/*
* Copyright 2010 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "adf4350.h"
#include "adf4350_regs.h"
#include "db_wbxng.h"
#include
#include
#include
#include
#define INPUT_REF_FREQ U2_DOUBLE_TO_FXPT_FREQ(50e6)
#define INPUT_REF_FREQ_2X (2*INPUT_REF_FREQ) /* input ref freq with doubler turned on */
#define MAX_RF_DIV UINT8_C(16) /* max rf divider, divides rf output */
#define MIN_VCO_FREQ U2_DOUBLE_TO_FXPT_FREQ(2.2e9) /* minimum vco freq */
#define MAX_VCO_FREQ U2_DOUBLE_TO_FXPT_FREQ(4.4e9) /* minimum vco freq */
#define MAX_FREQ MAX_VCO_FREQ /* upper bound freq (rf div = 1) */
#define MIN_FREQ U2_DOUBLE_TO_FXPT_FREQ(68.75e6) /* lower bound freq (rf div = 16) */
u2_fxpt_freq_t adf4350_get_max_freq(void){
return MAX_FREQ;
}
u2_fxpt_freq_t adf4350_get_min_freq(void){
return MIN_FREQ;
}
void adf4350_init(struct db_base *dbb){
struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb;
/* Initialize the pin levels. */
hal_gpio_write( db->base.is_tx ? GPIO_TX_BANK : GPIO_RX_BANK, PLL_CE, PLL_CE );
adf4350_enable(true, dbb);
/* Initialize the registers. */
adf4350_load_register(5, dbb);
adf4350_load_register(4, dbb);
adf4350_load_register(3, dbb);
adf4350_load_register(2, dbb);
adf4350_load_register(1, dbb);
adf4350_load_register(0, dbb);
}
/*
void adf4350_update(void){
// mirror the lock detect pin to the led debug
if (adf4350_get_locked()){
io_set_pin(led_pin);
}else{
io_clear_pin(led_pin);
}
}
*/
bool adf4350_get_locked(struct db_base *dbb){
struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb;
int pins;
pins = hal_gpio_read( db->base.is_tx ? GPIO_TX_BANK : GPIO_RX_BANK );
if(pins & PLL_LOCK_DETECT)
return true;
return false;
}
void adf4350_enable(bool enable, struct db_base *dbb){
struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb;
if (enable){ /* chip enable */
hal_gpio_write( db->base.is_tx ? GPIO_TX_BANK : GPIO_RX_BANK, PLL_PDBRF, PLL_PDBRF );
}else{
hal_gpio_write( db->base.is_tx ? GPIO_TX_BANK : GPIO_RX_BANK, 0, PLL_PDBRF );
}
}
void adf4350_write(uint8_t addr, uint32_t data, struct db_base *dbb){
struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb;
//printf("SPI write ADDR 0x%x, WORD 0x%x\n", (int) (addr), (int) (data));
data |= addr;
spi_transact(SPI_TXONLY,db->common.spi_mask,data,32,SPIF_PUSH_FALL);
//spi_read_write(clk_pin, data_pin, ld_pin, &data, 32);
/* pulse latch */
//io_set_pin(le_pin);
//io_clear_pin(le_pin);
}
bool adf4350_set_freq(u2_fxpt_freq_t freq, struct db_base *dbb){
struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb;
/* Set the frequency by setting int, frac, mod, r, div */
if (freq > MAX_FREQ || freq < MIN_FREQ) return false;
/* Set the prescaler and the min N based on the freq. */
uint16_t min_int_div;
if (freq > U2_DOUBLE_TO_FXPT_FREQ(3e9) ){
db->common.adf4350_regs_prescaler = (uint8_t) 1;
min_int_div = UINT16_C(75);
}else{
db->common.adf4350_regs_prescaler = (uint8_t) 0;
min_int_div = UINT16_C(23);
}
/* Ramp up the RF divider until the VCO is within range. */
db->common.adf4350_regs_divider_select = (uint8_t) 0;
while (freq < MIN_VCO_FREQ){
freq <<= 1; //double the freq
db->common.adf4350_regs_divider_select++; //double the divider
}
/* Ramp up the R divider until the N divider is at least the minimum. */
db->common.adf4350_regs_10_bit_r_counter = (uint16_t) (DIV_ROUND((INPUT_REF_FREQ*min_int_div), freq));
//printf("Initial R setting: %u, MIN_INT: %u\n", db->common.adf4350_regs_10_bit_r_counter, min_int_div);
if (db->common.adf4350_regs_10_bit_r_counter * U2_DOUBLE_TO_FXPT_FREQ(32e6) < INPUT_REF_FREQ){
db->common.adf4350_regs_10_bit_r_counter = (uint16_t) (DIV_ROUND(INPUT_REF_FREQ, U2_DOUBLE_TO_FXPT_FREQ(32e6)));
//printf("Updating R setting: %u, MIN_INT: %u\n", db->common.adf4350_regs_10_bit_r_counter, min_int_div);
}
db->common.adf4350_regs_10_bit_r_counter--;
//db->common.adf4350_regs_10_bit_r_counter=1;
do{
db->common.adf4350_regs_10_bit_r_counter++;
/* throw out some fractional bits in freq to avoid overflow */
u2_fxpt_freq_t some_frac_freq = (U2_DOUBLE_TO_FXPT_FREQ(1.0)/db->common.adf4350_regs_mod);
uint64_t n_mod = DIV_ROUND(freq, some_frac_freq);
n_mod *= db->common.adf4350_regs_10_bit_r_counter;
n_mod *= db->common.adf4350_regs_mod;
n_mod = DIV_ROUND(n_mod, DIV_ROUND(INPUT_REF_FREQ, some_frac_freq));
/* calculate int and frac: regs_mod is a power of 2, this will optimize to a bitwise operation */
db->common.adf4350_regs_int = (uint16_t) (n_mod/db->common.adf4350_regs_mod);
db->common.adf4350_regs_frac = (uint16_t) (n_mod%db->common.adf4350_regs_mod);
//printf("Int %u < Min %u\n", db->common.adf4350_regs_int, min_int_div);
}while(db->common.adf4350_regs_int < min_int_div);
/* calculate the band select so PFD is under 125 KHz */
db->common.adf4350_regs_8_bit_band_select_clock_divider_value = \
(uint8_t) (INPUT_REF_FREQ/(U2_DOUBLE_TO_FXPT_FREQ(30e3)*db->common.adf4350_regs_10_bit_r_counter)) + 1;
/*
printf(
"VCO %u KHz, Int %u, Frac %u, Mod %u, R %u, Div %u, BandSelect %u\n",
(uint32_t) ((freq >> U2_FPF_RP)/1000),
(uint32_t) db->common.adf4350_regs_int,
(uint32_t) db->common.adf4350_regs_frac,
(uint32_t) db->common.adf4350_regs_mod,
(uint32_t) db->common.adf4350_regs_10_bit_r_counter,
(uint32_t) (1 << db->common.adf4350_regs_divider_select),
(uint32_t) db->common.adf4350_regs_8_bit_band_select_clock_divider_value
);
*/
/* load involved registers */
adf4350_load_register(5, dbb);
adf4350_load_register(3, dbb);
adf4350_load_register(1, dbb);
adf4350_load_register(2, dbb);
adf4350_load_register(4, dbb);
adf4350_load_register(0, dbb); /* register 0 must be last */
return adf4350_get_locked(dbb);
}
u2_fxpt_freq_t adf4350_get_freq(struct db_base *dbb){
struct db_wbxng_dummy *db = (struct db_wbxng_dummy *) dbb;
/* Calculate the freq from int, frac, mod, ref, r, div:
* freq = (int + frac/mod) * (ref/r)
* Keep precision by doing multiplies first:
* freq = (((((((int)*mod) + frac)*ref)/mod)/r)/div)
*/
uint64_t temp;
temp = (uint64_t) db->common.adf4350_regs_int;
temp *= (uint64_t) db->common.adf4350_regs_mod;
temp += (uint64_t) db->common.adf4350_regs_frac;
temp *= (uint64_t) (INPUT_REF_FREQ >> U2_FPF_RP);
temp /= (uint64_t) db->common.adf4350_regs_mod;
temp /= (uint64_t) db->common.adf4350_regs_10_bit_r_counter;
temp /= (uint64_t) (1 << db->common.adf4350_regs_divider_select);
/* Shift 1Hz Radix Point for u2_fxpt_freq_t */
temp = temp << U2_FPF_RP;
/*
printf(
"Got Freq %u KHz, Int %u, Frac %u, Mod %u, R %u, Div %u\n",
(uint32_t) ((temp >> U2_FPF_RP)/1000),
(uint32_t) db->common.adf4350_regs_int,
(uint32_t) db->common.adf4350_regs_frac,
(uint32_t) db->common.adf4350_regs_mod,
(uint32_t) db->common.adf4350_regs_10_bit_r_counter,
(uint32_t) (1 << db->common.adf4350_regs_divider_select)
);
*/
return (u2_fxpt_freq_t) (temp);
}