/* -*- c++ -*- */
/*
* Copyright 2008,2009 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
struct db_base *tx_dboard; // the tx daughterboard that's installed
struct db_base *rx_dboard; // the rx daughterboard that's installed
extern struct db_base db_basic_tx;
extern struct db_base db_basic_rx;
extern struct db_base db_lf_tx;
extern struct db_base db_lf_rx;
extern struct db_base db_rfx_400_tx;
extern struct db_base db_rfx_400_rx;
extern struct db_base db_rfx_900_tx;
extern struct db_base db_rfx_900_rx;
extern struct db_base db_rfx_1200_tx;
extern struct db_base db_rfx_1200_rx;
extern struct db_base db_rfx_1800_tx;
extern struct db_base db_rfx_1800_rx;
extern struct db_base db_rfx_2400_tx;
extern struct db_base db_rfx_2400_rx;
extern struct db_base db_wbxng_rx;
extern struct db_base db_wbxng_tx;
extern struct db_base db_tvrx1;
extern struct db_base db_tvrx2;
extern struct db_base db_tvrx3;
extern struct db_base db_dbsrx;
struct db_base *all_dboards[] = {
&db_basic_tx,
&db_basic_rx,
&db_lf_tx,
&db_lf_rx,
&db_rfx_400_tx,
&db_rfx_400_rx,
&db_rfx_900_tx,
&db_rfx_900_rx,
&db_rfx_1200_tx,
&db_rfx_1200_rx,
&db_rfx_1800_tx,
&db_rfx_1800_rx,
&db_rfx_2400_tx,
&db_rfx_2400_rx,
&db_tvrx1,
#if 0
&db_tvrx2,
#endif
&db_tvrx3,
&db_dbsrx,
0
};
typedef enum { UDBE_OK, UDBE_NO_EEPROM, UDBE_INVALID_EEPROM } usrp_dbeeprom_status_t;
static usrp_dbeeprom_status_t
read_raw_dboard_eeprom (unsigned char *buf, int i2c_addr)
{
if (!eeprom_read (i2c_addr, 0, buf, DB_EEPROM_CLEN))
return UDBE_NO_EEPROM;
if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE)
return UDBE_INVALID_EEPROM;
int sum = 0;
unsigned int i;
for (i = 0; i < DB_EEPROM_CLEN; i++)
sum += buf[i];
if ((sum & 0xff) != 0)
return UDBE_INVALID_EEPROM;
return UDBE_OK;
}
/*
* Return DBID, -1 or -2
*/
int
read_dboard_eeprom(int i2c_addr)
{
unsigned char buf[DB_EEPROM_CLEN];
usrp_dbeeprom_status_t s = read_raw_dboard_eeprom (buf, i2c_addr);
//printf("\nread_raw_dboard_eeprom: %d\n", s);
switch (s){
case UDBE_OK:
return (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB];
case UDBE_NO_EEPROM:
default:
return -1;
case UDBE_INVALID_EEPROM:
return -2;
}
}
static struct db_base *
lookup_dbid(int dbid)
{
if (dbid < 0)
return 0;
int i;
for (i = 0; all_dboards[i]; i++)
if (all_dboards[i]->dbid == dbid)
return all_dboards[i];
return 0;
}
static struct db_base *
lookup_dboard(int i2c_addr, struct db_base *default_db, char *msg)
{
struct db_base *db;
int dbid = read_dboard_eeprom(i2c_addr);
// FIXME removing this printf has the system hang if there are two d'boards
// installed. (I think the problem is in i2c_read/write or the way
// I kludge the zero-byte write to set the read address in eeprom_read.)
printf("%s dbid: 0x%x\n", msg, dbid);
if (dbid < 0){ // there was some kind of problem. Treat as Basic Tx
return default_db;
}
else if ((db = lookup_dbid(dbid)) == 0){
printf("No daugherboard code for dbid = 0x%x\n", dbid);
return default_db;
}
return db;
}
void
set_atr_regs(int bank, struct db_base *db)
{
uint32_t val[4];
int shift;
int mask;
int i;
val[ATR_IDLE] = db->atr_rxval;
val[ATR_RX] = db->atr_rxval;
val[ATR_TX] = db->atr_txval;
val[ATR_FULL] = db->atr_txval;
if (bank == GPIO_TX_BANK){
mask = 0xffff0000;
shift = 16;
}
else {
mask = 0x0000ffff;
shift = 0;
}
for (i = 0; i < 4; i++){
int t = (atr_regs->v[i] & ~mask) | ((val[i] << shift) & mask);
//printf("atr_regs[%d] = 0x%x\n", i, t);
atr_regs->v[i] = t;
}
}
static void
set_gpio_mode(int bank, struct db_base *db)
{
int i;
hal_gpio_set_ddr(bank, db->output_enables, 0xffff);
set_atr_regs(bank, db);
for (i = 0; i < 16; i++){
if (db->used_pins & (1 << i)){
// set to either GPIO_SEL_SW or GPIO_SEL_ATR
hal_gpio_set_sel(bank, i, (db->atr_mask & (1 << i)) ? 'a' : 's');
}
}
}
static int __attribute__((unused))
determine_tx_mux_value(struct db_base *db)
{
if (db->i_and_q_swapped)
return 0x01;
else
return 0x10;
}
static int
determine_rx_mux_value(struct db_base *db)
{
#define ADC0 0x0
#define ADC1 0x1
#define ZERO 0x2
static int truth_table[8] = {
/* swap_iq, uses */
/* 0, 0x0 */ (ZERO << 2) | ZERO, // N/A
/* 0, 0x1 */ (ZERO << 2) | ADC0,
/* 0, 0x2 */ (ZERO << 2) | ADC1,
/* 0, 0x3 */ (ADC1 << 2) | ADC0,
/* 1, 0x0 */ (ZERO << 2) | ZERO, // N/A
/* 1, 0x1 */ (ZERO << 2) | ADC0,
/* 1, 0x2 */ (ZERO << 2) | ADC1,
/* 1, 0x3 */ (ADC0 << 2) | ADC1,
};
int subdev0_uses;
int subdev1_uses;
int uses;
if (db->is_quadrature)
subdev0_uses = 0x3; // uses A/D 0 and 1
else
subdev0_uses = 0x1; // uses A/D 0 only
// FIXME second subdev on Basic Rx, LF RX
// if subdev2 exists
// subdev1_uses = 0x2;
subdev1_uses = 0;
uses = subdev0_uses;
int swap_iq = db->i_and_q_swapped & 0x1;
int index = (swap_iq << 2) | uses;
return truth_table[index];
}
void
db_init(void)
{
int m;
tx_dboard = lookup_dboard(I2C_ADDR_TX_A, &db_basic_tx, "Tx");
//printf("db_init: tx dbid = 0x%x\n", tx_dboard->dbid);
set_gpio_mode(GPIO_TX_BANK, tx_dboard);
tx_dboard->init(tx_dboard);
m = determine_tx_mux_value(tx_dboard);
dsp_tx_regs->tx_mux = m;
//printf("tx_mux = 0x%x\n", m);
tx_dboard->current_lo_offset = tx_dboard->default_lo_offset;
rx_dboard = lookup_dboard(I2C_ADDR_RX_A, &db_basic_rx, "Rx");
//printf("db_init: rx dbid = 0x%x\n", rx_dboard->dbid);
set_gpio_mode(GPIO_RX_BANK, rx_dboard);
rx_dboard->init(rx_dboard);
m = determine_rx_mux_value(rx_dboard);
dsp_rx_regs->rx_mux = m;
//printf("rx_mux = 0x%x\n", m);
rx_dboard->current_lo_offset = rx_dboard->default_lo_offset;
}
/*!
* Calculate the frequency to use for setting the digital down converter.
*
* \param[in] target_freq desired RF frequency (Hz)
* \param[in] baseband_freq the RF frequency that corresponds to DC in the IF.
*
* \param[out] dxc_freq is the value for the ddc
* \param[out] inverted is true if we're operating in an inverted Nyquist zone.
*/
void
calc_dxc_freq(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t baseband_freq,
u2_fxpt_freq_t *dxc_freq, bool *inverted)
{
u2_fxpt_freq_t fs = U2_DOUBLE_TO_FXPT_FREQ(100e6); // converter sample rate
u2_fxpt_freq_t delta = target_freq - baseband_freq;
#if 0
printf("calc_dxc_freq\n");
printf(" fs = "); print_fxpt_freq(fs); newline();
printf(" target = "); print_fxpt_freq(target_freq); newline();
printf(" baseband = "); print_fxpt_freq(baseband_freq); newline();
printf(" delta = "); print_fxpt_freq(delta); newline();
#endif
if (delta >= 0){
while (delta > fs)
delta -= fs;
if (delta <= fs/2){ // non-inverted region
*dxc_freq = -delta;
*inverted = false;
}
else { // inverted region
*dxc_freq = delta - fs;
*inverted = true;
}
}
else {
while (delta < -fs)
delta += fs;
if (delta >= -fs/2){ // non-inverted region
*dxc_freq = -delta;
*inverted = false;
}
else { // inverted region
*dxc_freq = delta + fs;
*inverted = true;
}
}
}
bool
db_set_lo_offset(struct db_base *db, u2_fxpt_freq_t offset)
{
db->current_lo_offset = offset;
return true;
}
bool
db_tune(struct db_base *db, u2_fxpt_freq_t target_freq, struct tune_result *result)
{
memset(result, 0, sizeof(*result));
bool inverted = false;
u2_fxpt_freq_t dxc_freq;
u2_fxpt_freq_t actual_dxc_freq;
// Ask the d'board to tune as closely as it can to target_freq+lo_offset
bool ok = db->set_freq(db, target_freq+db->current_lo_offset, &result->baseband_freq);
// Calculate the DDC setting that will downconvert the baseband from the
// daughterboard to our target frequency.
calc_dxc_freq(target_freq, result->baseband_freq, &dxc_freq, &inverted);
// If the spectrum is inverted, and the daughterboard doesn't do
// quadrature downconversion, we can fix the inversion by flipping the
// sign of the dxc_freq... (This only happens using the basic_rx board)
if (db->spectrum_inverted)
inverted = !inverted;
if (inverted && !db->is_quadrature){
dxc_freq = -dxc_freq;
inverted = !inverted;
}
if (db->is_tx){
dxc_freq = -dxc_freq; // down conversion versus up conversion
ok &= db_set_duc_freq(dxc_freq, &actual_dxc_freq);
}
else {
ok &= db_set_ddc_freq(dxc_freq, &actual_dxc_freq);
}
result->dxc_freq = dxc_freq;
result->residual_freq = dxc_freq - actual_dxc_freq;
result->inverted = inverted;
return ok;
}
static int32_t
compute_freq_control_word(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t *actual_freq)
{
// If we were using floating point, we'd calculate
// master = 100e6;
// v = (int) rint(target_freq / master_freq) * pow(2.0, 32.0);
//printf("compute_freq_control_word\n");
//printf(" target_freq = "); print_fxpt_freq(target_freq); newline();
int32_t master_freq = 100000000; // 100M
int32_t v = ((target_freq << 12)) / master_freq;
//printf(" fcw = %d\n", v);
*actual_freq = (v * (int64_t) master_freq) >> 12;
//printf(" actual = "); print_fxpt_freq(*actual_freq); newline();
return v;
}
bool
db_set_ddc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq)
{
int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq);
dsp_rx_regs->freq = v;
return true;
}
bool
db_set_duc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq)
{
int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq);
dsp_tx_regs->freq = v;
return true;
}
bool
db_set_gain(struct db_base *db, u2_fxpt_gain_t gain)
{
return db->set_gain(db, gain);
}
bool
db_set_antenna(struct db_base *db, int ant)
{
if (db->set_antenna == 0) return false;
return db->set_antenna(db, ant);
}