/* * Copyright 2010 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "adf4350.h" #include "adf4350_regs.h" #include "db_wbxng.h" #include #include #include #include #define INPUT_REF_FREQ U2_DOUBLE_TO_FXPT_FREQ(50e6) #define INPUT_REF_FREQ_2X (2*INPUT_REF_FREQ) /* input ref freq with doubler turned on */ #define MAX_RF_DIV UINT8_C(16) /* max rf divider, divides rf output */ #define MIN_VCO_FREQ U2_DOUBLE_TO_FXPT_FREQ(2.2e9) /* minimum vco freq */ #define MAX_VCO_FREQ U2_DOUBLE_TO_FXPT_FREQ(4.4e9) /* minimum vco freq */ #define MAX_FREQ MAX_VCO_FREQ /* upper bound freq (rf div = 1) */ #define MIN_FREQ U2_DOUBLE_TO_FXPT_FREQ(68.75e6) /* lower bound freq (rf div = 16) */ u2_fxpt_freq_t adf4350_get_max_freq(void){ return MAX_FREQ; } u2_fxpt_freq_t adf4350_get_min_freq(void){ return MIN_FREQ; } void adf4350_init(struct db_base *dbb){ struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb; /* Initialize the pin levels. */ hal_gpio_write( db->base.is_tx ? GPIO_TX_BANK : GPIO_RX_BANK, PLL_CE, PLL_CE ); adf4350_enable(true, dbb); /* Initialize the registers. */ adf4350_load_register(5, dbb); adf4350_load_register(4, dbb); adf4350_load_register(3, dbb); adf4350_load_register(2, dbb); adf4350_load_register(1, dbb); adf4350_load_register(0, dbb); } /* void adf4350_update(void){ // mirror the lock detect pin to the led debug if (adf4350_get_locked()){ io_set_pin(led_pin); }else{ io_clear_pin(led_pin); } } */ bool adf4350_get_locked(struct db_base *dbb){ struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb; int pins; pins = hal_gpio_read( db->base.is_tx ? GPIO_TX_BANK : GPIO_RX_BANK ); if(pins & PLL_LOCK_DETECT) return true; return false; } void adf4350_enable(bool enable, struct db_base *dbb){ struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb; if (enable){ /* chip enable */ hal_gpio_write( db->base.is_tx ? GPIO_TX_BANK : GPIO_RX_BANK, PLL_PDBRF, PLL_PDBRF ); }else{ hal_gpio_write( db->base.is_tx ? GPIO_TX_BANK : GPIO_RX_BANK, 0, PLL_PDBRF ); } } void adf4350_write(uint8_t addr, uint32_t data, struct db_base *dbb){ struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb; //printf("SPI write ADDR 0x%x, WORD 0x%x\n", (int) (addr), (int) (data)); data |= addr; spi_transact(SPI_TXONLY,db->common.spi_mask,data,32,SPIF_PUSH_FALL); //spi_read_write(clk_pin, data_pin, ld_pin, &data, 32); /* pulse latch */ //io_set_pin(le_pin); //io_clear_pin(le_pin); } bool adf4350_set_freq(u2_fxpt_freq_t freq, struct db_base *dbb){ struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb; /* Set the frequency by setting int, frac, mod, r, div */ if (freq > MAX_FREQ || freq < MIN_FREQ) return false; /* Set the prescaler and the min N based on the freq. */ uint16_t min_int_div; if (freq > U2_DOUBLE_TO_FXPT_FREQ(3e9) ){ db->common.adf4350_regs_prescaler = (uint8_t) 1; min_int_div = UINT16_C(75); }else{ db->common.adf4350_regs_prescaler = (uint8_t) 0; min_int_div = UINT16_C(23); } /* Ramp up the RF divider until the VCO is within range. */ db->common.adf4350_regs_divider_select = (uint8_t) 0; while (freq < MIN_VCO_FREQ){ freq <<= 1; //double the freq db->common.adf4350_regs_divider_select++; //double the divider } /* Ramp up the R divider until the N divider is at least the minimum. */ db->common.adf4350_regs_10_bit_r_counter = (uint16_t) (DIV_ROUND((INPUT_REF_FREQ*min_int_div), freq)); //printf("Initial R setting: %u, MIN_INT: %u\n", db->common.adf4350_regs_10_bit_r_counter, min_int_div); if (db->common.adf4350_regs_10_bit_r_counter * U2_DOUBLE_TO_FXPT_FREQ(32e6) < INPUT_REF_FREQ){ db->common.adf4350_regs_10_bit_r_counter = (uint16_t) (DIV_ROUND(INPUT_REF_FREQ, U2_DOUBLE_TO_FXPT_FREQ(32e6))); //printf("Updating R setting: %u, MIN_INT: %u\n", db->common.adf4350_regs_10_bit_r_counter, min_int_div); } db->common.adf4350_regs_10_bit_r_counter--; //db->common.adf4350_regs_10_bit_r_counter=1; do{ db->common.adf4350_regs_10_bit_r_counter++; /* throw out some fractional bits in freq to avoid overflow */ u2_fxpt_freq_t some_frac_freq = (U2_DOUBLE_TO_FXPT_FREQ(1.0)/db->common.adf4350_regs_mod); uint64_t n_mod = DIV_ROUND(freq, some_frac_freq); n_mod *= db->common.adf4350_regs_10_bit_r_counter; n_mod *= db->common.adf4350_regs_mod; n_mod = DIV_ROUND(n_mod, DIV_ROUND(INPUT_REF_FREQ, some_frac_freq)); /* calculate int and frac: regs_mod is a power of 2, this will optimize to a bitwise operation */ db->common.adf4350_regs_int = (uint16_t) (n_mod/db->common.adf4350_regs_mod); db->common.adf4350_regs_frac = (uint16_t) (n_mod%db->common.adf4350_regs_mod); //printf("Int %u < Min %u\n", db->common.adf4350_regs_int, min_int_div); }while(db->common.adf4350_regs_int < min_int_div); /* calculate the band select so PFD is under 125 KHz */ db->common.adf4350_regs_8_bit_band_select_clock_divider_value = \ (uint8_t) (INPUT_REF_FREQ/(U2_DOUBLE_TO_FXPT_FREQ(30e3)*db->common.adf4350_regs_10_bit_r_counter)) + 1; /* printf( "VCO %u KHz, Int %u, Frac %u, Mod %u, R %u, Div %u, BandSelect %u\n", (uint32_t) ((freq >> U2_FPF_RP)/1000), (uint32_t) db->common.adf4350_regs_int, (uint32_t) db->common.adf4350_regs_frac, (uint32_t) db->common.adf4350_regs_mod, (uint32_t) db->common.adf4350_regs_10_bit_r_counter, (uint32_t) (1 << db->common.adf4350_regs_divider_select), (uint32_t) db->common.adf4350_regs_8_bit_band_select_clock_divider_value ); */ /* load involved registers */ adf4350_load_register(5, dbb); adf4350_load_register(3, dbb); adf4350_load_register(1, dbb); adf4350_load_register(2, dbb); adf4350_load_register(4, dbb); adf4350_load_register(0, dbb); /* register 0 must be last */ return adf4350_get_locked(dbb); } u2_fxpt_freq_t adf4350_get_freq(struct db_base *dbb){ struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb; /* Calculate the freq from int, frac, mod, ref, r, div: * freq = (int + frac/mod) * (ref/r) * Keep precision by doing multiplies first: * freq = (((((((int)*mod) + frac)*ref)/mod)/r)/div) */ uint64_t temp; temp = (uint64_t) db->common.adf4350_regs_int; temp *= (uint64_t) db->common.adf4350_regs_mod; temp += (uint64_t) db->common.adf4350_regs_frac; temp *= (uint64_t) (INPUT_REF_FREQ >> U2_FPF_RP); temp /= (uint64_t) db->common.adf4350_regs_mod; temp /= (uint64_t) db->common.adf4350_regs_10_bit_r_counter; temp /= (uint64_t) (1 << db->common.adf4350_regs_divider_select); /* Shift 1Hz Radix Point for u2_fxpt_freq_t */ temp = temp << U2_FPF_RP; /* printf( "Got Freq %u KHz, Int %u, Frac %u, Mod %u, R %u, Div %u\n", (uint32_t) ((temp >> U2_FPF_RP)/1000), (uint32_t) db->common.adf4350_regs_int, (uint32_t) db->common.adf4350_regs_frac, (uint32_t) db->common.adf4350_regs_mod, (uint32_t) db->common.adf4350_regs_10_bit_r_counter, (uint32_t) (1 << db->common.adf4350_regs_divider_select) ); */ return (u2_fxpt_freq_t) (temp); }