/* -*- c++ -*- */ /* * Copyright 2008,2009 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include struct db_base *tx_dboard; // the tx daughterboard that's installed struct db_base *rx_dboard; // the rx daughterboard that's installed extern struct db_base db_basic_tx; extern struct db_base db_basic_rx; extern struct db_base db_lf_tx; extern struct db_base db_lf_rx; extern struct db_base db_wbxng_rx; extern struct db_base db_wbxng_tx; struct db_base *all_dboards[] = { &db_basic_tx, &db_basic_rx, &db_lf_tx, &db_lf_rx, &db_wbxng_rx, &db_wbxng_tx, 0 }; typedef enum { UDBE_OK, UDBE_NO_EEPROM, UDBE_INVALID_EEPROM } usrp_dbeeprom_status_t; static usrp_dbeeprom_status_t read_raw_dboard_eeprom (unsigned char *buf, int i2c_addr) { if (!eeprom_read (i2c_addr, 0, buf, DB_EEPROM_CLEN)) return UDBE_NO_EEPROM; if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE) return UDBE_INVALID_EEPROM; int sum = 0; unsigned int i; for (i = 0; i < DB_EEPROM_CLEN; i++) sum += buf[i]; if ((sum & 0xff) != 0) return UDBE_INVALID_EEPROM; return UDBE_OK; } /* * Return DBID, -1 or -2 */ int read_dboard_eeprom(int i2c_addr) { unsigned char buf[DB_EEPROM_CLEN]; usrp_dbeeprom_status_t s = read_raw_dboard_eeprom (buf, i2c_addr); //printf("\nread_raw_dboard_eeprom: %d\n", s); switch (s){ case UDBE_OK: return (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB]; case UDBE_NO_EEPROM: default: return -1; case UDBE_INVALID_EEPROM: return -2; } } static struct db_base * lookup_dbid(int dbid) { if (dbid < 0) return 0; int i; for (i = 0; all_dboards[i]; i++) if (all_dboards[i]->dbid == dbid) return all_dboards[i]; return 0; } static struct db_base * lookup_dboard(int i2c_addr, struct db_base *default_db, char *msg) { struct db_base *db; int dbid = read_dboard_eeprom(i2c_addr); // FIXME removing this printf has the system hang if there are two d'boards // installed. (I think the problem is in i2c_read/write or the way // I kludge the zero-byte write to set the read address in eeprom_read.) printf("%s dbid: 0x%x\n", msg, dbid); if (dbid < 0){ // there was some kind of problem. Treat as Basic Tx return default_db; } else if ((db = lookup_dbid(dbid)) == 0){ printf("No daugherboard code for dbid = 0x%x\n", dbid); return default_db; } return db; } void set_atr_regs(int bank, struct db_base *db) { uint32_t val[4]; int shift; int mask; int i; val[ATR_IDLE] = db->atr_rxval; val[ATR_RX] = db->atr_rxval; val[ATR_TX] = db->atr_txval; val[ATR_FULL] = db->atr_txval; if (bank == GPIO_TX_BANK){ mask = 0xffff0000; shift = 16; } else { mask = 0x0000ffff; shift = 0; } for (i = 0; i < 4; i++){ int t = (atr_regs->v[i] & ~mask) | ((val[i] << shift) & mask); //printf("atr_regs[%d] = 0x%x\n", i, t); atr_regs->v[i] = t; } } static void set_gpio_mode(int bank, struct db_base *db) { int i; hal_gpio_set_ddr(bank, db->output_enables, 0xffff); set_atr_regs(bank, db); for (i = 0; i < 16; i++){ if (db->used_pins & (1 << i)){ // set to either GPIO_SEL_SW or GPIO_SEL_ATR hal_gpio_set_sel(bank, i, (db->atr_mask & (1 << i)) ? 'a' : 's'); } } } static int __attribute__((unused)) determine_tx_mux_value(struct db_base *db) { if (db->i_and_q_swapped) return 0x01; else return 0x10; } static int determine_rx_mux_value(struct db_base *db) { #define ADC0 0x0 #define ADC1 0x1 #define ZERO 0x2 static int truth_table[8] = { /* swap_iq, uses */ /* 0, 0x0 */ (ZERO << 2) | ZERO, // N/A /* 0, 0x1 */ (ZERO << 2) | ADC0, /* 0, 0x2 */ (ZERO << 2) | ADC1, /* 0, 0x3 */ (ADC1 << 2) | ADC0, /* 1, 0x0 */ (ZERO << 2) | ZERO, // N/A /* 1, 0x1 */ (ZERO << 2) | ADC0, /* 1, 0x2 */ (ZERO << 2) | ADC1, /* 1, 0x3 */ (ADC0 << 2) | ADC1, }; int subdev0_uses; int subdev1_uses; int uses; if (db->is_quadrature) subdev0_uses = 0x3; // uses A/D 0 and 1 else subdev0_uses = 0x1; // uses A/D 0 only // FIXME second subdev on Basic Rx, LF RX // if subdev2 exists // subdev1_uses = 0x2; subdev1_uses = 0; uses = subdev0_uses; int swap_iq = db->i_and_q_swapped & 0x1; int index = (swap_iq << 2) | uses; return truth_table[index]; } void db_init(void) { int m; tx_dboard = lookup_dboard(I2C_ADDR_TX_A, &db_basic_tx, "Tx"); //printf("db_init: tx dbid = 0x%x\n", tx_dboard->dbid); set_gpio_mode(GPIO_TX_BANK, tx_dboard); tx_dboard->init(tx_dboard); m = determine_tx_mux_value(tx_dboard); dsp_tx_regs->tx_mux = m; //printf("tx_mux = 0x%x\n", m); tx_dboard->current_lo_offset = tx_dboard->default_lo_offset; rx_dboard = lookup_dboard(I2C_ADDR_RX_A, &db_basic_rx, "Rx"); //printf("db_init: rx dbid = 0x%x\n", rx_dboard->dbid); set_gpio_mode(GPIO_RX_BANK, rx_dboard); rx_dboard->init(rx_dboard); m = determine_rx_mux_value(rx_dboard); dsp_rx_regs->rx_mux = m; //printf("rx_mux = 0x%x\n", m); rx_dboard->current_lo_offset = rx_dboard->default_lo_offset; } /*! * Calculate the frequency to use for setting the digital down converter. * * \param[in] target_freq desired RF frequency (Hz) * \param[in] baseband_freq the RF frequency that corresponds to DC in the IF. * * \param[out] dxc_freq is the value for the ddc * \param[out] inverted is true if we're operating in an inverted Nyquist zone. */ void calc_dxc_freq(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t baseband_freq, u2_fxpt_freq_t *dxc_freq, bool *inverted) { u2_fxpt_freq_t fs = U2_DOUBLE_TO_FXPT_FREQ(100e6); // converter sample rate u2_fxpt_freq_t delta = target_freq - baseband_freq; #if 0 printf("calc_dxc_freq\n"); printf(" fs = "); print_fxpt_freq(fs); newline(); printf(" target = "); print_fxpt_freq(target_freq); newline(); printf(" baseband = "); print_fxpt_freq(baseband_freq); newline(); printf(" delta = "); print_fxpt_freq(delta); newline(); #endif if (delta >= 0){ while (delta > fs) delta -= fs; if (delta <= fs/2){ // non-inverted region *dxc_freq = -delta; *inverted = false; } else { // inverted region *dxc_freq = delta - fs; *inverted = true; } } else { while (delta < -fs) delta += fs; if (delta >= -fs/2){ // non-inverted region *dxc_freq = -delta; *inverted = false; } else { // inverted region *dxc_freq = delta + fs; *inverted = true; } } } bool db_set_lo_offset(struct db_base *db, u2_fxpt_freq_t offset) { db->current_lo_offset = offset; return true; } bool db_tune(struct db_base *db, u2_fxpt_freq_t target_freq, struct tune_result *result) { memset(result, 0, sizeof(*result)); bool inverted = false; u2_fxpt_freq_t dxc_freq; u2_fxpt_freq_t actual_dxc_freq; // Ask the d'board to tune as closely as it can to target_freq+lo_offset bool ok = db->set_freq(db, target_freq+db->current_lo_offset, &result->baseband_freq); // Calculate the DDC setting that will downconvert the baseband from the // daughterboard to our target frequency. calc_dxc_freq(target_freq, result->baseband_freq, &dxc_freq, &inverted); // If the spectrum is inverted, and the daughterboard doesn't do // quadrature downconversion, we can fix the inversion by flipping the // sign of the dxc_freq... (This only happens using the basic_rx board) if (db->spectrum_inverted) inverted = !inverted; if (inverted && !db->is_quadrature){ dxc_freq = -dxc_freq; inverted = !inverted; } if (db->is_tx){ dxc_freq = -dxc_freq; // down conversion versus up conversion ok &= db_set_duc_freq(dxc_freq, &actual_dxc_freq); } else { ok &= db_set_ddc_freq(dxc_freq, &actual_dxc_freq); } result->dxc_freq = dxc_freq; result->residual_freq = dxc_freq - actual_dxc_freq; result->inverted = inverted; return ok; } static int32_t compute_freq_control_word(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t *actual_freq) { // If we were using floating point, we'd calculate // master = 100e6; // v = (int) rint(target_freq / master_freq) * pow(2.0, 32.0); //printf("compute_freq_control_word\n"); //printf(" target_freq = "); print_fxpt_freq(target_freq); newline(); int32_t master_freq = 100000000; // 100M int32_t v = ((target_freq << 12)) / master_freq; //printf(" fcw = %d\n", v); *actual_freq = (v * (int64_t) master_freq) >> 12; //printf(" actual = "); print_fxpt_freq(*actual_freq); newline(); return v; } bool db_set_ddc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) { int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); dsp_rx_regs->freq = v; return true; } bool db_set_duc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) { int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); dsp_tx_regs->freq = v; return true; } bool db_set_gain(struct db_base *db, u2_fxpt_gain_t gain) { return db->set_gain(db, gain); }