/* -*- c++ -*- */ /* * Copyright 2003,2004,2006,2009 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "usrp_primsi.h" #include "usrp_commands.h" #include "usrp_ids.h" #include "usrp_i2c_addr.h" #include "fpga_regs_common.h" #include "fpga_regs_standard.h" #include <errno.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <ctype.h> #include <time.h> // FIXME should check with autoconf (nanosleep) #include <algorithm> #include <ad9862.h> #include <assert.h> #include "std_paths.h" extern "C" { #include "md5.h" }; #define VERBOSE 0 using namespace ad9862; static const int FIRMWARE_HASH_SLOT = 0; static const int FPGA_HASH_SLOT = 1; static const int hash_slot_addr[2] = { USRP_HASH_SLOT_0_ADDR, USRP_HASH_SLOT_1_ADDR }; static const char *default_firmware_filename = "std.ihx"; static const char *default_fpga_filename = "std_2rxhb_2tx.rbf"; static char * find_file (const char *filename, int hw_rev) { const char **sp = std_paths; static char path[1000]; char *s; s = getenv("USRP_PATH"); if (s) { snprintf (path, sizeof (path), "%s/rev%d/%s", s, hw_rev, filename); if (access (path, R_OK) == 0) return path; } while (*sp){ snprintf (path, sizeof (path), "%s/rev%d/%s", *sp, hw_rev, filename); if (access (path, R_OK) == 0) return path; sp++; } return 0; } static const char * get_proto_filename(const std::string user_filename, const char *env_var, const char *def) { if (user_filename.length() != 0) return user_filename.c_str(); char *s = getenv(env_var); if (s && *s) return s; return def; } static void power_down_9862s (libusb_device_handle *udh); // ---------------------------------------------------------------- /* * q must be a real USRP, not an FX2. Return its hardware rev number. */ int usrp_hw_rev (libusb_device *q) { libusb_device_descriptor desc = _get_usb_device_descriptor(q); return desc.bcdDevice & 0x00FF; } /* * q must be a real USRP, not an FX2. Return true if it's configured. */ static bool _usrp_configured_p (libusb_device *q) { libusb_device_descriptor desc = _get_usb_device_descriptor(q); return (desc.bcdDevice & 0xFF00) != 0; } bool usrp_usrp_p (libusb_device *q) { libusb_device_descriptor desc = _get_usb_device_descriptor(q); return (desc.idVendor == USB_VID_FSF && desc.idProduct == USB_PID_FSF_USRP); } bool usrp_fx2_p (libusb_device *q) { libusb_device_descriptor desc = _get_usb_device_descriptor(q); return (desc.idVendor == USB_VID_CYPRESS && desc.idProduct == USB_PID_CYPRESS_FX2); } bool usrp_usrp0_p (libusb_device *q) { return usrp_usrp_p (q) && usrp_hw_rev (q) == 0; } bool usrp_usrp1_p (libusb_device *q) { return usrp_usrp_p (q) && usrp_hw_rev (q) == 1; } bool usrp_usrp2_p (libusb_device *q) { return usrp_usrp_p (q) && usrp_hw_rev (q) == 2; } bool usrp_unconfigured_usrp_p (libusb_device *q) { return usrp_usrp_p (q) && !_usrp_configured_p (q); } bool usrp_configured_usrp_p (libusb_device *q) { return usrp_usrp_p (q) && _usrp_configured_p (q); } // ---------------------------------------------------------------- libusb_device_handle * usrp_open_cmd_interface (libusb_device *dev) { return usrp_open_interface (dev, USRP_CMD_INTERFACE, USRP_CMD_ALTINTERFACE); } libusb_device_handle * usrp_open_rx_interface (libusb_device *dev) { return usrp_open_interface (dev, USRP_RX_INTERFACE, USRP_RX_ALTINTERFACE); } libusb_device_handle * usrp_open_tx_interface (libusb_device *dev) { return usrp_open_interface (dev, USRP_TX_INTERFACE, USRP_TX_ALTINTERFACE); } // ---------------------------------------------------------------- // write internal ram using Cypress vendor extension static bool write_internal_ram (libusb_device_handle *udh, unsigned char *buf, int start_addr, size_t len) { int addr; int n; int a; int quanta = MAX_EP0_PKTSIZE; for (addr = start_addr; addr < start_addr + (int) len; addr += quanta){ n = len + start_addr - addr; if (n > quanta) n = quanta; a = _usb_control_transfer (udh, 0x40, 0xA0, addr, 0, (unsigned char*)(buf + (addr - start_addr)), n, 1000); if (a < 0){ fprintf(stderr,"write_internal_ram failed\n"); return false; } } return true; } // ---------------------------------------------------------------- // whack the CPUCS register using the upload RAM vendor extension static bool reset_cpu (libusb_device_handle *udh, bool reset_p) { unsigned char v; if (reset_p) v = 1; // hold processor in reset else v = 0; // release reset return write_internal_ram (udh, &v, 0xE600, 1); } // ---------------------------------------------------------------- // Load intel format file into cypress FX2 (8051) static bool _usrp_load_firmware (libusb_device_handle *udh, const char *filename, unsigned char hash[USRP_HASH_SIZE]) { FILE *f = fopen (filename, "ra"); if (f == 0){ perror (filename); return false; } if (!reset_cpu (udh, true)) // hold CPU in reset while loading firmware goto fail; char s[1024]; int length; int addr; int type; unsigned char data[256]; unsigned char checksum, a; unsigned int b; int i; while (!feof(f)){ fgets(s, sizeof (s), f); /* we should not use more than 263 bytes normally */ if(s[0]!=':'){ fprintf(stderr,"%s: invalid line: \"%s\"\n", filename, s); goto fail; } sscanf(s+1, "%02x", &length); sscanf(s+3, "%04x", &addr); sscanf(s+7, "%02x", &type); if(type==0){ a=length+(addr &0xff)+(addr>>8)+type; for(i=0;i<length;i++){ sscanf (s+9+i*2,"%02x", &b); data[i]=b; a=a+data[i]; } sscanf (s+9+length*2,"%02x", &b); checksum=b; if (((a+checksum)&0xff)!=0x00){ fprintf (stderr, " ** Checksum failed: got 0x%02x versus 0x%02x\n", (-a)&0xff, checksum); goto fail; } if (!write_internal_ram (udh, data, addr, length)) goto fail; } else if (type == 0x01){ // EOF break; } else if (type == 0x02){ fprintf (stderr, "Extended address: whatever I do with it?\n"); fprintf (stderr, "%s: invalid line: \"%s\"\n", filename, s); goto fail; } } // we jam the hash value into the FX2 memory before letting // the cpu out of reset. When it comes out of reset it // may renumerate which will invalidate udh. if (!usrp_set_hash (udh, FIRMWARE_HASH_SLOT, hash)) fprintf (stderr, "usrp: failed to write firmware hash slot\n"); if (!reset_cpu (udh, false)) // take CPU out of reset goto fail; fclose (f); return true; fail: fclose (f); return false; } // ---------------------------------------------------------------- // load fpga static bool _usrp_load_fpga (libusb_device_handle *udh, const char *filename, unsigned char hash[USRP_HASH_SIZE]) { bool ok = true; FILE *fp = fopen (filename, "rb"); if (fp == 0){ perror (filename); return false; } unsigned char buf[MAX_EP0_PKTSIZE]; // 64 is max size of EP0 packet on FX2 int n; usrp_set_led (udh, 1, 1); // led 1 on // reset FPGA (and on rev1 both AD9862's, thus killing clock) usrp_set_fpga_reset (udh, 1); // hold fpga in reset if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_BEGIN, 0, 0) != 0) goto fail; while ((n = fread (buf, 1, sizeof (buf), fp)) > 0){ if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_XFER, buf, n) != n) goto fail; } if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_END, 0, 0) != 0) goto fail; fclose (fp); if (!usrp_set_hash (udh, FPGA_HASH_SLOT, hash)) fprintf (stderr, "usrp: failed to write fpga hash slot\n"); // On the rev1 USRP, the {tx,rx}_{enable,reset} bits are // controlled over the serial bus, and hence aren't observed until // we've got a good fpga bitstream loaded. usrp_set_fpga_reset (udh, 0); // fpga out of master reset // now these commands will work ok &= usrp_set_fpga_tx_enable (udh, 0); ok &= usrp_set_fpga_rx_enable (udh, 0); ok &= usrp_set_fpga_tx_reset (udh, 1); // reset tx and rx paths ok &= usrp_set_fpga_rx_reset (udh, 1); ok &= usrp_set_fpga_tx_reset (udh, 0); // reset tx and rx paths ok &= usrp_set_fpga_rx_reset (udh, 0); if (!ok) fprintf (stderr, "usrp: failed to reset tx and/or rx path\n"); // Manually reset all regs except master control to zero. // FIXME may want to remove this when we rework FPGA reset strategy. // In the mean while, this gets us reproducible behavior. for (int i = 0; i < FR_USER_0; i++){ if (i == FR_MASTER_CTRL) continue; usrp_write_fpga_reg(udh, i, 0); } power_down_9862s (udh); // on the rev1, power these down! usrp_set_led (udh, 1, 0); // led 1 off return true; fail: power_down_9862s (udh); // on the rev1, power these down! fclose (fp); return false; } // ---------------------------------------------------------------- bool usrp_set_led (libusb_device_handle *udh, int which, bool on) { int r = write_cmd (udh, VRQ_SET_LED, on, which, 0, 0); return r == 0; } bool usrp_set_hash (libusb_device_handle *udh, int which, const unsigned char hash[USRP_HASH_SIZE]) { which &= 1; // we use the Cypress firmware down load command to jam it in. int r = _usb_control_transfer (udh, 0x40, 0xa0, hash_slot_addr[which], 0, (unsigned char *) hash, USRP_HASH_SIZE, 1000); if (r < 0) fprintf (stderr, "usrp: failed to set hash\n"); return r == USRP_HASH_SIZE; } bool usrp_get_hash (libusb_device_handle *udh, int which, unsigned char hash[USRP_HASH_SIZE]) { which &= 1; // we use the Cypress firmware upload command to fetch it. int r = _usb_control_transfer (udh, 0xc0, 0xa0, hash_slot_addr[which], 0, (unsigned char *) hash, USRP_HASH_SIZE, 1000); if (r < 0) fprintf (stderr, "usrp: failed to get hash\n"); return r == USRP_HASH_SIZE; } static bool usrp_set_switch (libusb_device_handle *udh, int cmd_byte, bool on) { return write_cmd (udh, cmd_byte, on, 0, 0, 0) == 0; } static bool usrp1_fpga_write (libusb_device_handle *udh, int regno, int value) { // on the rev1 usrp, we use the generic spi_write interface unsigned char buf[4]; buf[0] = (value >> 24) & 0xff; // MSB first buf[1] = (value >> 16) & 0xff; buf[2] = (value >> 8) & 0xff; buf[3] = (value >> 0) & 0xff; return usrp_spi_write (udh, 0x00 | (regno & 0x7f), SPI_ENABLE_FPGA, SPI_FMT_MSB | SPI_FMT_HDR_1, buf, sizeof (buf)); } static bool usrp1_fpga_read (libusb_device_handle *udh, int regno, int *value) { *value = 0; unsigned char buf[4]; bool ok = usrp_spi_read (udh, 0x80 | (regno & 0x7f), SPI_ENABLE_FPGA, SPI_FMT_MSB | SPI_FMT_HDR_1, buf, sizeof (buf)); if (ok) *value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; return ok; } bool usrp_write_fpga_reg (libusb_device_handle *udh, int reg, int value) { switch (usrp_hw_rev (_get_usb_device (udh))){ case 0: // not supported ;) abort(); default: return usrp1_fpga_write (udh, reg, value); } } bool usrp_read_fpga_reg (libusb_device_handle *udh, int reg, int *value) { switch (usrp_hw_rev (_get_usb_device (udh))){ case 0: // not supported ;) abort(); default: return usrp1_fpga_read (udh, reg, value); } } bool usrp_set_fpga_reset (libusb_device_handle *udh, bool on) { return usrp_set_switch (udh, VRQ_FPGA_SET_RESET, on); } bool usrp_set_fpga_tx_enable (libusb_device_handle *udh, bool on) { return usrp_set_switch (udh, VRQ_FPGA_SET_TX_ENABLE, on); } bool usrp_set_fpga_rx_enable (libusb_device_handle *udh, bool on) { return usrp_set_switch (udh, VRQ_FPGA_SET_RX_ENABLE, on); } bool usrp_set_fpga_tx_reset (libusb_device_handle *udh, bool on) { return usrp_set_switch (udh, VRQ_FPGA_SET_TX_RESET, on); } bool usrp_set_fpga_rx_reset (libusb_device_handle *udh, bool on) { return usrp_set_switch (udh, VRQ_FPGA_SET_RX_RESET, on); } // ---------------------------------------------------------------- // conditional load stuff static bool compute_hash (const char *filename, unsigned char hash[USRP_HASH_SIZE]) { assert (USRP_HASH_SIZE == 16); memset (hash, 0, USRP_HASH_SIZE); FILE *fp = fopen (filename, "rb"); if (fp == 0){ perror (filename); return false; } int r = md5_stream (fp, hash); fclose (fp); return r == 0; } static usrp_load_status_t usrp_conditionally_load_something (libusb_device_handle *udh, const char *filename, bool force, int slot, bool loader (libusb_device_handle *, const char *, unsigned char [USRP_HASH_SIZE])) { unsigned char file_hash[USRP_HASH_SIZE]; unsigned char usrp_hash[USRP_HASH_SIZE]; if (access (filename, R_OK) != 0){ perror (filename); return ULS_ERROR; } if (!compute_hash (filename, file_hash)) return ULS_ERROR; if (!force && usrp_get_hash (udh, slot, usrp_hash) && memcmp (file_hash, usrp_hash, USRP_HASH_SIZE) == 0) return ULS_ALREADY_LOADED; bool r = loader (udh, filename, file_hash); if (!r) return ULS_ERROR; return ULS_OK; } usrp_load_status_t usrp_load_firmware (libusb_device_handle *udh, const char *filename, bool force) { return usrp_conditionally_load_something (udh, filename, force, FIRMWARE_HASH_SLOT, _usrp_load_firmware); } usrp_load_status_t usrp_load_fpga (libusb_device_handle *udh, const char *filename, bool force) { return usrp_conditionally_load_something (udh, filename, force, FPGA_HASH_SLOT, _usrp_load_fpga); } static libusb_device_handle * open_nth_cmd_interface (int nth, libusb_context *ctx) { libusb_device *udev = usrp_find_device (nth, false, ctx); if (udev == 0){ fprintf (stderr, "usrp: failed to find usrp[%d]\n", nth); return 0; } libusb_device_handle *udh; udh = usrp_open_cmd_interface (udev); if (udh == 0){ // FIXME this could be because somebody else has it open. // We should delay and retry... fprintf (stderr, "open_nth_cmd_interface: open_cmd_interface failed\n"); return 0; } return udh; } static bool our_nanosleep (const struct timespec *delay) { struct timespec new_delay = *delay; struct timespec remainder; while (1){ int r = nanosleep (&new_delay, &remainder); if (r == 0) return true; if (errno == EINTR) new_delay = remainder; else { perror ("nanosleep"); return false; } } } static bool mdelay (int millisecs) { struct timespec ts; ts.tv_sec = millisecs / 1000; ts.tv_nsec = (millisecs - (1000 * ts.tv_sec)) * 1000000; return our_nanosleep (&ts); } usrp_load_status_t usrp_load_firmware_nth (int nth, const char *filename, bool force, libusb_context *ctx) { libusb_device_handle *udh = open_nth_cmd_interface (nth, ctx); if (udh == 0) return ULS_ERROR; usrp_load_status_t s = usrp_load_firmware (udh, filename, force); usrp_close_interface (udh); switch (s){ case ULS_ALREADY_LOADED: // nothing changed... return ULS_ALREADY_LOADED; break; case ULS_OK: // we loaded firmware successfully. // It's highly likely that the board will renumerate (simulate a // disconnect/reconnect sequence), invalidating our current // handle. // FIXME. Turn this into a loop that rescans until we refind ourselves struct timespec t; // delay for 2 second t.tv_sec = 2; t.tv_nsec = 0; our_nanosleep (&t); usrp_rescan (); return ULS_OK; default: case ULS_ERROR: // some kind of problem return ULS_ERROR; } } static void load_status_msg (usrp_load_status_t s, const char *type, const char *filename) { char *e = getenv("USRP_VERBOSE"); bool verbose = e != 0; switch (s){ case ULS_ERROR: fprintf (stderr, "usrp: failed to load %s %s.\n", type, filename); break; case ULS_ALREADY_LOADED: if (verbose) fprintf (stderr, "usrp: %s %s already loaded.\n", type, filename); break; case ULS_OK: if (verbose) fprintf (stderr, "usrp: %s %s loaded successfully.\n", type, filename); break; } } bool usrp_load_standard_bits (int nth, bool force, const std::string fpga_filename, const std::string firmware_filename, libusb_context *ctx) { usrp_load_status_t s; const char *filename; const char *proto_filename; int hw_rev; // first, figure out what hardware rev we're dealing with { libusb_device *udev = usrp_find_device (nth, false, ctx); if (udev == 0){ fprintf (stderr, "usrp: failed to find usrp[%d]\n", nth); return false; } hw_rev = usrp_hw_rev (udev); } // start by loading the firmware proto_filename = get_proto_filename(firmware_filename, "USRP_FIRMWARE", default_firmware_filename); filename = find_file(proto_filename, hw_rev); if (filename == 0){ fprintf (stderr, "Can't find firmware: %s\n", proto_filename); return false; } s = usrp_load_firmware_nth (nth, filename, force, ctx); load_status_msg (s, "firmware", filename); if (s == ULS_ERROR) return false; // if we actually loaded firmware, we must reload fpga ... if (s == ULS_OK) force = true; // now move on to the fpga configuration bitstream proto_filename = get_proto_filename(fpga_filename, "USRP_FPGA", default_fpga_filename); filename = find_file (proto_filename, hw_rev); if (filename == 0){ fprintf (stderr, "Can't find fpga bitstream: %s\n", proto_filename); return false; } libusb_device_handle *udh = open_nth_cmd_interface (nth, ctx); if (udh == 0) return false; s = usrp_load_fpga (udh, filename, force); usrp_close_interface (udh); load_status_msg (s, "fpga bitstream", filename); if (s == ULS_ERROR) return false; return true; } bool _usrp_get_status (libusb_device_handle *udh, int which, bool *trouble) { unsigned char status; *trouble = true; if (write_cmd (udh, VRQ_GET_STATUS, 0, which, &status, sizeof (status)) != sizeof (status)) return false; *trouble = status; return true; } bool usrp_check_rx_overrun (libusb_device_handle *udh, bool *overrun_p) { return _usrp_get_status (udh, GS_RX_OVERRUN, overrun_p); } bool usrp_check_tx_underrun (libusb_device_handle *udh, bool *underrun_p) { return _usrp_get_status (udh, GS_TX_UNDERRUN, underrun_p); } bool usrp_i2c_write (libusb_device_handle *udh, int i2c_addr, const void *buf, int len) { if (len < 1 || len > MAX_EP0_PKTSIZE) return false; return write_cmd (udh, VRQ_I2C_WRITE, i2c_addr, 0, (unsigned char *) buf, len) == len; } bool usrp_i2c_read (libusb_device_handle *udh, int i2c_addr, void *buf, int len) { if (len < 1 || len > MAX_EP0_PKTSIZE) return false; return write_cmd (udh, VRQ_I2C_READ, i2c_addr, 0, (unsigned char *) buf, len) == len; } bool usrp_spi_write (libusb_device_handle *udh, int optional_header, int enables, int format, const void *buf, int len) { if (len < 0 || len > MAX_EP0_PKTSIZE) return false; return write_cmd (udh, VRQ_SPI_WRITE, optional_header, ((enables & 0xff) << 8) | (format & 0xff), (unsigned char *) buf, len) == len; } bool usrp_spi_read (libusb_device_handle *udh, int optional_header, int enables, int format, void *buf, int len) { if (len < 0 || len > MAX_EP0_PKTSIZE) return false; return write_cmd (udh, VRQ_SPI_READ, optional_header, ((enables & 0xff) << 8) | (format & 0xff), (unsigned char *) buf, len) == len; } bool usrp_9862_write (libusb_device_handle *udh, int which_codec, int regno, int value) { if (0) fprintf (stderr, "usrp_9862_write which = %d, reg = %2d, val = %3d (0x%02x)\n", which_codec, regno, value, value); unsigned char buf[1]; buf[0] = value; return usrp_spi_write (udh, 0x00 | (regno & 0x3f), which_codec == 0 ? SPI_ENABLE_CODEC_A : SPI_ENABLE_CODEC_B, SPI_FMT_MSB | SPI_FMT_HDR_1, buf, 1); } bool usrp_9862_read (libusb_device_handle *udh, int which_codec, int regno, unsigned char *value) { return usrp_spi_read (udh, 0x80 | (regno & 0x3f), which_codec == 0 ? SPI_ENABLE_CODEC_A : SPI_ENABLE_CODEC_B, SPI_FMT_MSB | SPI_FMT_HDR_1, value, 1); } bool usrp_9862_write_many (libusb_device_handle *udh, int which_codec, const unsigned char *buf, int len) { if (len & 0x1) return false; // must be even bool result = true; while (len > 0){ result &= usrp_9862_write (udh, which_codec, buf[0], buf[1]); len -= 2; buf += 2; } return result; } bool usrp_9862_write_many_all (libusb_device_handle *udh, const unsigned char *buf, int len) { // FIXME handle 2/2 and 4/4 versions bool result; result = usrp_9862_write_many (udh, 0, buf, len); result &= usrp_9862_write_many (udh, 1, buf, len); return result; } static void power_down_9862s (libusb_device_handle *udh) { static const unsigned char regs[] = { REG_RX_PWR_DN, 0x01, // everything REG_TX_PWR_DN, 0x0f, // pwr dn digital and analog_both REG_TX_MODULATOR, 0x00 // coarse & fine modulators disabled }; switch (usrp_hw_rev (_get_usb_device (udh))){ case 0: break; default: usrp_9862_write_many_all (udh, regs, sizeof (regs)); break; } } static const int EEPROM_PAGESIZE = 16; bool usrp_eeprom_write (libusb_device_handle *udh, int i2c_addr, int eeprom_offset, const void *buf, int len) { unsigned char cmd[2]; const unsigned char *p = (unsigned char *) buf; // The simplest thing that could possibly work: // all writes are single byte writes. // // We could speed this up using the page write feature, // but we write so infrequently, why bother... while (len-- > 0){ cmd[0] = eeprom_offset++; cmd[1] = *p++; bool r = usrp_i2c_write (udh, i2c_addr, cmd, sizeof (cmd)); mdelay (10); // delay 10ms worst case write time if (!r) return false; } return true; } bool usrp_eeprom_read (libusb_device_handle *udh, int i2c_addr, int eeprom_offset, void *buf, int len) { unsigned char *p = (unsigned char *) buf; // We setup a random read by first doing a "zero byte write". // Writes carry an address. Reads use an implicit address. unsigned char cmd[1]; cmd[0] = eeprom_offset; if (!usrp_i2c_write (udh, i2c_addr, cmd, sizeof (cmd))) return false; while (len > 0){ int n = std::min (len, MAX_EP0_PKTSIZE); if (!usrp_i2c_read (udh, i2c_addr, p, n)) return false; len -= n; p += n; } return true; } // ---------------------------------------------------------------- static bool slot_to_codec (int slot, int *which_codec) { *which_codec = 0; switch (slot){ case SLOT_TX_A: case SLOT_RX_A: *which_codec = 0; break; case SLOT_TX_B: case SLOT_RX_B: *which_codec = 1; break; default: fprintf (stderr, "usrp_prims:slot_to_codec: invalid slot = %d\n", slot); return false; } return true; } static bool tx_slot_p (int slot) { switch (slot){ case SLOT_TX_A: case SLOT_TX_B: return true; default: return false; } } bool usrp_write_aux_dac (libusb_device_handle *udh, int slot, int which_dac, int value) { int which_codec; if (!slot_to_codec (slot, &which_codec)) return false; if (!(0 <= which_dac && which_dac < 4)){ fprintf (stderr, "usrp_write_aux_dac: invalid dac = %d\n", which_dac); return false; } value &= 0x0fff; // mask to 12-bits if (which_dac == 3){ // dac 3 is really 12-bits. Use value as is. bool r = true; r &= usrp_9862_write (udh, which_codec, 43, (value >> 4)); // most sig r &= usrp_9862_write (udh, which_codec, 42, (value & 0xf) << 4); // least sig return r; } else { // dac 0, 1, and 2 are really 8 bits. value = value >> 4; // shift value appropriately return usrp_9862_write (udh, which_codec, 36 + which_dac, value); } } bool usrp_read_aux_adc (libusb_device_handle *udh, int slot, int which_adc, int *value) { *value = 0; int which_codec; if (!slot_to_codec (slot, &which_codec)) return false; if (!(0 <= which_codec && which_codec < 2)){ fprintf (stderr, "usrp_read_aux_adc: invalid adc = %d\n", which_adc); return false; } unsigned char aux_adc_control = AUX_ADC_CTRL_REFSEL_A // on chip reference | AUX_ADC_CTRL_REFSEL_B; // on chip reference int rd_reg = 26; // base address of two regs to read for result // program the ADC mux bits if (tx_slot_p (slot)) aux_adc_control |= AUX_ADC_CTRL_SELECT_A2 | AUX_ADC_CTRL_SELECT_B2; else { rd_reg += 2; aux_adc_control |= AUX_ADC_CTRL_SELECT_A1 | AUX_ADC_CTRL_SELECT_B1; } // I'm not sure if we can set the mux and issue a start conversion // in the same cycle, so let's do them one at a time. usrp_9862_write (udh, which_codec, 34, aux_adc_control); if (which_adc == 0) aux_adc_control |= AUX_ADC_CTRL_START_A; else { rd_reg += 4; aux_adc_control |= AUX_ADC_CTRL_START_B; } // start the conversion usrp_9862_write (udh, which_codec, 34, aux_adc_control); // read the 10-bit result back unsigned char v_lo = 0; unsigned char v_hi = 0; bool r = usrp_9862_read (udh, which_codec, rd_reg, &v_lo); r &= usrp_9862_read (udh, which_codec, rd_reg + 1, &v_hi); if (r) *value = ((v_hi << 2) | ((v_lo >> 6) & 0x3)) << 2; // format as 12-bit return r; } // ---------------------------------------------------------------- static int slot_to_i2c_addr (int slot) { switch (slot){ case SLOT_TX_A: return I2C_ADDR_TX_A; case SLOT_RX_A: return I2C_ADDR_RX_A; case SLOT_TX_B: return I2C_ADDR_TX_B; case SLOT_RX_B: return I2C_ADDR_RX_B; default: return -1; } } static void set_chksum (unsigned char *buf) { int sum = 0; unsigned int i; for (i = 0; i < DB_EEPROM_CLEN - 1; i++) sum += buf[i]; buf[i] = -sum; } static usrp_dbeeprom_status_t read_dboard_eeprom (libusb_device_handle *udh, int slot_id, unsigned char *buf) { int i2c_addr = slot_to_i2c_addr (slot_id); if (i2c_addr == -1) return UDBE_BAD_SLOT; if (!usrp_eeprom_read (udh, i2c_addr, 0, buf, DB_EEPROM_CLEN)) return UDBE_NO_EEPROM; if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE) return UDBE_INVALID_EEPROM; int sum = 0; for (unsigned int i = 0; i < DB_EEPROM_CLEN; i++) sum += buf[i]; if ((sum & 0xff) != 0) return UDBE_INVALID_EEPROM; return UDBE_OK; } usrp_dbeeprom_status_t usrp_read_dboard_eeprom (libusb_device_handle *udh, int slot_id, usrp_dboard_eeprom *eeprom) { unsigned char buf[DB_EEPROM_CLEN]; memset (eeprom, 0, sizeof (*eeprom)); usrp_dbeeprom_status_t s = read_dboard_eeprom (udh, slot_id, buf); if (s != UDBE_OK) return s; eeprom->id = (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB]; eeprom->oe = (buf[DB_EEPROM_OE_MSB] << 8) | buf[DB_EEPROM_OE_LSB]; eeprom->offset[0] = (buf[DB_EEPROM_OFFSET_0_MSB] << 8) | buf[DB_EEPROM_OFFSET_0_LSB]; eeprom->offset[1] = (buf[DB_EEPROM_OFFSET_1_MSB] << 8) | buf[DB_EEPROM_OFFSET_1_LSB]; return UDBE_OK; } bool usrp_write_dboard_offsets (libusb_device_handle *udh, int slot_id, short offset0, short offset1) { unsigned char buf[DB_EEPROM_CLEN]; usrp_dbeeprom_status_t s = read_dboard_eeprom (udh, slot_id, buf); if (s != UDBE_OK) return false; buf[DB_EEPROM_OFFSET_0_LSB] = (offset0 >> 0) & 0xff; buf[DB_EEPROM_OFFSET_0_MSB] = (offset0 >> 8) & 0xff; buf[DB_EEPROM_OFFSET_1_LSB] = (offset1 >> 0) & 0xff; buf[DB_EEPROM_OFFSET_1_MSB] = (offset1 >> 8) & 0xff; set_chksum (buf); return usrp_eeprom_write (udh, slot_to_i2c_addr (slot_id), 0, buf, sizeof (buf)); } // ---------------------------------------------------------------- std::string usrp_serial_number(libusb_device_handle *udh) { libusb_device_descriptor desc = _get_usb_device_descriptor (_get_usb_device (udh)); unsigned char iserial = desc.iSerialNumber; if (iserial == 0) return ""; unsigned char buf[1024]; if (_get_usb_string_descriptor (udh, iserial, buf, sizeof(buf)) < 0) return ""; return (char*) buf; }