/* -*- c++ -*- */ /* * Copyright 2007,2008 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <mblock/mblock.h> #include <mblock/runtime.h> #include <mblock/protocol_class.h> #include <mblock/exception.h> #include <mblock/msg_queue.h> #include <mblock/message.h> #include <mblock/msg_accepter.h> #include <mblock/class_registry.h> #include <pmt.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #include <iostream> // Include the symbols needed for communication with USRP server #include <symbols_usrp_server_cs.h> #include <symbols_usrp_channel.h> #include <symbols_usrp_low_level_cs.h> #include <symbols_usrp_tx.h> #include <symbols_usrp_rx.h> static bool verbose = false; class test_usrp_inband_ping : public mb_mblock { mb_port_sptr d_tx; // Ports connected to the USRP server mb_port_sptr d_rx; mb_port_sptr d_cs; pmt_t d_tx_chan; // Returned channel from TX allocation pmt_t d_rx_chan; // Returned channel from RX allocation pmt_t d_which_usrp; // The USRP to use for the test long d_warm_msgs; // The number of messages to 'warm' the USRP long d_warm_recvd; // The number of msgs received in the 'warm' state // Keep track of current state enum state_t { INIT, OPENING_USRP, ALLOCATING_CHANNELS, WARMING_USRP, PINGING, CLOSING_CHANNELS, CLOSING_USRP, }; state_t d_state; public: test_usrp_inband_ping(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg); ~test_usrp_inband_ping(); void initial_transition(); void handle_message(mb_message_sptr msg); protected: void opening_usrp(); void allocating_channels(); void enter_warming_usrp(); void enter_pinging(); void build_and_send_ping(); void closing_channels(); void closing_usrp(); }; int main (int argc, char **argv) { // handle any command line args here mb_runtime_sptr rt = mb_make_runtime(); pmt_t result = PMT_NIL; rt->run("top", "test_usrp_inband_ping", PMT_F, &result); } test_usrp_inband_ping::test_usrp_inband_ping(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg) : mb_mblock(runtime, instance_name, user_arg), d_tx_chan(PMT_NIL), d_rx_chan(PMT_NIL), d_which_usrp(pmt_from_long(0)), d_state(INIT) { // A dictionary is used to pass parameters to the USRP pmt_t usrp_dict = pmt_make_dict(); // Specify the RBF to use pmt_dict_set(usrp_dict, pmt_intern("rbf"), pmt_intern("fixed1.rbf")); // Set TX and RX interpolations pmt_dict_set(usrp_dict, pmt_intern("interp-tx"), pmt_from_long(128)); pmt_dict_set(usrp_dict, pmt_intern("decim-rx"), pmt_from_long(16)); d_tx = define_port("tx0", "usrp-tx", false, mb_port::INTERNAL); d_rx = define_port("rx0", "usrp-rx", false, mb_port::INTERNAL); d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL); // Create an instance of USRP server and connect ports define_component("server", "usrp_server", usrp_dict); connect("self", "tx0", "server", "tx0"); connect("self", "rx0", "server", "rx0"); connect("self", "cs", "server", "cs"); } test_usrp_inband_ping::~test_usrp_inband_ping() { } void test_usrp_inband_ping::initial_transition() { opening_usrp(); } // Handle message reads all incoming messages from USRP server which will be // initialization and ping responses. We perform actions based on the current // state and the event (ie, ping response) void test_usrp_inband_ping::handle_message(mb_message_sptr msg) { pmt_t event = msg->signal(); pmt_t data = msg->data(); pmt_t port_id = msg->port_id(); pmt_t handle = PMT_F; pmt_t status = PMT_F; std::string error_msg; // Dispatch based on state switch(d_state) { //----------------------------- OPENING_USRP ----------------------------// // We only expect a response from opening the USRP which should be succesful // or failed. case OPENING_USRP: if(pmt_eq(event, s_response_open)) { status = pmt_nth(1, data); // failed/succes if(pmt_eq(status, PMT_T)) { allocating_channels(); return; } else { error_msg = "failed to open usrp:"; goto bail; } } goto unhandled; // all other messages not handled in this state //----------------------- ALLOCATING CHANNELS --------------------// // When allocating channels, we need to wait for 2 responses from // USRP server: one for TX and one for RX. Both are initialized to // NIL so we know to continue to the next state once both are set. case ALLOCATING_CHANNELS: // A TX allocation response if(pmt_eq(event, s_response_allocate_channel) && pmt_eq(d_tx->port_symbol(), port_id)) { status = pmt_nth(1, data); // If successful response, extract the channel if(pmt_eq(status, PMT_T)) { d_tx_chan = pmt_nth(2, data); if(verbose) std::cout << "[TEST_USRP_INBAND_PING] Received TX allocation" << " on channel " << d_tx_chan << std::endl; // If the RX has also been allocated already, we can continue if(!pmt_eqv(d_rx_chan, PMT_NIL)) enter_warming_usrp(); return; } else { // TX allocation failed error_msg = "failed to allocate TX channel:"; goto bail; } } // A RX allocation response if(pmt_eq(event, s_response_allocate_channel) && pmt_eq(d_rx->port_symbol(), port_id)) { status = pmt_nth(1, data); // If successful response, extract the channel if(pmt_eq(status, PMT_T)) { d_rx_chan = pmt_nth(2, data); if(verbose) std::cout << "[TEST_USRP_INBAND_PING] Received RX allocation" << " on channel " << d_rx_chan << std::endl; // If the TX has also been allocated already, we can continue if(!pmt_eqv(d_tx_chan, PMT_NIL)) enter_warming_usrp(); return; } else { // RX allocation failed error_msg = "failed to allocate RX channel:"; goto bail; } } goto unhandled; //----------------------- WARMING USRP --------------------// // The FX2 seems to need some amount of data to be buffered // before it begins reading. We use this state to simply // warm up the USRP before benchmarking pings. case WARMING_USRP: // We really don't care about the responses from the // control channel in the warming stage, but once we receive // the proper number of responses we switch states. if(pmt_eq(event, s_response_from_control_channel) && pmt_eq(d_rx->port_symbol(), port_id)) { d_warm_recvd++; if(d_warm_recvd > d_warm_msgs) enter_pinging(); return; } goto unhandled; case PINGING: goto unhandled; case CLOSING_CHANNELS: goto unhandled; case CLOSING_USRP: goto unhandled; case INIT: goto unhandled; } // An error occured, print it, and shutdown all m-blocks bail: std::cerr << error_msg << data << "status = " << status << std::endl; shutdown_all(PMT_F); return; // Received an unhandled message for a specific state unhandled: if(verbose) std::cout << "test_usrp_inband_tx: unhandled msg: " << msg << "in state "<< d_state << std::endl; } // Sends a command to USRP server to open up a connection to the // specified USRP, which is defaulted to USRP 0 on the system void test_usrp_inband_ping::opening_usrp() { if(verbose) std::cout << "[TEST_USRP_INBAND_PING] Opening USRP " << d_which_usrp << std::endl; d_cs->send(s_cmd_open, pmt_list2(PMT_NIL, d_which_usrp)); d_state = OPENING_USRP; } // RX and TX channels must be allocated so that the USRP server can // properly share bandwidth across multiple USRPs. No commands will be // successful to the USRP through the USRP server on the TX or RX channels until // a bandwidth allocation has been received. void test_usrp_inband_ping::allocating_channels() { d_state = ALLOCATING_CHANNELS; long capacity = (long) 16e6; d_tx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(capacity))); d_rx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(capacity))); } // The USRP needs some amount of initial data to pass a buffering point such // that it begins to pull and read data from the FX2. We send an arbitrary // amount of data to start the pipeline, which are just pings. void test_usrp_inband_ping::enter_warming_usrp() { d_state = WARMING_USRP; for(int i=0; i < d_warm_msgs; i++) build_and_send_ping(); } void test_usrp_inband_ping::enter_pinging() { d_state = PINGING; if(verbose) std::cout << "[TEST_USRP_INBAND_PING] Running ping tests\n"; } // Pings are sent over the TX channel using the signal 'cmd-to-control-channel' // to the USRP server. Within this message there can be infinite subpackets // stored as a list (the second parameter) and sent. The only subpacket we send // is a ping, interpreted by the 'op-ping-fixed' signal. void test_usrp_inband_ping::build_and_send_ping() { d_tx->send(s_cmd_to_control_channel, // USRP server signal pmt_list2(PMT_NIL, // invocation handle pmt_list1(pmt_list3(s_op_ping_fixed, pmt_from_long(0), pmt_from_long(0))))); if(verbose) std::cout << "[TEST_USRP_INBAND_PING] Ping!!" << std::endl; } REGISTER_MBLOCK_CLASS(test_usrp_inband_ping);