************************************************/
   always @(posedge WR_CLK) begin
     ideal_overflow    <= WR_EN & ideal_full;
   end
   
   always @(posedge RD_CLK) begin
     ideal_underflow    <= ideal_empty & RD_EN;
   end

   /**************************************************************************
   * Write Domain Logic
   **************************************************************************/
   always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w

     /****** Reset fifo (case 1)***************************************/
     if (wr_rst_i == 1'b1) begin
       num_wr_bits       <= 0;
       next_num_wr_bits  <= 0;
       wr_ptr            <= C_WR_DEPTH - 1;
       rd_ptr_wrclk      <= C_RD_DEPTH - 1;
       ideal_wr_ack      <= 0;
       ideal_full        <= C_FULL_FLAGS_RST_VAL;
       ideal_almost_full <= C_FULL_FLAGS_RST_VAL;
       ideal_wr_count    <= 0;

       ideal_prog_full   <= C_FULL_FLAGS_RST_VAL;
       prog_full_d       <= C_FULL_FLAGS_RST_VAL;

     end else begin //wr_rst_i==0

       //Determine the current number of words in the FIFO
       tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
                         num_wr_bits/C_DIN_WIDTH;
       rd_ptr_wrclk_next = rd_ptr;
       if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
         next_num_wr_bits = num_wr_bits -
                            C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
                                          - rd_ptr_wrclk_next);
       end else begin
         next_num_wr_bits = num_wr_bits -
                            C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
       end

       //If this is a write, handle the write by adding the value
       // to the linked list, and updating all outputs appropriately
       if (WR_EN == 1'b1) begin
         if (ideal_full == 1'b1) begin

           //If the FIFO is full, do NOT perform the write,
           // update flags accordingly
           if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD 
             >= C_FIFO_WR_DEPTH) begin
             //write unsuccessful - do not change contents

             //Do not acknowledge the write
             ideal_wr_ack      <= 0;
             //Reminder that FIFO is still full
             ideal_full        <= 1'b1;
             ideal_almost_full <= 1'b1;

             ideal_wr_count    <= num_write_words_sized_i;

           //If the FIFO is one from full, but reporting full
           end else 
	     if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
                C_FIFO_WR_DEPTH-1) begin
             //No change to FIFO

             //Write not successful
             ideal_wr_ack      <= 0;
             //With DEPTH-1 words in the FIFO, it is almost_full
             ideal_full        <= 1'b0;
             ideal_almost_full <= 1'b1;

             ideal_wr_count    <= num_write_words_sized_i;


           //If the FIFO is completely empty, but it is
           // reporting FULL for some reason (like reset)
           end else 
             if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
                C_FIFO_WR_DEPTH-2) begin
             //No change to FIFO

             //Write not successful
             ideal_wr_ack      <= 0;
             //FIFO is really not close to full, so change flag status.
             ideal_full        <= 1'b0;
             ideal_almost_full <= 1'b0;

             ideal_wr_count    <= num_write_words_sized_i;
           end //(tmp_wr_listsize == 0)

         end else begin

           //If the FIFO is full, do NOT perform the write,
           // update flags accordingly
           if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
              C_FIFO_WR_DEPTH) begin
             //write unsuccessful - do not change contents

             //Do not acknowledge the write
             ideal_wr_ack       <= 0;
             //Reminder that FIFO is still full
             ideal_full         <= 1'b1;
             ideal_almost_full  <= 1'b1;

             ideal_wr_count     <= num_write_words_sized_i;

           //If the FIFO is one from full
           end else 
             if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
                C_FIFO_WR_DEPTH-1) begin
             //Add value on DIN port to FIFO
             write_fifo;
             next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;

             //Write successful, so issue acknowledge
             // and no error
             ideal_wr_ack      <= 1;
             //This write is CAUSING the FIFO to go full
             ideal_full        <= 1'b1;
             ideal_almost_full <= 1'b1;

             ideal_wr_count    <= num_write_words_sized_i;

           //If the FIFO is 2 from full
           end else 
             if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == 
                C_FIFO_WR_DEPTH-2) begin
             //Add value on DIN port to FIFO
             write_fifo;
             next_num_wr_bits =  next_num_wr_bits + C_DIN_WIDTH;
             //Write successful, so issue acknowledge
             // and no error
             ideal_wr_ack      <= 1;
             //Still 2 from full
             ideal_full        <= 1'b0;
             //2 from full, and writing, so set almost_full
             ideal_almost_full <= 1'b1;

             ideal_wr_count    <= num_write_words_sized_i;

           //If the FIFO is not close to being full
           end else 
             if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
                C_FIFO_WR_DEPTH-2) begin
             //Add value on DIN port to FIFO
             write_fifo;
             next_num_wr_bits  = next_num_wr_bits + C_DIN_WIDTH;
             //Write successful, so issue acknowledge
             // and no error
             ideal_wr_ack      <= 1;
             //Not even close to full.
             ideal_full        <= 1'b0;
             ideal_almost_full <= 1'b0;

             ideal_wr_count    <= num_write_words_sized_i;

           end

         end

       end else begin //(WR_EN == 1'b1)

         //If user did not attempt a write, then do not
         // give ack or err
         ideal_wr_ack   <= 0;

         //Implied statements:
         //ideal_empty <= ideal_empty;
         //ideal_almost_empty <= ideal_almost_empty;

         //Check for full
         if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH)
           ideal_full <= 1'b1;
         else
           ideal_full <= 1'b0;

         //Check for almost_full
         if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH-1)
           ideal_almost_full  <= 1'b1;
         else
           ideal_almost_full  <= 1'b0;

         ideal_wr_count <= num_write_words_sized_i;
       end

       /*********************************************************
        * Programmable FULL flags
        *********************************************************/
       //Single Programmable Full Constant Threshold
       if (C_PROG_FULL_TYPE==1) begin
         if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
           prog_full_actual_thresh_assert = C_PROG_FULL_THRESH_ASSERT_VAL-EXTRA_WORDS;
           prog_full_actual_thresh_negate = C_PROG_FULL_THRESH_ASSERT_VAL-EXTRA_WORDS;
         end else begin
           prog_full_actual_thresh_assert = C_PROG_FULL_THRESH_ASSERT_VAL;
           prog_full_actual_thresh_negate = C_PROG_FULL_THRESH_ASSERT_VAL;
         end

       //Two Programmable Full Constant Thresholds
       end else if (C_PROG_FULL_TYPE==2) begin
         if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
           prog_full_actual_thresh_assert = C_PROG_FULL_THRESH_ASSERT_VAL-EXTRA_WORDS;
           prog_full_actual_thresh_negate = C_PROG_FULL_THRESH_NEGATE_VAL-EXTRA_WORDS;
         end else begin
           prog_full_actual_thresh_assert = C_PROG_FULL_THRESH_ASSERT_VAL;
           prog_full_actual_thresh_negate = C_PROG_FULL_THRESH_NEGATE_VAL;
         end

       //Single Programmable Full Threshold Input
       end else if (C_PROG_FULL_TYPE==3) begin
         if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
           prog_full_actual_thresh_assert = PROG_FULL_THRESH-EXTRA_WORDS;
           prog_full_actual_thresh_negate = PROG_FULL_THRESH-EXTRA_WORDS;
         end else begin
           prog_full_actual_thresh_assert = PROG_FULL_THRESH;
           prog_full_actual_thresh_negate = PROG_FULL_THRESH;
         end

       //Two Programmable Full Threshold Inputs
       end else if (C_PROG_FULL_TYPE==4) begin
         if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
           prog_full_actual_thresh_assert = PROG_FULL_THRESH_ASSERT-EXTRA_WORDS;
           prog_full_actual_thresh_negate = PROG_FULL_THRESH_NEGATE-EXTRA_WORDS;
         end else begin
           prog_full_actual_thresh_assert = PROG_FULL_THRESH_ASSERT;
           prog_full_actual_thresh_negate = PROG_FULL_THRESH_NEGATE;
         end
       end //C_PROG_FULL_TYPE
       
       if (num_write_words_pf==0) begin
          prog_full_d <= 1'b0;
       end else begin
         if (((1+(num_write_words_pf-1)/C_DEPTH_RATIO_RD) 
              == prog_full_actual_thresh_assert-1) && WR_EN) begin
            prog_full_d <= 1'b1;
         end else if ((1+(num_write_words_pf-1)/C_DEPTH_RATIO_RD) 
                      >= prog_full_actual_thresh_assert) begin
            prog_full_d <= 1'b1;
         end else if ((1+(num_write_words_pf-1)/C_DEPTH_RATIO_RD) 
                      < prog_full_actual_thresh_negate) begin
            prog_full_d <= 1'b0;
         end
       end  

       if (wr_rst_d1==1 && wr_rst_i==0) begin
         ideal_prog_full   <= 0;
       end else begin
         ideal_prog_full   <= prog_full_d;
       end
       num_wr_bits       <= next_num_wr_bits;
       rd_ptr_wrclk      <= rd_ptr;

     end //wr_rst_i==0
   end // write always

   
   /**************************************************************************
   * Read Domain Logic
   **************************************************************************/
   always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r

     /****** Reset fifo (case 1)***************************************/
     if (rd_rst_i) begin
       num_rd_bits        <= 0;
       next_num_rd_bits   <= 0;
       rd_ptr             <= C_RD_DEPTH -1;
       wr_ptr_rdclk       <= C_WR_DEPTH -1;
       if (C_USE_DOUT_RST == 1) begin
       ideal_dout         <= dout_reset_val;
       end else begin
       ideal_dout         <= ideal_dout;
       end
       ideal_valid        <= 1'b0;
       ideal_empty        <= 1'b1;
       ideal_almost_empty <= 1'b1;
       ideal_rd_count     <= 0;

       ideal_prog_empty   <= 1'b1;
       prog_empty_d       <= 1;


     end else begin //rd_rst_i==0

       //Determine the current number of words in the FIFO
       tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
                         num_rd_bits/C_DOUT_WIDTH;
       wr_ptr_rdclk_next = wr_ptr;

       if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
         next_num_rd_bits = num_rd_bits +
                            C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
                                         - wr_ptr_rdclk_next);
       end else begin
         next_num_rd_bits = num_rd_bits +
                             C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
       end

       /*****************************************************************/
       // Read Operation - Read Latency 1
       /*****************************************************************/
       if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin

         if (RD_EN == 1'b1) begin

           if (ideal_empty == 1'b1) begin

             //If the FIFO is completely empty, and is reporting empty
             if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
               begin
                 //Do not change the contents of the FIFO

                 //Do not acknowledge the read from empty FIFO
                 ideal_valid        <= 1'b0;
                 //Reminder that FIFO is still empty
                 ideal_empty        <= 1'b1;
                 ideal_almost_empty <= 1'b1;

                 ideal_rd_count     <= num_read_words_sized_i;
               end // if (tmp_rd_listsize <= 0)

             //If the FIFO is one from empty, but it is reporting empty
             else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
               begin
                 //Do not change the contents of the FIFO

                 //Do not acknowledge the read from empty FIFO
                 ideal_valid        <= 1'b0;
                 //Note that FIFO is no longer empty, but is almost empty (has one word left)
                 ideal_empty        <= 1'b0;
                 ideal_almost_empty <= 1'b1;

                 ideal_rd_count     <= num_read_words_sized_i;

               end // if (tmp_rd_listsize == 1)

             //If the FIFO is two from empty, and is reporting empty
             else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
               begin
                 //Do not change the contents of the FIFO

                 //Do not acknowledge the read from empty FIFO
                 ideal_valid        <= 1'b0;
                 //Fifo has two words, so is neither empty or almost empty
                 ideal_empty        <= 1'b0;
                 ideal_almost_empty <= 1'b0;

                 ideal_rd_count     <= num_read_words_sized_i;

               end // if (tmp_rd_listsize == 2)

             //If the FIFO is not close to empty, but is reporting that it is
             // Treat the FIFO as empty this time, but unset EMPTY flags.
             if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
               begin
                 //Do not change the contents of the FIFO

                 //Do not acknowledge the read from empty FIFO
                 ideal_valid <= 1'b0;
                 //Note that the FIFO is No Longer Empty or Almost Empty
                 ideal_empty  <= 1'b0;
                 ideal_almost_empty <= 1'b0;

                 ideal_rd_count <= num_read_words_sized_i;

               end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
             end // else: if(ideal_empty == 1'b1)

           else //if (ideal_empty == 1'b0)
             begin

               //If the FIFO is completely full, and we are successfully reading from it
               if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
                 begin
                   //Read the value from the FIFO
                   read_fifo;
                   next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;

                   //Acknowledge the read from the FIFO, no error
                   ideal_valid        <= 1'b1;
                   //Not close to empty
                   ideal_empty        <= 1'b0;
                   ideal_almost_empty <= 1'b0;

                   ideal_rd_count     <= num_read_words_sized_i;

                 end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)

               //If the FIFO is not close to being empty
               else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
                 begin
                   //Read the value from the FIFO
                   read_fifo;
                   next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;

                   //Acknowledge the read from the FIFO, no error
                   ideal_valid        <= 1'b1;
                   //Not close to empty
                   ideal_empty        <= 1'b0;
                   ideal_almost_empty <= 1'b0;

                   ideal_rd_count     <= num_read_words_sized_i;

                 end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))

               //If the FIFO is two from empty
               else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
                 begin
                   //Read the value from the FIFO
                   read_fifo;
                   next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;

                   //Acknowledge the read from the FIFO, no error
                   ideal_valid        <= 1'b1;
                   //Fifo is not yet empty. It is going almost_empty
                   ideal_empty        <= 1'b0;
                   ideal_almost_empty <= 1'b1;

                   ideal_rd_count     <= num_read_words_sized_i;

                 end // if (tmp_rd_listsize == 2)

               //If the FIFO is one from empty
               else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
                 begin
                   //Read the value from the FIFO
                   read_fifo;
                   next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;

                   //Acknowledge the read from the FIFO, no error
                   ideal_valid        <= 1'b1;
                   //Note that FIFO is GOING empty
                   ideal_empty        <= 1'b1;
                   ideal_almost_empty <= 1'b1;

                   ideal_rd_count     <= num_read_words_sized_i;

                 end // if (tmp_rd_listsize == 1)


               //If the FIFO is completely empty
               else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
                 begin
                   //Do not change the contents of the FIFO

                   //Do not acknowledge the read from empty FIFO
                   ideal_valid        <= 1'b0;
                   //Reminder that FIFO is still empty
                   ideal_empty        <= 1'b1;
                   ideal_almost_empty <= 1'b1;

                   ideal_rd_count     <= num_read_words_sized_i;

                 end // if (tmp_rd_listsize <= 0)

             end // if (ideal_empty == 1'b0)

           end //(RD_EN == 1'b1)

         else //if (RD_EN == 1'b0)
           begin
             //If user did not attempt a read, do not give an ack or err
             ideal_valid          <= 1'b0;

             //Check for empty
             if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
               ideal_empty        <= 1'b1;
             else
               ideal_empty        <= 1'b0;

             //Check for almost_empty
             if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 1)
               ideal_almost_empty <= 1'b1;
             else
               ideal_almost_empty <= 1'b0;

             ideal_rd_count       <= num_read_words_sized_i;

           end // else: !if(RD_EN == 1'b1)

       /*****************************************************************/
       // Read Operation - Read Latency 0
       /*****************************************************************/
       end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
         if (RD_EN == 1'b1) begin

           if (ideal_empty == 1'b1) begin

             //If the FIFO is completely empty, and is reporting empty
             if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
               //Do not change the contents of the FIFO

               //Do not acknowledge the read from empty FIFO
               ideal_valid        <= 1'b0;
               //Reminder that FIFO is still empty
               ideal_empty        <= 1'b1;
               ideal_almost_empty <= 1'b1;

               ideal_rd_count     <= num_read_words_sized_i;

             //If the FIFO is one from empty, but it is reporting empty
             end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
               //Do not change the contents of the FIFO

               //Do not acknowledge the read from empty FIFO
               ideal_valid        <= 1'b0;
               //Note that FIFO is no longer empty, but is almost empty (has one word left)
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b1;

               ideal_rd_count     <= num_read_words_sized_i;

             //If the FIFO is two from empty, and is reporting empty
             end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
               //Do not change the contents of the FIFO

               //Do not acknowledge the read from empty FIFO
               ideal_valid        <= 1'b0;
               //Fifo has two words, so is neither empty or almost empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               ideal_rd_count     <= num_read_words_sized_i;

               //If the FIFO is not close to empty, but is reporting that it is
             // Treat the FIFO as empty this time, but unset EMPTY flags.
             end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
                         (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
               //Do not change the contents of the FIFO

               //Do not acknowledge the read from empty FIFO
               ideal_valid        <= 1'b0;
               //Note that the FIFO is No Longer Empty or Almost Empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               ideal_rd_count     <= num_read_words_sized_i;

             end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))

           end else begin

             //If the FIFO is completely full, and we are successfully reading from it
             if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
               //Read the value from the FIFO
               read_fifo;
               next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;

               //Acknowledge the read from the FIFO, no error
               ideal_valid        <= 1'b1;
               //Not close to empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               ideal_rd_count     <= num_read_words_sized_i;

             //If the FIFO is not close to being empty
             end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
                          (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
               //Read the value from the FIFO
               read_fifo;
               next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;

               //Acknowledge the read from the FIFO, no error
               ideal_valid        <= 1'b1;
               //Not close to empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               ideal_rd_count     <= num_read_words_sized_i;

             //If the FIFO is two from empty
             end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
               //Read the value from the FIFO
               read_fifo;
               next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;

               //Acknowledge the read from the FIFO, no error
               ideal_valid        <= 1'b1;
               //Fifo is not yet empty. It is going almost_empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b1;

               ideal_rd_count     <= num_read_words_sized_i;

             //If the FIFO is one from empty
             end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
               //Read the value from the FIFO
               read_fifo;
               next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;

               //Acknowledge the read from the FIFO, no error
               ideal_valid        <= 1'b1;
               //Note that FIFO is GOING empty
               ideal_empty        <= 1'b1;
               ideal_almost_empty <= 1'b1;

               ideal_rd_count     <= num_read_words_sized_i;

             //If the FIFO is completely empty
             end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
               //Do not change the contents of the FIFO

               //Do not acknowledge the read from empty FIFO
               ideal_valid        <= 1'b0;
               //Reminder that FIFO is still empty
               ideal_empty        <= 1'b1;
               ideal_almost_empty <= 1'b1;

               ideal_rd_count     <= num_read_words_sized_i;

             end // if (tmp_rd_listsize <= 0)

           end // if (ideal_empty == 1'b0)

         end else begin//(RD_EN == 1'b0)

         
           //If user did not attempt a read, do not give an ack or err
           ideal_valid           <= 1'b0;

           //Check for empty
           if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
             ideal_empty         <= 1'b1;
           else
             ideal_empty         <= 1'b0;

           //Check for almost_empty
           if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 1)
             ideal_almost_empty  <= 1'b1;
           else
             ideal_almost_empty  <= 1'b0;

           ideal_rd_count        <= num_read_words_sized_i;

         end // else: !if(RD_EN == 1'b1)
       end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)


       /*********************************************************
        * Programmable EMPTY flags
        *********************************************************/
       //Determine the Assert and Negate thresholds for Programmable Empty
       //  (Subtract 2 read-sized words when using Preload 0)

       //Single Programmable Empty Constant Threshold
       if (C_PROG_EMPTY_TYPE==1) begin
         if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
           prog_empty_actual_thresh_assert = C_PROG_EMPTY_THRESH_ASSERT_VAL-2;
           prog_empty_actual_thresh_negate = C_PROG_EMPTY_THRESH_ASSERT_VAL-2;
         end
         else begin
           prog_empty_actual_thresh_assert = C_PROG_EMPTY_THRESH_ASSERT_VAL;
           prog_empty_actual_thresh_negate = C_PROG_EMPTY_THRESH_ASSERT_VAL;
         end

       //Two Programmable Empty Constant Thresholds
       end else if (C_PROG_EMPTY_TYPE==2) begin
         if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
           prog_empty_actual_thresh_assert = C_PROG_EMPTY_THRESH_ASSERT_VAL-2;
           prog_empty_actual_thresh_negate = C_PROG_EMPTY_THRESH_NEGATE_VAL-2;
         end
         else begin
           prog_empty_actual_thresh_assert = C_PROG_EMPTY_THRESH_ASSERT_VAL;
           prog_empty_actual_thresh_negate = C_PROG_EMPTY_THRESH_NEGATE_VAL;
         end

       //Single Programmable Empty Constant Threshold
       end else if (C_PROG_EMPTY_TYPE==3) begin
         if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
           prog_empty_actual_thresh_assert = PROG_EMPTY_THRESH-2;
           prog_empty_actual_thresh_negate = PROG_EMPTY_THRESH-2;
         end
         else begin
           prog_empty_actual_thresh_assert = PROG_EMPTY_THRESH;
           prog_empty_actual_thresh_negate = PROG_EMPTY_THRESH;

         end
       //Two Programmable Empty Constant Thresholds
       end else if (C_PROG_EMPTY_TYPE==4) begin
         if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
           prog_empty_actual_thresh_assert = PROG_EMPTY_THRESH_ASSERT-2;
           prog_empty_actual_thresh_negate = PROG_EMPTY_THRESH_NEGATE-2;
         end
         else begin
           prog_empty_actual_thresh_assert = PROG_EMPTY_THRESH_ASSERT;
           prog_empty_actual_thresh_negate = PROG_EMPTY_THRESH_NEGATE;
         end
       end

       if ((num_read_words_pe/C_DEPTH_RATIO_WR == prog_empty_actual_thresh_assert+1) 
           && RD_EN) begin
         prog_empty_d <= 1'b1;
       end else if (num_read_words_pe/C_DEPTH_RATIO_WR 
                    <= prog_empty_actual_thresh_assert) begin
         prog_empty_d <= 1'b1;
       end else if (num_read_words_pe/C_DEPTH_RATIO_WR 
                    > prog_empty_actual_thresh_negate) begin
         prog_empty_d <= 1'b0;
       end


       ideal_prog_empty <= prog_empty_d;
       num_rd_bits      <= next_num_rd_bits;
       wr_ptr_rdclk     <= wr_ptr;
     end //rd_rst_i==0
   end //always

endmodule // fifo_generator_v4_3_bhv_ver_as


/*******************************************************************************
 * Declaration of top-level module
 ******************************************************************************/
module fifo_generator_v4_3_bhv_ver_ss
  (
   CLK, RST, SRST, DIN, WR_EN, RD_EN,
   PROG_FULL_THRESH, PROG_FULL_THRESH_ASSERT, PROG_FULL_THRESH_NEGATE,
   PROG_EMPTY_THRESH, PROG_EMPTY_THRESH_ASSERT, PROG_EMPTY_THRESH_NEGATE,
   DOUT, FULL, ALMOST_FULL, WR_ACK, OVERFLOW, EMPTY,
   ALMOST_EMPTY, VALID, UNDERFLOW, DATA_COUNT,
   PROG_FULL, PROG_EMPTY
   );
   
   /**************************************************************************
    * Declare user parameters and their defaults
    *************************************************************************/
   parameter  C_DATA_COUNT_WIDTH             = 2;
   parameter  C_DIN_WIDTH                    = 8;
   parameter  C_DOUT_RST_VAL                 = "";
   parameter  C_DOUT_WIDTH                   = 8;
   parameter  C_FULL_FLAGS_RST_VAL           = 1;
   parameter  C_HAS_ALMOST_EMPTY             = 0;
   parameter  C_HAS_ALMOST_FULL              = 0;
   parameter  C_HAS_DATA_COUNT               = 0;
   parameter  C_HAS_OVERFLOW                 = 0;
   parameter  C_HAS_RD_DATA_COUNT            = 0;
   parameter  C_HAS_RST                      = 0;
   parameter  C_HAS_SRST                     = 0;
   parameter  C_HAS_UNDERFLOW                = 0;
   parameter  C_HAS_VALID                    = 0;
   parameter  C_HAS_WR_ACK                   = 0;
   parameter  C_HAS_WR_DATA_COUNT            = 0;
   parameter  C_IMPLEMENTATION_TYPE          = 0;
   parameter  C_MEMORY_TYPE                  = 1;
   parameter  C_OVERFLOW_LOW                 = 0;
   parameter  C_PRELOAD_LATENCY              = 1;
   parameter  C_PRELOAD_REGS                 = 0;
   parameter  C_PROG_EMPTY_THRESH_ASSERT_VAL = 0;
   parameter  C_PROG_EMPTY_THRESH_NEGATE_VAL = 0;
   parameter  C_PROG_EMPTY_TYPE              = 0;
   parameter  C_PROG_FULL_THRESH_ASSERT_VAL  = 0;
   parameter  C_PROG_FULL_THRESH_NEGATE_VAL  = 0;
   parameter  C_PROG_FULL_TYPE               = 0;
   parameter  C_RD_DATA_COUNT_WIDTH          = 2;
   parameter  C_RD_DEPTH                     = 256;
   parameter  C_RD_PNTR_WIDTH                = 8;
   parameter  C_UNDERFLOW_LOW                = 0;
   parameter  C_USE_DOUT_RST                 = 0;
   parameter  C_USE_EMBEDDED_REG             = 0;
   parameter  C_USE_FWFT_DATA_COUNT          = 0;
   parameter  C_VALID_LOW                    = 0;
   parameter  C_WR_ACK_LOW                   = 0;
   parameter  C_WR_DATA_COUNT_WIDTH          = 2;
   parameter  C_WR_DEPTH                     = 256;
   parameter  C_WR_PNTR_WIDTH                = 8;
   
   
   /**************************************************************************
    * Declare Input and Output Ports
    *************************************************************************/
   //Inputs
   input      CLK;
   input [C_DIN_WIDTH-1:0] DIN;
   input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
   input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
   input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
   input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
   input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
   input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
   input 		       RD_EN;
   input 		       RST;
   input 		       SRST;
   input 		       WR_EN;

   //Outputs
   output 		       ALMOST_EMPTY;
   output 		       ALMOST_FULL;
   output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
   output [C_DOUT_WIDTH-1:0] 	   DOUT;
   output 			   EMPTY;
   output 			   FULL;
   output 			   OVERFLOW;
   output 			   PROG_EMPTY;
   output 			   PROG_FULL;
   output 			   VALID;
   output 			   UNDERFLOW;
   output 			   WR_ACK;

  /*************************************************************************
   * Declare the type for each Input/Output port, and connect each I/O
   * to it's associated internal signal in the behavioral model
   *
   * The values for the outputs are assigned in assign statements immediately
   * following wire, parameter, and function declarations in this code.
   *************************************************************************/
   //Inputs
   wire CLK;
   wire [C_DIN_WIDTH-1:0] DIN;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
   wire RD_EN;
   wire RST;
   wire SRST;
   wire WR_EN;

   //Outputs
   wire ALMOST_EMPTY;
   wire ALMOST_FULL;
   reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
   wire [C_DOUT_WIDTH-1:0] DOUT;
   wire EMPTY;
   wire FULL;
   wire OVERFLOW;
   wire PROG_EMPTY;
   wire PROG_FULL;
   wire VALID;
   wire UNDERFLOW;
   wire WR_ACK;


   /***************************************************************************
    * Parameters used as constants
    **************************************************************************/
   //When RST is present, set FULL reset value to '1'.
   //If core has no RST, make sure FULL powers-on as '0'.
   //The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not 
   //changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
   // Therefore, during SRST, all the FULL flags reset to 0.
   parameter                      C_HAS_FAST_FIFO = 0;
   parameter                      C_FIFO_WR_DEPTH = C_WR_DEPTH;
   parameter                      C_FIFO_RD_DEPTH = C_RD_DEPTH;

  /**************************************************************************
    * FIFO Contents Tracking and Data Count Calculations
    *************************************************************************/
   //Memory which will be used to simulate a FIFO
   reg [C_DIN_WIDTH-1:0]          memory[C_WR_DEPTH-1:0];

   //The amount of data stored in the FIFO at any time is given
   // by num_bits.
   //num_bits is calculated by from the total words in the FIFO.
   reg [31:0]                     num_bits;

   //The write pointer - tracks write operations
   // (Works opposite to core: wr_ptr is a DOWN counter)
   reg [31:0]                     wr_ptr;

   //The write pointer - tracks read operations
   // (Works opposite to core: rd_ptr is a DOWN counter)
   reg [31:0]                     rd_ptr;
  
   /**************************
    * Data Count
    *************************/   
   //Amount of data stored in the FIFO scaled to read words
   wire [31:0]                    num_read_words  = num_bits/C_DOUT_WIDTH;
   //num_read_words delayed 1 clock cycle
   reg [31:0]                     num_read_words_q;

   //Amount of data stored in the FIFO scaled to write words
   wire [31:0]                    num_write_words = num_bits/C_DIN_WIDTH;
   //num_write_words delayed 1 clock cycle
   reg [31:0]                     num_write_words_q;

   
   /**************************************************************************
    * Internal Registers and wires
    *************************************************************************/

   //Temporary signals used for calculating the model's outputs. These
   //are only used in the assign statements immediately following wire,
   //parameter, and function declarations.
   wire                           underflow_i;
   wire                           valid_i;
   wire                           valid_out;

   //Ideal FIFO signals. These are the raw output of the behavioral model,
   //which behaves like an ideal FIFO.
   reg [C_DOUT_WIDTH-1:0]         ideal_dout;
   reg [C_DOUT_WIDTH-1:0]         ideal_dout_d1;
   wire [C_DOUT_WIDTH-1:0]        ideal_dout_out;
   reg                            ideal_wr_ack;
   reg                            ideal_valid;
   reg                            ideal_overflow;
   reg                            ideal_underflow;
   reg                            ideal_full;
   reg                            ideal_empty;
   reg                            ideal_almost_full;
   reg                            ideal_almost_empty;
   reg                            ideal_prog_full;
   reg                            ideal_prog_empty;

   //Assorted reg values for delayed versions of signals
   reg                            valid_d1;
   reg 				  prog_full_d;
   reg 				  prog_empty_d;
   

   //Internal reset signals
   reg                            rst_asreg    =0;
   reg                            rst_asreg_d1 =0;
   reg                            rst_asreg_d2 =0;
   reg                            rst_reg      =0;
   reg                            rst_d1       =0;
   wire                           rst_comb;
   wire                           rst_i;
   wire                           srst_i;

   //Delayed version of RST
   reg                             rst_q;
   reg                             rst_qq;

   //user specified value for reseting the size of the fifo
   reg [C_DOUT_WIDTH-1:0]          dout_reset_val;


   /****************************************************************************
    * Function Declarations
    ***************************************************************************/

  /**************************************************************************
   * write_fifo
   *   This task writes a word to the FIFO memory and updates the
   * write pointer.
   *   FIFO size is relative to write domain.
  ***************************************************************************/
   task write_fifo;
      begin
         memory[wr_ptr]     <= DIN;
         if (wr_ptr == 0) begin
            wr_ptr          <= C_WR_DEPTH - 1;
         end else begin
            wr_ptr          <= wr_ptr - 1;
         end
      end
   endtask // write_fifo

  /**************************************************************************
   * read_fifo
   *   This task reads a word from the FIFO memory and updates the read
   * pointer. It's output is the ideal_dout bus.
   *   FIFO size is relative to write domain.
   ***************************************************************************/
   task  read_fifo;
      begin
         ideal_dout <= memory[rd_ptr];
         if (rd_ptr == 0) begin
            rd_ptr  <= C_RD_DEPTH - 1;
         end else begin
            rd_ptr  <= rd_ptr - 1;
         end
      end
   endtask

   /****************************************************************************
    * log2_val
    *   Returns the 'log2' value for the input value for the supported ratios
    ***************************************************************************/
    function [31:0] log2_val;
    input [31:0] binary_val;

    begin
       if (binary_val == 8) begin
          log2_val = 3;
       end else if (binary_val == 4) begin
          log2_val = 2;
       end else begin
          log2_val = 1;
       end
    end
    endfunction

   /****************************************************************************
    * hexstr_conv
    *   Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
    ***************************************************************************/
    function [C_DOUT_WIDTH-1:0] hexstr_conv;
    input [(C_DOUT_WIDTH*8)-1:0] def_data;

    integer index,i,j;
    reg [3:0] bin;

    begin
      index = 0;
      hexstr_conv = 'b0;
      for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
      begin
        case (def_data[7:0])
          8'b00000000 :
          begin
            bin = 4'b0000;
            i = -1;
          end
          8'b00110000 : bin = 4'b0000;
          8'b00110001 : bin = 4'b0001;
          8'b00110010 : bin = 4'b0010;
          8'b00110011 : bin = 4'b0011;
          8'b00110100 : bin = 4'b0100;
          8'b00110101 : bin = 4'b0101;
          8'b00110110 : bin = 4'b0110;
          8'b00110111 : bin = 4'b0111;
          8'b00111000 : bin = 4'b1000;
          8'b00111001 : bin = 4'b1001;
          8'b01000001 : bin = 4'b1010;
          8'b01000010 : bin = 4'b1011;
          8'b01000011 : bin = 4'b1100;
          8'b01000100 : bin = 4'b1101;
          8'b01000101 : bin = 4'b1110;
          8'b01000110 : bin = 4'b1111;
          8'b01100001 : bin = 4'b1010;
          8'b01100010 : bin = 4'b1011;
          8'b01100011 : bin = 4'b1100;
          8'b01100100 : bin = 4'b1101;
          8'b01100101 : bin = 4'b1110;
          8'b01100110 : bin = 4'b1111;
          default :
          begin
            bin = 4'bx;
          end
        endcase
        for( j=0; j<4; j=j+1)
        begin
          if ((index*4)+j < C_DOUT_WIDTH)
          begin
            hexstr_conv[(index*4)+j] = bin[j];
          end
        end
        index = index + 1;
        def_data = def_data >> 8;
      end
    end
  endfunction

   
  /*************************************************************************
  * Initialize Signals for clean power-on simulation
  *************************************************************************/
   initial begin
      num_bits           = 0;
      num_read_words_q   = 0;
      num_write_words_q  = 0;
      rd_ptr             = C_RD_DEPTH -1;
      wr_ptr             = C_WR_DEPTH -1;
      dout_reset_val     = hexstr_conv(C_DOUT_RST_VAL);
      ideal_dout       = dout_reset_val;
      ideal_wr_ack       = 1'b0;
      ideal_valid        = 1'b0;
      valid_d1           = 1'b0;
      ideal_overflow     = 1'b0;
      ideal_underflow    = 1'b0;
      ideal_full         = 1'b0;
      ideal_empty        = 1'b1;
      ideal_almost_full  = 1'b0;
      ideal_almost_empty = 1'b1;
      ideal_prog_full    = 1'b0;
      ideal_prog_empty   = 1'b1;
      prog_full_d        = 1'b0;
      prog_empty_d       = 1'b1;
      rst_q              = 1'b0;
      rst_qq             = 1'b0;    
   end


  /*************************************************************************
   * Connect the module inputs and outputs to the internal signals of the
   * behavioral model.
   *************************************************************************/
   //Inputs
   /*
   wire CLK;
   wire [C_DIN_WIDTH-1:0] DIN;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
   wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
   wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
   wire RD_EN;
   wire RST;
   wire WR_EN;
    */

  //Outputs
  assign ALMOST_EMPTY  = ideal_almost_empty;
  assign ALMOST_FULL   = ideal_almost_full;

  //Dout may change behavior based on latency
  assign ideal_dout_out= (C_USE_EMBEDDED_REG==1 &&
                          (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
                         ideal_dout_d1: ideal_dout; 
  assign DOUT = ideal_dout_out;
  
  assign EMPTY         = ideal_empty;
  assign FULL          = ideal_full;

  //Overflow may be active-low
  assign OVERFLOW      = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;

  assign PROG_EMPTY    = ideal_prog_empty;
  assign PROG_FULL     = ideal_prog_full;

   //Valid may change behavior based on latency or active-low
  assign valid_i       = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
  assign valid_out     = (C_PRELOAD_LATENCY==2 &&
                          (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
                         valid_d1: valid_i; 
  assign VALID         = valid_out ? !C_VALID_LOW : C_VALID_LOW;

  //Trim data count differently depending on set widths
  always @(num_read_words) begin
     if (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) begin
	DATA_COUNT = num_read_words[C_RD_PNTR_WIDTH:0];	
     end else begin
        DATA_COUNT = 
	  num_read_words[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];	
     end //if
  end //always
   
  //Underflow may change behavior based on latency or active-low
  assign underflow_i   = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
  assign UNDERFLOW     = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
	

  //Write acknowledge may be active low
  assign WR_ACK        = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;



  /*****************************************************************************
   * Internal reset logic 
   ****************************************************************************/
  assign srst_i        = C_HAS_SRST ? SRST : 0;
  assign rst_comb      = !rst_asreg_d2 && rst_asreg;
  assign rst_i         = C_HAS_RST ? rst_reg : 0;

  always @(posedge CLK or posedge RST) begin
     if (RST == 1'b1) begin
       rst_asreg <= 1'b1;
     end else begin
       if (rst_asreg_d1 == 1'b1) begin
         rst_asreg <= 1'b0;
       end else begin
         rst_asreg <= rst_asreg;
       end
     end    
  end   

  always @(posedge CLK) begin
     rst_asreg_d1 <= rst_asreg;
     rst_asreg_d2 <= rst_asreg_d1;
  end
  
  always @(posedge CLK or posedge rst_comb) begin
     if (rst_comb == 1'b1) begin
       rst_reg <= 1'b1;
     end else begin
       rst_reg <= 1'b0;
     end    
  end   

   /**************************************************************************
    * Assorted registers for delayed versions of signals
    **************************************************************************/
   //Capture delayed version of valid
   always @(posedge CLK or posedge rst_i) begin
      if (rst_i == 1'b1) begin
	 valid_d1 <= 1'b0;
      end else begin
	 if (srst_i) begin
            valid_d1 <= 1'b0;
	 end else begin
            valid_d1 <= valid_i;
	 end
      end    
   end // always @ (posedge CLK or posedge rst_i)
   
   //Capture delayed version of dout
   always @(posedge CLK or posedge rst_i) begin
      if (rst_i == 1'b1 && C_USE_DOUT_RST == 1) begin
	 ideal_dout_d1 <= dout_reset_val;
      end else begin
	 if (srst_i && C_USE_DOUT_RST == 1) begin
            ideal_dout_d1 <= dout_reset_val;
	 end else begin
            ideal_dout_d1 <= ideal_dout;
	 end
      end    
   end   

   /**************************************************************************
    * Overflow and Underflow Flag calculation
    *  (handled separately because they don't support rst)
    **************************************************************************/
   always @(posedge CLK) begin
     ideal_overflow    <= WR_EN & ideal_full;
     ideal_underflow   <= ideal_empty & RD_EN;
   end
 
   /*************************************************************************
    * Write and Read Logic  
    ************************************************************************/
   always @(posedge CLK or posedge rst_i)
     begin : gen_wr_ack_resp
	
	//Register reset
	rst_q   <= rst_i;
	rst_qq  <= rst_q;
	
     end // block: gen_wr_ack_resp
   
   // block memory has a synchronous reset
   always @(posedge CLK) begin : gen_fifo_blkmemdout
      //Changed the latency of during async reset to '1' instead of '2' to 
      // make it consistent with the core.
      if (rst_i || rst_q || srst_i) begin
         /******Initialize Read Domain Signals*********************************/
         if (C_MEMORY_TYPE == 1 && C_USE_DOUT_RST == 1) begin
            ideal_dout <= dout_reset_val;
         end
      end
   end //always
   
   always @(posedge CLK or posedge rst_i) begin : gen_fifo
      
      /****** Reset fifo - Asynchronous Reset**********************************/
      //Changed the latency of during async reset to '1' instead of '2' to 
      // make it consistent with the core.
      if (rst_i) begin //v3.2
         /******Initialize Generic FIFO constructs*****************************/
         num_bits           <= 0;
         wr_ptr             <= C_WR_DEPTH - 1;
         rd_ptr             <= C_RD_DEPTH - 1;
         num_read_words_q   <= 0;
         num_write_words_q  <= 0;
	 
	 
         /******Initialize Write Domain Signals********************************/
         ideal_wr_ack       <= 0;
         ideal_full         <= C_FULL_FLAGS_RST_VAL;
         ideal_almost_full  <= C_FULL_FLAGS_RST_VAL;
	 
         /******Initialize Read Domain Signals*********************************/
         if (C_MEMORY_TYPE != 1 && C_USE_DOUT_RST == 1) begin
            ideal_dout      <= dout_reset_val;
         end
         ideal_valid        <= 1'b0;
         ideal_empty        <= 1'b1;
         ideal_almost_empty <= 1'b1;
	 
      end else begin   
         if (srst_i) begin
            // SRST is available only for Sync BRAM and Sync DRAM.
	    // Not for SSHFT.
            if (C_MEMORY_TYPE == 1 || C_MEMORY_TYPE == 2) begin
 	       /******Initialize Generic FIFO constructs***********************/
               num_bits           <= 0;
               wr_ptr             <= C_WR_DEPTH - 1;
               rd_ptr             <= C_RD_DEPTH - 1;
               num_read_words_q   <= 0;
               num_write_words_q  <= 0;
	       
               /******Initialize Write Domain Signals**************************/
               ideal_wr_ack       <= 0;
               ideal_full         <= 0; //'0'
               ideal_almost_full  <= 0; //'0'
	       
               /******Initialize Read Domain Signals***************************/
               //Reset DOUT of Sync DRAM. Sync BRAM DOUT was reset in the 
	       // above always block.
	       if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1 ) begin  
                  ideal_dout      <= dout_reset_val;
               end
               ideal_valid        <= 1'b0;
               ideal_empty        <= 1'b1;
               ideal_almost_empty <= 1'b1;
            end
	    
         end else begin  //normal operating conditions
         /********************************************************************/
         // Synchronous FIFO Condition #1 : Writing and not reading
         /********************************************************************/
         if (WR_EN & ~RD_EN) begin

            /*********************************/
            //If the FIFO is full, do NOT perform the write,
            // update flags accordingly
            /*********************************/
            if (num_write_words >= C_FIFO_WR_DEPTH) begin
               ideal_wr_ack       <= 0;

               //still full
               ideal_full         <= 1'b1;
               ideal_almost_full  <= 1'b1;

               //write unsuccessful - do not change contents

               // no read attempted
               ideal_valid        <= 1'b0;

               //Not near empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;


            /*********************************/
            //If the FIFO is reporting FULL
            // (Startup condition)
            /*********************************/
            end else if ((num_write_words < C_FIFO_WR_DEPTH) && (ideal_full == 1'b1)) begin
               ideal_wr_ack       <= 0;

               //still full
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //write unsuccessful - do not change contents

               // no read attempted
               ideal_valid        <= 1'b0;

               //FIFO EMPTY in this state can not be determined
               //ideal_empty        <= 1'b0;
               //ideal_almost_empty <= 1'b0;


               /*********************************/
               //If the FIFO is one from full
               /*********************************/
            end else if (num_write_words == C_FIFO_WR_DEPTH-1) begin
               //good write
               ideal_wr_ack       <= 1;

               //FIFO is one from FULL and going FULL
               ideal_full         <= 1'b1;
               ideal_almost_full  <= 1'b1;

               //Add input data
               write_fifo;

               // no read attempted
               ideal_valid        <= 1'b0;

               //Not near empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               num_bits           <= num_bits + C_DIN_WIDTH;

               /*********************************/
               //If the FIFO is 2 from full
               /*********************************/
            end else if (num_write_words == C_FIFO_WR_DEPTH-2) begin
               //good write
               ideal_wr_ack       <= 1;

               //2 from full, and writing, so set almost_full
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b1;

               //Add input data
               write_fifo;

               //no read attempted
               ideal_valid        <= 1'b0;

               //Not near empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               num_bits           <= num_bits + C_DIN_WIDTH;

               /*********************************/
               //If the FIFO is ALMOST EMPTY
               /*********************************/
            end else if (num_read_words == 1) begin
               //good write
               ideal_wr_ack       <= 1;

               //Not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //Add input data
               write_fifo;

               // no read attempted
               ideal_valid        <= 1'b0;

               //Leaving ALMOST_EMPTY
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               num_bits           <= num_bits + C_DIN_WIDTH;

               /*********************************/
               //If the FIFO is EMPTY
               /*********************************/
            end else if (num_read_words == 0) begin
               // good write
               ideal_wr_ack       <= 1;

               //Not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //Add input data
               write_fifo;

               // no read attempted
               ideal_valid        <= 1'b0;

               //Leaving EMPTY (still ALMOST_EMPTY)
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b1;

               num_bits           <= num_bits + C_DIN_WIDTH;

               /*********************************/
               //If the FIFO is not near EMPTY or FULL
               /*********************************/
            end else begin
               // good write
               ideal_wr_ack       <= 1;

               //Not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //Add input data
               write_fifo;

               // no read attempted
               ideal_valid        <= 1'b0;

               //Not near EMPTY
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               num_bits           <= num_bits + C_DIN_WIDTH;

            end // average case


            /******************************************************************/
            // Synchronous FIFO Condition #2 : Reading and not writing
            /******************************************************************/
         end else if (~WR_EN & RD_EN) begin

            /*********************************/
            //If the FIFO is EMPTY
            /*********************************/
            if ((num_read_words == 0) || (ideal_empty == 1'b1)) begin
               //no write attemped
               ideal_wr_ack       <= 0;

               //FIFO is not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //Read will fail
               ideal_valid        <= 1'b0;

               //FIFO is still empty
               ideal_empty        <= 1'b1;
               ideal_almost_empty <= 1'b1;

               //No read

               /*********************************/
               //If the FIFO is ALMOST EMPTY
               /*********************************/
            end else if (num_read_words == 1) begin
               //no write attempted
               ideal_wr_ack       <= 0;

               //FIFO is not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //Read successful
               ideal_valid        <= 1'b1;

               //This read will make FIFO go empty
               ideal_empty        <= 1'b1;
               ideal_almost_empty <= 1'b1;

               //Get the data from the FIFO
               read_fifo;
               num_bits           <= num_bits - C_DIN_WIDTH;


               /*********************************/
               //If the FIFO is 2 from EMPTY
               /*********************************/
            end else if (num_read_words == 2) begin

               //no write attempted
               ideal_wr_ack       <= 0;

               //FIFO is not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //Read successful
               ideal_valid        <= 1'b1;

               //FIFO is going ALMOST_EMPTY
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b1;

               //Get the data from the FIFO
               read_fifo;
               num_bits           <= num_bits - C_DOUT_WIDTH;



               /*********************************/
               //If the FIFO is one from full
               /*********************************/
            end else if (num_write_words == C_FIFO_WR_DEPTH-1) begin

               //no write attempted
               ideal_wr_ack       <= 0;

               //FIFO is leaving ALMOST FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //Read successful
               ideal_valid        <= 1'b1;

               //Not near empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               //Read from the FIFO
               read_fifo;
               num_bits           <= num_bits - C_DOUT_WIDTH;


               /*********************************/
               // FIFO is FULL
               /*********************************/
            end else if (num_write_words >= C_FIFO_WR_DEPTH)
              begin
                 //no write attempted
                 ideal_wr_ack       <= 0;

                 //FIFO is leaving FULL, but is still ALMOST_FULL
                 ideal_full         <= 1'b0;
                 ideal_almost_full  <= 1'b1;

                 //Read successful
                 ideal_valid        <= 1'b1;

                 //Not near empty
                 ideal_empty        <= 1'b0;
                 ideal_almost_empty <= 1'b0;

                 //Read from the FIFO
                 read_fifo;
                 num_bits           <= num_bits - C_DOUT_WIDTH;

                 /*********************************/
                 //If the FIFO is not near EMPTY or FULL
                 /*********************************/
              end else begin
                 //no write attemped
                 ideal_wr_ack       <= 0;

                 //Not near empty
                 ideal_full         <= 1'b0;
                 ideal_almost_full  <= 1'b0;

                 //Read successful
                 ideal_valid        <= 1'b1;

                 //Not near empty
                 ideal_empty        <= 1'b0;
                 ideal_almost_empty <= 1'b0;

                 //Read from the FIFO
                 read_fifo;
                 num_bits           <= num_bits - C_DOUT_WIDTH;


              end // average read


            /******************************************************************/
            // Synchronous FIFO Condition #3 : Reading and writing
            /******************************************************************/
         end else if (WR_EN & RD_EN) begin

            /*********************************/
            // FIFO is FULL
            /*********************************/
            if (num_write_words >= C_FIFO_WR_DEPTH) begin

               ideal_wr_ack       <= 0;

               //Read will be successful, so FIFO will leave FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b1;

               //Read successful
               ideal_valid        <= 1'b1;

               //Not near empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               //Read from the FIFO
               read_fifo;
               num_bits           <= num_bits - C_DOUT_WIDTH;


            /*********************************/
            // FIFO is reporting FULL, but it is empty
            // (This is a special case, when coming out of RST
            /*********************************/
            end else if ((num_write_words == 0) && (ideal_full == 1'b1)) begin

               ideal_wr_ack       <= 0;

               //Read will be successful, so FIFO will leave FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //Read unsuccessful
               ideal_valid        <= 1'b0;

               //Report empty condition
               ideal_empty        <= 1'b1;
               ideal_almost_empty <= 1'b1;

               //Do not read from empty FIFO
               // Read from the FIFO


               /*********************************/
               //If the FIFO is one from full
               /*********************************/
            end else if (num_write_words == C_FIFO_WR_DEPTH-1) begin

               //Write successful
               ideal_wr_ack       <= 1;

               //FIFO will remain ALMOST_FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b1;

               // put the data into the FIFO
               write_fifo;

               //Read successful
               ideal_valid        <= 1'b1;

               //Not near empty
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               //Read from the FIFO
               read_fifo;
               num_bits           <= num_bits + C_DIN_WIDTH - C_DOUT_WIDTH;

               /*********************************/
               //If the FIFO is ALMOST EMPTY
               /*********************************/
            end else if (num_read_words == 1) begin

               //Write successful
               ideal_wr_ack       <= 1;

               // Not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               // put the data into the FIFO
               write_fifo;

               //Read successful
               ideal_valid        <= 1'b1;

               //FIFO will stay ALMOST_EMPTY
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b1;

               //Read from the FIFO
               read_fifo;
               num_bits           <= num_bits + C_DIN_WIDTH - C_DOUT_WIDTH;


               /*********************************/
               //If the FIFO is EMPTY
               /*********************************/
            end else if (num_read_words == 0) begin

               //Write successful
               ideal_wr_ack       <= 1;

               // Not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               // put the data into the FIFO
               write_fifo;

               //Read will fail
               ideal_valid        <= 1'b0;

               //FIFO will leave EMPTY
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b1;

               // No read
               num_bits           <= num_bits + C_DIN_WIDTH;


               /*********************************/
               //If the FIFO is not near EMPTY or FULL
               /*********************************/
            end else begin

               //Write successful
               ideal_wr_ack       <= 1;

               // Not near FULL
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               // put the data into the FIFO
               write_fifo;

               //Read successful
               ideal_valid        <= 1'b1;

               // Not near EMPTY
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               //Read from the FIFO
               read_fifo;
               num_bits           <= num_bits + C_DIN_WIDTH - C_DOUT_WIDTH;

            end // average case

            /******************************************************************/
            // Synchronous FIFO Condition #4 : Not reading or writing
            /******************************************************************/
         end else begin

            /*********************************/
            // FIFO is FULL
            /*********************************/
            if (num_write_words >= C_FIFO_WR_DEPTH) begin

               //No write
               ideal_wr_ack       <= 0;
               ideal_full         <= 1'b1;
               ideal_almost_full  <= 1'b1;

               //No read
               ideal_valid        <= 1'b0;
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               //No change to memory

               /*********************************/
               //If the FIFO is one from full
               /*********************************/
            end else if (num_write_words == C_FIFO_WR_DEPTH-1) begin

               //No write
               ideal_wr_ack       <= 0;
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b1;

               //No read
               ideal_valid        <= 1'b0;
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b0;

               //No change to memory

               /*********************************/
               //If the FIFO is ALMOST EMPTY
               /*********************************/
            end else if (num_read_words == 1) begin
               //No write
               ideal_wr_ack       <= 0;
               ideal_full         <= 1'b0;
               ideal_almost_full  <= 1'b0;

               //No read
               ideal_valid        <= 1'b0;
               ideal_empty        <= 1'b0;
               ideal_almost_empty <= 1'b1;

               //No change to memory

            end // almost empty


            /*********************************/
            //If the FIFO is EMPTY
            /*********************************/
            else if (num_read_words == 0)
              begin
                 //No write
                 ideal_wr_ack       <= 0;
                 ideal_full         <= 1'b0;
                 ideal_almost_full  <= 1'b0;

                 //No read
                 ideal_valid        <= 1'b0;
                 ideal_empty        <= 1'b1;
                 ideal_almost_empty <= 1'b1;

                 //No change to memory

                 /*********************************/
                 //If the FIFO is not near EMPTY or FULL
                 /*********************************/
              end else begin

                 //No write
                 ideal_wr_ack       <= 0;
                 ideal_full         <= 1'b0;
                 ideal_almost_full  <= 1'b0;

                 //No read
                 ideal_valid        <= 1'b0;
                 ideal_empty        <= 1'b0;
                 ideal_almost_empty <= 1'b0;

                 //No change to memory

              end //    average case

         end // neither reading or writing

         num_read_words_q  <= num_read_words;
         num_write_words_q <= num_write_words;
        
         end //normal operating conditions
      end 

   end // block: gen_fifo

   
   always @(posedge CLK or posedge rst_i) begin : gen_fifo_p

      /****** Reset fifo - Async Reset****************************************/
      //The latency of de-assertion of the flags is reduced by 1 to be 
      // consistent with the core.
      if (rst_i) begin 
         ideal_prog_full   <= C_FULL_FLAGS_RST_VAL;
         ideal_prog_empty  <= 1'b1;
         prog_full_d       <= C_FULL_FLAGS_RST_VAL;
         prog_empty_d      <= 1'b1;

      end else begin
         if (srst_i) begin
            //SRST is available only for Sync BRAM and Sync DRAM. Not for SSHFT.
            if (C_MEMORY_TYPE == 1 || C_MEMORY_TYPE == 2) begin
               ideal_prog_full   <= 1'b0;
               ideal_prog_empty  <= 1'b1;
               prog_full_d       <= 1'b0;
               prog_empty_d      <= 1'b1;
            end
         end else begin 

	    /***************************************************************
             * Programmable FULL flags
             ****************************************************************/
	    //calculation for standard fifo and latency =2
	    if  (! (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) begin  
               //Single constant threshold
               if (C_PROG_FULL_TYPE == 1) begin
		  if ((num_write_words >= C_PROG_FULL_THRESH_ASSERT_VAL-1)
                      && WR_EN && !RD_EN) begin
                     prog_full_d <= 1'b1;
		  end else if (((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL)
				&& RD_EN && !WR_EN) || (rst_q && !rst_i)) begin
	             prog_full_d <= 1'b0;
		  end

		  //Dual constant thresholds
               end else if (C_PROG_FULL_TYPE == 2) begin
		  if ((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL-1)
                      && WR_EN && !RD_EN) begin
                     prog_full_d <= 1'b1;
		  end else if ((num_write_words == C_PROG_FULL_THRESH_NEGATE_VAL)
                               && RD_EN && !WR_EN) begin
                     prog_full_d <= 1'b0;
		  end
		  
		  //Single input threshold
               end else if (C_PROG_FULL_TYPE == 3) begin
		  if ((num_write_words == PROG_FULL_THRESH-1)
                      && WR_EN && !RD_EN) begin
                     prog_full_d <= 1'b1;
		  end else if ((num_write_words == PROG_FULL_THRESH)
			       && !WR_EN && RD_EN) begin
                     prog_full_d <= 1'b0;
		  end else if (num_write_words >= PROG_FULL_THRESH) begin
                     prog_full_d <= 1'b1;
		  end else if (num_write_words < PROG_FULL_THRESH) begin
                     prog_full_d <= 1'b0;
		  end
		  
		  //Dual input thresholds
               end else begin
		  if ((num_write_words == PROG_FULL_THRESH_ASSERT-1)
                      && WR_EN && !RD_EN) begin
                     prog_full_d <= 1'b1;
		  end else if ((num_write_words == PROG_FULL_THRESH_NEGATE)
			       && !WR_EN && RD_EN)begin
                     prog_full_d <= 1'b0;
		  end else if (num_write_words >= PROG_FULL_THRESH_ASSERT) begin
                     prog_full_d <= 1'b1;
		  end else if (num_write_words < PROG_FULL_THRESH_NEGATE) begin 
                     prog_full_d <= 1'b0;
		  end
               end
            end  // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) )
	    
	    
	    //calculation for FWFT fifo 
	    if  (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)  begin  
               if (C_PROG_FULL_TYPE == 1) begin
		  if ((num_write_words >= C_PROG_FULL_THRESH_ASSERT_VAL-1 - 2)
                      && WR_EN && !RD_EN) begin
                     prog_full_d <= 1'b1;
		  end else if (((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL - 2)
				&& RD_EN && !WR_EN) || (rst_q && !rst_i)) begin
                     prog_full_d <= 1'b0;
		  end
		  
		  //Dual constant thresholds
               end else if (C_PROG_FULL_TYPE == 2) begin
		  if ((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL-1 - 2)
                      && WR_EN && !RD_EN) begin
                     prog_full_d <= 1'b1;
		  end else if ((num_write_words == C_PROG_FULL_THRESH_NEGATE_VAL - 2)
                               && RD_EN && !WR_EN) begin
                     prog_full_d <= 1'b0;
		  end
		  
		  //Single input threshold
               end else if (C_PROG_FULL_TYPE == 3) begin
		  if ((num_write_words == PROG_FULL_THRESH-1 - 2)
                      && WR_EN && !RD_EN) begin
                     prog_full_d <= 1'b1;
		  end else if ((num_write_words == PROG_FULL_THRESH - 2)
			       && !WR_EN && RD_EN) begin
                     prog_full_d <= 1'b0;
		  end else if (num_write_words >= PROG_FULL_THRESH - 2) begin
                     prog_full_d <= 1'b1;
		  end else if (num_write_words < PROG_FULL_THRESH - 2) begin
                     prog_full_d <= 1'b0;
		  end
		  
		  //Dual input thresholds
               end else begin
		  if ((num_write_words == PROG_FULL_THRESH_ASSERT-1 - 2)
                      && WR_EN && !RD_EN) begin
                     prog_full_d <= 1'b1;
		  end else if ((num_write_words == PROG_FULL_THRESH_NEGATE - 2)
			       && !WR_EN && RD_EN)begin
                     prog_full_d <= 1'b0;
		  end else if (num_write_words >= PROG_FULL_THRESH_ASSERT - 2) begin
                     prog_full_d <= 1'b1;
		  end else if (num_write_words < PROG_FULL_THRESH_NEGATE - 2) begin
                     prog_full_d <= 1'b0;
		  end
               end  
            end  //  (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)  
	    
            /*****************************************************************
             * Programmable EMPTY flags
             ****************************************************************/
            //calculation for standard fifo and latency = 2
	    if  (! (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) begin  
               //Single constant threshold
               if (C_PROG_EMPTY_TYPE == 1) begin
		  if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1)
                      && RD_EN && !WR_EN) begin
                     prog_empty_d <= 1'b1;
		  end else if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL)
			       && WR_EN && !RD_EN) begin
                     prog_empty_d <= 1'b0;
               end
            //Dual constant thresholds
            end else if (C_PROG_EMPTY_TYPE == 2) begin
               if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1)
                   && RD_EN && !WR_EN) begin
                  prog_empty_d <= 1'b1;
               end else if ((num_read_words == C_PROG_EMPTY_THRESH_NEGATE_VAL)
                            && !RD_EN && WR_EN) begin
                  prog_empty_d <= 1'b0;
               end

            //Single input threshold
            end else if (C_PROG_EMPTY_TYPE == 3) begin
               if ((num_read_words == PROG_EMPTY_THRESH+1)
                             && RD_EN && !WR_EN) begin
                  prog_empty_d <= 1'b1;
               end else if ((num_read_words == PROG_EMPTY_THRESH)
                             && !RD_EN && WR_EN) begin
                  prog_empty_d <= 1'b0;
               end else if (num_read_words <= PROG_EMPTY_THRESH) begin
                  prog_empty_d <= 1'b1;
               end else if (num_read_words > PROG_EMPTY_THRESH)begin
                  prog_empty_d <= 1'b0;
               end

            //Dual input thresholds
            end else begin
               if (num_read_words <= PROG_EMPTY_THRESH_ASSERT) begin 
                  prog_empty_d <= 1'b1;
               end else if ((num_read_words == PROG_EMPTY_THRESH_ASSERT+1)
                   && RD_EN && !WR_EN) begin
                  prog_empty_d <= 1'b1;
               end else if (num_read_words > PROG_EMPTY_THRESH_NEGATE)begin
                  prog_empty_d <= 1'b0;
               end else if ((num_read_words == PROG_EMPTY_THRESH_NEGATE)
                   && !RD_EN && WR_EN) begin
                  prog_empty_d <= 1'b0;
               end
            end
          end // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) )
	    
            //calculation for FWFT fifo
	    if   (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)  begin  
               //Single constant threshold
               if (C_PROG_EMPTY_TYPE == 1) begin
		  if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1 - 2)
                      && RD_EN && !WR_EN) begin
                     prog_empty_d <= 1'b1;    
		  end else if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL - 2)
			       && WR_EN && !RD_EN) begin
                     prog_empty_d <= 1'b0;    
		  end
		  //Dual constant thresholds
               end else if (C_PROG_EMPTY_TYPE == 2) begin
		  if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1 - 2)  
                      && RD_EN && !WR_EN) begin
                     prog_empty_d <= 1'b1;    
		  end else if ((num_read_words == C_PROG_EMPTY_THRESH_NEGATE_VAL - 2)
                               && !RD_EN && WR_EN) begin
                     prog_empty_d <= 1'b0;
		  end
		  
		  //Single input threshold
               end else if (C_PROG_EMPTY_TYPE == 3) begin
		  if ((num_read_words == PROG_EMPTY_THRESH+1 - 2)
                      && RD_EN && !WR_EN) begin   
                     prog_empty_d <= 1'b1;
		  end else if ((num_read_words == PROG_EMPTY_THRESH - 2)
                               && !RD_EN && WR_EN) begin
                     prog_empty_d <= 1'b0;
		  end else if (num_read_words <= PROG_EMPTY_THRESH - 2) begin
                     prog_empty_d <= 1'b1;
		  end else if (num_read_words > PROG_EMPTY_THRESH - 2)begin
                     prog_empty_d <= 1'b0;
		  end
		  
		  //Dual input thresholds
               end else begin
		  if (num_read_words <= PROG_EMPTY_THRESH_ASSERT - 2) begin 
                     prog_empty_d <= 1'b1;
		  end else if ((num_read_words == PROG_EMPTY_THRESH_ASSERT+1 - 2)
			       && RD_EN && !WR_EN) begin
                     prog_empty_d <= 1'b1;    
		  end else if (num_read_words > PROG_EMPTY_THRESH_NEGATE - 2)begin
                     prog_empty_d <= 1'b0;
		  end else if ((num_read_words == PROG_EMPTY_THRESH_NEGATE - 2)
			       && !RD_EN && WR_EN) begin
                     prog_empty_d <= 1'b0;    
		  end
               end  
            end // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) )
	    
            ideal_prog_empty  <= prog_empty_d;
            if (rst_q && !rst_i) begin
               ideal_prog_full   <= 1'b0;
               prog_full_d       <= 1'b0;
            end else begin
               ideal_prog_full   <= prog_full_d;
            end
	    
         end //if (srst_i) begin
      end //if (rst_i) begin
   end //always @(posedge CLK or posedge rst_i) begin : gen_fifo_p
endmodule // fifo_generator_v4_3_bhv_ver_ss



/**************************************************************************
 * First-Word Fall-Through module (preload 0)
 **************************************************************************/
module fifo_generator_v4_3_bhv_ver_preload0
 (
  RD_CLK,
  RD_RST,
  RD_EN,
  FIFOEMPTY,
  FIFODATA,
  USERDATA,
  USERVALID,
  USERUNDERFLOW,
  USEREMPTY,
  USERALMOSTEMPTY,
  RAMVALID,
  FIFORDEN
  );

 parameter  C_DOUT_RST_VAL            = "";
 parameter  C_DOUT_WIDTH              = 8;
 parameter  C_HAS_RST                 = 0;
 parameter  C_USE_DOUT_RST            = 0;
 parameter  C_USERVALID_LOW           = 0;
 parameter  C_USERUNDERFLOW_LOW       = 0;

 //Inputs
 input                     RD_CLK;
 input                     RD_RST;
 input                     RD_EN;
 input                     FIFOEMPTY;
 input  [C_DOUT_WIDTH-1:0] FIFODATA;

 //Outputs
 output [C_DOUT_WIDTH-1:0] USERDATA;
 output                    USERVALID;
 output                    USERUNDERFLOW;
 output                    USEREMPTY;
 output                    USERALMOSTEMPTY;
 output                    RAMVALID;
 output                    FIFORDEN;

 //Inputs
 wire                      RD_CLK;
 wire                      RD_RST;
 wire                      RD_EN;
 wire                      FIFOEMPTY;
 wire [C_DOUT_WIDTH-1:0]   FIFODATA;

 //Outputs
 reg [C_DOUT_WIDTH-1:0]    USERDATA;
 wire                      USERVALID;
 wire                      USERUNDERFLOW;
 wire                      USEREMPTY;
 wire                      USERALMOSTEMPTY;
 wire                      RAMVALID;
 wire                      FIFORDEN;

 //Internal signals
 wire                      preloadstage1;
 wire                      preloadstage2;
 reg                       ram_valid_i;
 reg                       read_data_valid_i;
 wire                      ram_regout_en;
 wire                      ram_rd_en;
 reg                       empty_i        = 1'b1;
 reg                       empty_q        = 1'b1;
 reg                       rd_en_q        = 1'b0;
 reg                       almost_empty_i = 1'b1;
 reg                       almost_empty_q = 1'b1;
 wire 		           rd_rst_i;


/*************************************************************************
* FUNCTIONS
*************************************************************************/

   /*************************************************************************
    * hexstr_conv
    *   Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
    ***********************************************************************/
    function [C_DOUT_WIDTH-1:0] hexstr_conv;
    input [(C_DOUT_WIDTH*8)-1:0] def_data;

    integer index,i,j;
    reg [3:0] bin;

    begin
      index = 0;
      hexstr_conv = 'b0;
      for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
      begin
        case (def_data[7:0])
          8'b00000000 :
          begin
            bin = 4'b0000;
            i = -1;
          end
          8'b00110000 : bin = 4'b0000;
          8'b00110001 : bin = 4'b0001;
          8'b00110010 : bin = 4'b0010;
          8'b00110011 : bin = 4'b0011;
          8'b00110100 : bin = 4'b0100;
          8'b00110101 : bin = 4'b0101;
          8'b00110110 : bin = 4'b0110;
          8'b00110111 : bin = 4'b0111;
          8'b00111000 : bin = 4'b1000;
          8'b00111001 : bin = 4'b1001;
          8'b01000001 : bin = 4'b1010;
          8'b01000010 : bin = 4'b1011;
          8'b01000011 : bin = 4'b1100;
          8'b01000100 : bin = 4'b1101;
          8'b01000101 : bin = 4'b1110;
          8'b01000110 : bin = 4'b1111;
          8'b01100001 : bin = 4'b1010;
          8'b01100010 : bin = 4'b1011;
          8'b01100011 : bin = 4'b1100;
          8'b01100100 : bin = 4'b1101;
          8'b01100101 : bin = 4'b1110;
          8'b01100110 : bin = 4'b1111;
          default :
          begin
            bin = 4'bx;
          end
        endcase
        for( j=0; j<4; j=j+1)
        begin
          if ((index*4)+j < C_DOUT_WIDTH)
          begin
            hexstr_conv[(index*4)+j] = bin[j];
          end
        end
        index = index + 1;
        def_data = def_data >> 8;
      end
    end
  endfunction

   
   //*************************************************************************
   //  Set power-on states for regs
   //*************************************************************************
   initial begin
      ram_valid_i       = 1'b0;
      read_data_valid_i = 1'b0;
      USERDATA          = hexstr_conv(C_DOUT_RST_VAL);
   end //initial

   //***************************************************************************
   //  connect up optional reset
   //***************************************************************************
   assign rd_rst_i = C_HAS_RST ? RD_RST : 0;


   //***************************************************************************
   //  preloadstage2 indicates that stage2 needs to be updated. This is true
   //  whenever read_data_valid is false, and RAM_valid is true.
   //***************************************************************************
   assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN);

   //***************************************************************************
   //  preloadstage1 indicates that stage1 needs to be updated. This is true
   //  whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
   //  false (indicating that Stage1 needs updating), or preloadstage2 is active
   //  (indicating that Stage2 is going to update, so Stage1, therefore, must
   //  also be updated to keep it valid.
   //***************************************************************************
   assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);

   //***************************************************************************
   // Calculate RAM_REGOUT_EN
   //  The output registers are controlled by the ram_regout_en signal.
   //  These registers should be updated either when the output in Stage2 is
   //  invalid (preloadstage2), OR when the user is reading, in which case the
   //  Stage2 value will go invalid unless it is replenished.
   //***************************************************************************
   assign ram_regout_en = preloadstage2;

   //***************************************************************************
   // Calculate RAM_RD_EN
   //   RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
   //  update the value in Stage1.
   //   One case when this happens is when preloadstage1=true, which indicates
   //  that the data in Stage1 or Stage2 is invalid, and needs to automatically
   //  be updated.
   //   The other case is when the user is reading from the FIFO, which 
   // guarantees that Stage1 or Stage2 will be invalid on the next clock 
   // cycle, unless it is replinished by data from the memory. So, as long 
   // as the RAM has data in it, a read of the RAM should occur.
   //***************************************************************************
   assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
   
   //***************************************************************************
   // Calculate RAMVALID_P0_OUT
   //   RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
   //
   //   If the RAM is being read from on this clock cycle (ram_rd_en=1), then
   //   RAMVALID_P0_OUT is certainly going to be true.
   //   If the RAM is not being read from, but the output registers are being
   //   updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
   //   therefore causing RAMVALID_P0_OUT to be false.
   //   Otherwise, RAMVALID_P0_OUT will remain unchanged.
   //***************************************************************************
   // PROCESS regout_valid
   always @ (posedge RD_CLK or posedge rd_rst_i) begin  
      if (rd_rst_i) begin 
	 // asynchronous reset (active high)
	 ram_valid_i     <= 1'b0;
      end else begin
	 if (ram_rd_en == 1'b1) begin
            ram_valid_i   <= 1'b1;
	 end else begin
            if (ram_regout_en == 1'b1)
	      ram_valid_i <= 1'b0;
            else
	      ram_valid_i <= ram_valid_i;
	 end
      end //rd_rst_i
   end //always
   
   //***************************************************************************
   // Calculate READ_DATA_VALID
   //  READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
   //  Stage2 has valid data whenever Stage1 had valid data and 
   //  ram_regout_en_i=1, such that the data in Stage1 is propogated 
   //  into Stage2.
   //***************************************************************************
   always @ (posedge RD_CLK or posedge rd_rst_i) begin
      if (rd_rst_i)
	read_data_valid_i <= 1'b0;
      else
	read_data_valid_i <= ram_valid_i | (read_data_valid_i & ~RD_EN);
   end //always
   
   
   //**************************************************************************
   // Calculate EMPTY
   //  Defined as the inverse of READ_DATA_VALID
   //
   // Description:
   //
   //  If read_data_valid_i indicates that the output is not valid,
   // and there is no valid data on the output of the ram to preload it
   // with, then we will report empty.
   //
   //  If there is no valid data on the output of the ram and we are
   // reading, then the FIFO will go empty.
   //
   //**************************************************************************
   always @ (posedge RD_CLK or posedge rd_rst_i) begin
      if (rd_rst_i) begin
	 // asynchronous reset (active high)
	 empty_i <= 1'b1;
	 empty_q <= 1'b1;
      end else begin
	 // rising clock edge
	 empty_i <= (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
	 empty_q <= empty_i;
      end
   end //always
   
   //Register RD_EN from user to calculate USERUNDERFLOW.
   always @ (posedge RD_CLK or posedge rd_rst_i) begin
      if (rd_rst_i) begin
	 // asynchronous reset (active high)
	 rd_en_q <= 1'b0;
      end else begin
	 // rising clock edge
	 rd_en_q <= RD_EN;
      end
   end //always
   
   
   //***************************************************************************
   // Calculate user_almost_empty
   //  user_almost_empty is defined such that, unless more words are written
   //  to the FIFO, the next read will cause the FIFO to go EMPTY.
   //
   //  In most cases, whenever the output registers are updated (due to a user
   // read or a preload condition), then user_almost_empty will update to
   // whatever RAM_EMPTY is.
   //
   //  The exception is when the output is valid, the user is not reading, and
   // Stage1 is not empty. In this condition, Stage1 will be preloaded from the
   // memory, so we need to make sure user_almost_empty deasserts properly under
   // this condition.
   //***************************************************************************
   always @ (posedge RD_CLK or posedge rd_rst_i)
     begin
	if (rd_rst_i)                // asynchronous reset (active high)
	  begin
	     almost_empty_i <= 1'b1;
	     almost_empty_q <= 1'b1;
	  end
	else // rising clock edge
	  begin
	     if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN))
	       begin
		  almost_empty_i <= FIFOEMPTY;
	       end
	     almost_empty_q   <= empty_i;
	  end
     end //always
   
   
   assign USEREMPTY       = empty_i;
   assign USERALMOSTEMPTY = almost_empty_i;
   assign FIFORDEN        = ram_rd_en;
   assign RAMVALID        = ram_valid_i;
   assign USERVALID       = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i;
   assign USERUNDERFLOW   = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
   
   always @ (posedge RD_CLK or posedge rd_rst_i)
     begin
	if (rd_rst_i && C_USE_DOUT_RST == 1)  //asynchronous reset (active high)
	  USERDATA   <= hexstr_conv(C_DOUT_RST_VAL);
	else  // rising clock edge
	  if (ram_regout_en)
            USERDATA <= FIFODATA;
     end //always
   
   
   
   
   
endmodule