/* -*- c++ -*- */ /* * Copyright 2008 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include struct db_base *tx_dboard; // the tx daughterboard that's installed struct db_base *rx_dboard; // the rx daughterboard that's installed extern struct db_base db_basic_tx; extern struct db_base db_basic_rx; extern struct db_base db_lf_tx; extern struct db_base db_lf_rx; extern struct db_base db_rfx_400_tx; extern struct db_base db_rfx_400_rx; extern struct db_base db_tvrx1; extern struct db_base db_tvrx2; extern struct db_base db_tvrx3; struct db_base *all_dboards[] = { &db_basic_tx, &db_basic_rx, &db_lf_tx, &db_lf_rx, &db_rfx_400_tx, &db_rfx_400_rx, &db_tvrx1, &db_tvrx2, &db_tvrx3, 0 }; typedef enum { UDBE_OK, UDBE_NO_EEPROM, UDBE_INVALID_EEPROM } usrp_dbeeprom_status_t; static usrp_dbeeprom_status_t read_raw_dboard_eeprom (unsigned char *buf, int i2c_addr) { if (!eeprom_read (i2c_addr, 0, buf, DB_EEPROM_CLEN)) return UDBE_NO_EEPROM; if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE) return UDBE_INVALID_EEPROM; int sum = 0; unsigned int i; for (i = 0; i < DB_EEPROM_CLEN; i++) sum += buf[i]; if ((sum & 0xff) != 0) return UDBE_INVALID_EEPROM; return UDBE_OK; } /* * Return DBID, -1 or -2 */ static int read_dboard_eeprom(int i2c_addr) { unsigned char buf[DB_EEPROM_CLEN]; usrp_dbeeprom_status_t s = read_raw_dboard_eeprom (buf, i2c_addr); //printf("\nread_raw_dboard_eeprom: %d\n", s); switch (s){ case UDBE_OK: return (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB]; case UDBE_NO_EEPROM: default: return -1; case UDBE_INVALID_EEPROM: return -2; } } static struct db_base * lookup_dbid(int dbid) { if (dbid < 0) return 0; int i; for (i = 0; all_dboards[i]; i++) if (all_dboards[i]->dbid == dbid) return all_dboards[i]; return 0; } static struct db_base * lookup_dboard(int i2c_addr, struct db_base *default_db, char *msg) { struct db_base *db; int dbid = read_dboard_eeprom(i2c_addr); printf("%s dbid: 0x%x\n", msg, dbid); if (dbid < 0){ // there was some kind of problem. Treat as Basic Tx return default_db; } else if ((db = lookup_dbid(dbid)) == 0){ return default_db; printf("No daugherboard code for dbid = 0x%x\n", dbid); } return db; } static void set_atr_regs(int bank, struct db_base *db) { uint32_t val[4]; int shift; int mask; int i; val[ATR_IDLE] = db->atr_rxval; val[ATR_RX] = db->atr_rxval; val[ATR_TX] = db->atr_txval; val[ATR_FULL] = db->atr_txval; if (bank == GPIO_TX_BANK){ mask = 0xffff0000; shift = 16; } else { mask = 0x0000ffff; shift = 0; } for (i = 0; i < 4; i++){ int t = (atr_regs->v[i] & ~mask) | ((val[i] << shift) & mask); //printf("atr_regs[%d] = 0x%x\n", i, t); atr_regs->v[i] = t; } } static void set_gpio_mode(int bank, struct db_base *db) { int i; hal_gpio_set_ddr(bank, db->output_enables, 0xffff); set_atr_regs(bank, db); for (i = 0; i < 16; i++){ if (db->used_pins & (1 << i)){ // set to either GPIO_SEL_SW or GPIO_SEL_ATR hal_gpio_set_sel(bank, i, (db->atr_mask & (1 << i)) ? 'a' : 's'); } } } void db_init(void) { tx_dboard = lookup_dboard(I2C_ADDR_TX_A, &db_basic_tx, "Tx"); //printf("db_init: tx dbid = 0x%x\n", tx_dboard->dbid); set_gpio_mode(GPIO_TX_BANK, tx_dboard); tx_dboard->init(tx_dboard); rx_dboard = lookup_dboard(I2C_ADDR_RX_A, &db_basic_rx, "Rx"); //printf("db_init: rx dbid = 0x%x\n", rx_dboard->dbid); set_gpio_mode(GPIO_RX_BANK, rx_dboard); rx_dboard->init(rx_dboard); } /*! * Calculate the frequency to use for setting the digital down converter. * * \param[in] target_freq desired RF frequency (Hz) * \param[in] baseband_freq the RF frequency that corresponds to DC in the IF. * * \param[out] dxc_freq is the value for the ddc * \param[out] inverted is true if we're operating in an inverted Nyquist zone. */ void calc_dxc_freq(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t baseband_freq, u2_fxpt_freq_t *dxc_freq, bool *inverted) { u2_fxpt_freq_t fs = U2_DOUBLE_TO_FXPT_FREQ(100e6); // converter sample rate u2_fxpt_freq_t delta = target_freq - baseband_freq; printf("calc_dxc_freq\n"); printf(" fs = "); print_fxpt_freq(fs); newline(); printf(" target = "); print_fxpt_freq(target_freq); newline(); printf(" baseband = "); print_fxpt_freq(baseband_freq); newline(); printf(" delta = "); print_fxpt_freq(delta); newline(); #if 0 printf("--- printed as uint64_t ---\n"); printf(" fs = "); print_uint64(fs); newline(); printf(" target = "); print_uint64(target_freq); newline(); printf(" baseband = "); print_uint64(baseband_freq); newline(); printf(" delta = "); print_uint64(delta); newline(); #endif if (delta >= 0){ while (delta > fs) delta -= fs; if (delta <= fs/2){ // non-inverted region *dxc_freq = -delta; *inverted = false; } else { // inverted region *dxc_freq = delta - fs; *inverted = true; } } else { while (delta < -fs){ delta += fs; if (delta >= -fs/2){ // non-inverted region *dxc_freq = -delta; *inverted = false; } else { // inverted region *dxc_freq = delta + fs; *inverted = true; } } } } bool db_tune(struct db_base *db, u2_fxpt_freq_t target_freq, struct tune_result *result) { memset(result, 0, sizeof(*result)); bool inverted = false; u2_fxpt_freq_t dxc_freq; u2_fxpt_freq_t actual_dxc_freq; // Ask the d'board to tune as closely as it can to target_freq bool ok = db->set_freq(db, target_freq, &result->baseband_freq); // Calculate the DDC setting that will downconvert the baseband from the // daughterboard to our target frequency. calc_dxc_freq(target_freq, result->baseband_freq, &dxc_freq, &inverted); // If the spectrum is inverted, and the daughterboard doesn't do // quadrature downconversion, we can fix the inversion by flipping the // sign of the dxc_freq... (This only happens using the basic_rx board) if (db->spectrum_inverted) inverted = !inverted; if (inverted && !db->is_quadrature){ dxc_freq = -dxc_freq; inverted = !inverted; } if (db->is_tx){ dxc_freq = -dxc_freq; // down conversion versus up conversion ok &= db_set_duc_freq(dxc_freq, &actual_dxc_freq); } else { ok &= db_set_ddc_freq(dxc_freq, &actual_dxc_freq); } result->dxc_freq = dxc_freq; result->residual_freq = dxc_freq - actual_dxc_freq; result->inverted = inverted; return ok; } static int32_t compute_freq_control_word(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t *actual_freq) { // If we were using floating point, we'd calculate // master = 100e6; // v = (int) rint(target_freq / master_freq) * pow(2.0, 32.0); printf("compute_freq_control_word\n"); printf(" target_freq = "); print_fxpt_freq(target_freq); newline(); int32_t master_freq = 100000000; // 100M int32_t v = ((target_freq << 12)) / master_freq; printf(" fcw = %d\n", v); *actual_freq = (v * (int64_t) master_freq) >> 12; printf(" actual = "); print_fxpt_freq(*actual_freq); newline(); return v; } bool db_set_ddc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) { int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); dsp_rx_regs->freq = v; return true; } bool db_set_duc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) { int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); dsp_tx_regs->freq = v; return true; } bool db_set_gain(struct db_base *db, u2_fxpt_gain_t gain) { return db->set_gain(db, gain); }