class fusb_devhandle; class fusb_ephandle; enum txrx_t { C_RX = 0, C_TX = 1 }; /* * ---------------------------------------------------------------------- * Mid level interface to the Universal Software Radio Peripheral (Rev 1) * * These classes implement the basic functionality for talking to the * USRP. They try to be as independent of the signal processing code * in FPGA as possible. They implement access to the low level * peripherals on the board, provide a common way for reading and * writing registers in the FPGA, and provide the high speed interface * to streaming data across the USB. * * It is expected that subclasses will be derived that provide * access to the functionality to a particular FPGA configuration. * ---------------------------------------------------------------------- */ /*! * \brief abstract base class for usrp operations * \ingroup usrp */ class usrp_basic : boost::noncopyable { protected: void shutdown_daughterboards(); protected: libusb_device_handle *d_udh; struct libusb_context *d_ctx; int d_usb_data_rate; // bytes/sec int d_bytes_per_poll; // how often to poll for overruns bool d_verbose; long d_fpga_master_clock_freq; static const int MAX_REGS = 128; unsigned int d_fpga_shadows[MAX_REGS]; int d_dbid[2]; // daughterboard ID's (side A, side B) /*! * Shared pointers to subclasses of db_base. * * The outer vector is of length 2 (0 = side A, 1 = side B). The * inner vectors are of length 1, 2 or 3 depending on the number of * subdevices implemented by the daugherboard. At this time, only * the Basic Rx and LF Rx implement more than 1 subdevice. */ std::vector< std::vector > d_db; //! One time call, made only only from usrp_standard_*::make after shared_ptr is created. void init_db(usrp_basic_sptr u); usrp_basic (int which_board, libusb_device_handle *open_interface (libusb_device *dev), const std::string fpga_filename = "", const std::string firmware_filename = ""); /*! * \brief advise usrp_basic of usb data rate (bytes/sec) * * N.B., this doesn't tweak any hardware. Derived classes * should call this to inform us of the data rate whenever it's * first set or if it changes. * * \param usb_data_rate bytes/sec */ void set_usb_data_rate (int usb_data_rate); /*! * \brief Write auxiliary digital to analog converter. * * \param slot Which Tx or Rx slot to write. * N.B., SLOT_TX_A and SLOT_RX_A share the same AUX DAC's. * SLOT_TX_B and SLOT_RX_B share the same AUX DAC's. * \param which_dac [0,3] RX slots must use only 0 and 1. TX slots must use only 2 and 3. * \param value [0,4095] * \returns true iff successful */ bool _write_aux_dac (int slot, int which_dac, int value); /*! * \brief Read auxiliary analog to digital converter. * * \param slot 2-bit slot number. E.g., SLOT_TX_A * \param which_adc [0,1] * \param value return 12-bit value [0,4095] * \returns true iff successful */ bool _read_aux_adc (int slot, int which_adc, int *value); /*! * \brief Read auxiliary analog to digital converter. * * \param slot 2-bit slot number. E.g., SLOT_TX_A * \param which_adc [0,1] * \returns value in the range [0,4095] if successful, else READ_FAILED. */ int _read_aux_adc (int slot, int which_adc); public: virtual ~usrp_basic (); /*! * Return a vector of vectors that contain shared pointers * to the daughterboard instance(s) associated with the specified side. * * It is an error to use the returned objects after the usrp_basic * object has been destroyed. */ std::vector > db() const { return d_db; } /*! * Return a vector of size >= 1 that contains shared pointers * to the daughterboard instance(s) associated with the specified side. * * \param which_side [0,1] which daughterboard * * It is an error to use the returned objects after the usrp_basic * object has been destroyed. */ std::vector db(int which_side); /*! * \brief is the subdev_spec valid? */ bool is_valid(const usrp_subdev_spec &ss); /*! * \brief given a subdev_spec, return the corresponding daughterboard object. * \throws std::invalid_ argument if ss is invalid. * * \param ss specifies the side and subdevice */ db_base_sptr selected_subdev(const usrp_subdev_spec &ss); /*! * \brief return frequency of master oscillator on USRP */ long fpga_master_clock_freq () const { return d_fpga_master_clock_freq; } /*! * Tell API that the master oscillator on the USRP is operating at a non-standard * fixed frequency. This is only needed for custom USRP hardware modified to * operate at a different frequency from the default factory configuration. This * function must be called prior to any other API function. * \param master_clock USRP2 FPGA master clock frequency in Hz (10..64 MHz) */ void set_fpga_master_clock_freq (long master_clock) { d_fpga_master_clock_freq = master_clock; } /*! * \returns usb data rate in bytes/sec */ int usb_data_rate () const { return d_usb_data_rate; } void set_verbose (bool on) { d_verbose = on; } //! magic value used on alternate register read interfaces static const int READ_FAILED = -99999; /*! * \brief Write EEPROM on motherboard or any daughterboard. * \param i2c_addr I2C bus address of EEPROM * \param eeprom_offset byte offset in EEPROM to begin writing * \param buf the data to write * \returns true iff sucessful */ bool write_eeprom (int i2c_addr, int eeprom_offset, const std::string buf); /*! * \brief Read EEPROM on motherboard or any daughterboard. * \param i2c_addr I2C bus address of EEPROM * \param eeprom_offset byte offset in EEPROM to begin reading * \param len number of bytes to read * \returns the data read if successful, else a zero length string. */ std::string read_eeprom (int i2c_addr, int eeprom_offset, int len); /*! * \brief Write to I2C peripheral * \param i2c_addr I2C bus address (7-bits) * \param buf the data to write * \returns true iff successful * Writes are limited to a maximum of of 64 bytes. */ bool write_i2c (int i2c_addr, const std::string buf); /*! * \brief Read from I2C peripheral * \param i2c_addr I2C bus address (7-bits) * \param len number of bytes to read * \returns the data read if successful, else a zero length string. * Reads are limited to a maximum of 64 bytes. */ std::string read_i2c (int i2c_addr, int len); /*! * \brief Set ADC offset correction * \param which_adc which ADC[0,3]: 0 = RX_A I, 1 = RX_A Q... * \param offset 16-bit value to subtract from raw ADC input. */ bool set_adc_offset (int which_adc, int offset); /*! * \brief Set DAC offset correction * \param which_dac which DAC[0,3]: 0 = TX_A I, 1 = TX_A Q... * \param offset 10-bit offset value (ambiguous format: See AD9862 datasheet). * \param offset_pin 1-bit value. If 0 offset applied to -ve differential pin; * If 1 offset applied to +ve differential pin. */ bool set_dac_offset (int which_dac, int offset, int offset_pin); /*! * \brief Control ADC input buffer * \param which_adc which ADC[0,3] * \param bypass if non-zero, bypass input buffer and connect input * directly to switched cap SHA input of RxPGA. */ bool set_adc_buffer_bypass (int which_adc, bool bypass); /*! * \brief Enable/disable automatic DC offset removal control loop in FPGA * * \param bits which control loops to enable * \param mask which \p bits to pay attention to * * If the corresponding bit is set, enable the automatic DC * offset correction control loop. * *
   * The 4 low bits are significant:
   *
   *   ADC0 = (1 << 0)
   *   ADC1 = (1 << 1)
   *   ADC2 = (1 << 2)
   *   ADC3 = (1 << 3)
   * 
* * By default the control loop is enabled on all ADC's. */ bool set_dc_offset_cl_enable(int bits, int mask); /*! * \brief return the usrp's serial number. * * \returns non-zero length string iff successful. */ std::string serial_number(); /*! * \brief Return daughterboard ID for given side [0,1]. * * \param which_side [0,1] which daughterboard * * \return daughterboard id >= 0 if successful * \return -1 if no daugherboard * \return -2 if invalid EEPROM on daughterboard */ virtual int daughterboard_id (int which_side) const = 0; /*! * \brief Clock ticks to delay rising of T/R signal * \sa write_atr_mask, write_atr_txval, write_atr_rxval */ bool write_atr_tx_delay(int value); /*! * \brief Clock ticks to delay falling edge of T/R signal * \sa write_atr_mask, write_atr_txval, write_atr_rxval */ bool write_atr_rx_delay(int value); // ================================================================ // Routines to access and control daughterboard specific i/o // // Those with a common_ prefix access either the Tx or Rx side depending // on the txrx parameter. Those without the common_ prefix are virtual // and are overriden in usrp_basic_rx and usrp_basic_tx to access the // the Rx or Tx sides automatically. We provide the common_ versions // for those daughterboards such as the WBX and XCVR2450 that share // h/w resources (such as the LO) between the Tx and Rx sides. // ---------------------------------------------------------------- // BEGIN common_ daughterboard control functions /*! * \brief Set Programmable Gain Amplifier(PGA) * * \param txrx Tx or Rx? * \param which_amp which amp [0,3] * \param gain_in_db gain value(linear in dB) * * gain is rounded to closest setting supported by hardware. * * \returns true iff sucessful. * * \sa pga_min(), pga_max(), pga_db_per_step() */ bool common_set_pga(txrx_t txrx, int which_amp, double gain_in_db); /*! * \brief Return programmable gain amplifier gain setting in dB. * * \param txrx Tx or Rx? * \param which_amp which amp [0,3] */ double common_pga(txrx_t txrx, int which_amp) const; /*! * \brief Return minimum legal PGA gain in dB. * \param txrx Tx or Rx? */ double common_pga_min(txrx_t txrx) const; /*! * \brief Return maximum legal PGA gain in dB. * \param txrx Tx or Rx? */ double common_pga_max(txrx_t txrx) const; /*! * \brief Return hardware step size of PGA(linear in dB). * \param txrx Tx or Rx? */ double common_pga_db_per_step(txrx_t txrx) const; /*! * \brief Write direction register(output enables) for pins that go to daughterboard. * * \param txrx Tx or Rx? * \param which_side [0,1] which size * \param value value to write into register * \param mask which bits of value to write into reg * * Each d'board has 16-bits of general purpose i/o. * Setting the bit makes it an output from the FPGA to the d'board. * * This register is initialized based on a value stored in the * d'board EEPROM. In general, you shouldn't be using this routine * without a very good reason. Using this method incorrectly will * kill your USRP motherboard and/or daughterboard. */ bool _common_write_oe(txrx_t txrx, int which_side, int value, int mask); /*! * \brief Write daughterboard i/o pin value * * \param txrx Tx or Rx? * \param which_side [0,1] which d'board * \param value value to write into register * \param mask which bits of value to write into reg */ bool common_write_io(txrx_t txrx, int which_side, int value, int mask); /*! * \brief Read daughterboard i/o pin value * * \param txrx Tx or Rx? * \param which_side [0,1] which d'board * \param value output */ bool common_read_io(txrx_t txrx, int which_side, int *value); /*! * \brief Read daughterboard i/o pin value * * \param txrx Tx or Rx? * \param which_side [0,1] which d'board * \returns register value if successful, else READ_FAILED */ int common_read_io(txrx_t txrx, int which_side); /*! * \brief Write daughterboard refclk config register * * \param txrx Tx or Rx? * \param which_side [0,1] which d'board * \param value value to write into register, see below * *
   * Control whether a reference clock is sent to the daughterboards,
   * and what frequency.  The refclk is sent on d'board i/o pin 0.
   * 
   *     3                   2                   1                       
   *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   *  +-----------------------------------------------+-+------------+
   *  |             Reserved (Must be zero)           |E|   DIVISOR  |
   *  +-----------------------------------------------+-+------------+
   * 
   *  Bit 7  -- 1 turns on refclk, 0 allows IO use
   *  Bits 6:0 Divider value
   * 
*/ bool common_write_refclk(txrx_t txrx, int which_side, int value); /*! * \brief Automatic Transmit/Receive switching *
   *
   * If automatic transmit/receive (ATR) switching is enabled in the
   * FR_ATR_CTL register, the presence or absence of data in the FPGA
   * transmit fifo selects between two sets of values for each of the 4
   * banks of daughterboard i/o pins.
   *
   * Each daughterboard slot has 3 16-bit registers associated with it:
   *   FR_ATR_MASK_*, FR_ATR_TXVAL_* and FR_ATR_RXVAL_*
   *
   * FR_ATR_MASK_{0,1,2,3}: 
   *
   *   These registers determine which of the daugherboard i/o pins are
   *   affected by ATR switching.  If a bit in the mask is set, the
   *   corresponding i/o bit is controlled by ATR, else it's output
   *   value comes from the normal i/o pin output register:
   *   FR_IO_{0,1,2,3}.
   *
   * FR_ATR_TXVAL_{0,1,2,3}:
   * FR_ATR_RXVAL_{0,1,2,3}:
   *
   *   If the Tx fifo contains data, then the bits from TXVAL that are
   *   selected by MASK are output.  Otherwise, the bits from RXVAL that
   *   are selected by MASK are output.
   * 
*/ bool common_write_atr_mask(txrx_t txrx, int which_side, int value); bool common_write_atr_txval(txrx_t txrx, int which_side, int value); bool common_write_atr_rxval(txrx_t txrx, int which_side, int value); /*! * \brief Write auxiliary digital to analog converter. * * \param txrx Tx or Rx? * \param which_side [0,1] which d'board * N.B., SLOT_TX_A and SLOT_RX_A share the same AUX DAC's. * SLOT_TX_B and SLOT_RX_B share the same AUX DAC's. * \param which_dac [2,3] TX slots must use only 2 and 3. * \param value [0,4095] * \returns true iff successful */ bool common_write_aux_dac(txrx_t txrx, int which_side, int which_dac, int value); /*! * \brief Read auxiliary analog to digital converter. * * \param txrx Tx or Rx? * \param which_side [0,1] which d'board * \param which_adc [0,1] * \param value return 12-bit value [0,4095] * \returns true iff successful */ bool common_read_aux_adc(txrx_t txrx, int which_side, int which_adc, int *value); /*! * \brief Read auxiliary analog to digital converter. * * \param txrx Tx or Rx? * \param which_side [0,1] which d'board * \param which_adc [0,1] * \returns value in the range [0,4095] if successful, else READ_FAILED. */ int common_read_aux_adc(txrx_t txrx, int which_side, int which_adc); // END common_ daughterboard control functions // ---------------------------------------------------------------- // BEGIN virtual daughterboard control functions /*! * \brief Set Programmable Gain Amplifier (PGA) * * \param which_amp which amp [0,3] * \param gain_in_db gain value (linear in dB) * * gain is rounded to closest setting supported by hardware. * * \returns true iff sucessful. * * \sa pga_min(), pga_max(), pga_db_per_step() */ virtual bool set_pga (int which_amp, double gain_in_db) = 0; /*! * \brief Return programmable gain amplifier gain setting in dB. * * \param which_amp which amp [0,3] */ virtual double pga (int which_amp) const = 0; /*! * \brief Return minimum legal PGA gain in dB. */ virtual double pga_min () const = 0; /*! * \brief Return maximum legal PGA gain in dB. */ virtual double pga_max () const = 0; /*! * \brief Return hardware step size of PGA (linear in dB). */ virtual double pga_db_per_step () const = 0; /*! * \brief Write direction register (output enables) for pins that go to daughterboard. * * \param which_side [0,1] which size * \param value value to write into register * \param mask which bits of value to write into reg * * Each d'board has 16-bits of general purpose i/o. * Setting the bit makes it an output from the FPGA to the d'board. * * This register is initialized based on a value stored in the * d'board EEPROM. In general, you shouldn't be using this routine * without a very good reason. Using this method incorrectly will * kill your USRP motherboard and/or daughterboard. */ virtual bool _write_oe (int which_side, int value, int mask) = 0; /*! * \brief Write daughterboard i/o pin value * * \param which_side [0,1] which d'board * \param value value to write into register * \param mask which bits of value to write into reg */ virtual bool write_io (int which_side, int value, int mask) = 0; /*! * \brief Read daughterboard i/o pin value * * \param which_side [0,1] which d'board * \param value output */ virtual bool read_io (int which_side, int *value) = 0; /*! * \brief Read daughterboard i/o pin value * * \param which_side [0,1] which d'board * \returns register value if successful, else READ_FAILED */ virtual int read_io (int which_side) = 0; /*! * \brief Write daughterboard refclk config register * * \param which_side [0,1] which d'board * \param value value to write into register, see below * *
   * Control whether a reference clock is sent to the daughterboards,
   * and what frequency.  The refclk is sent on d'board i/o pin 0.
   * 
   *     3                   2                   1                       
   *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   *  +-----------------------------------------------+-+------------+
   *  |             Reserved (Must be zero)           |E|   DIVISOR  |
   *  +-----------------------------------------------+-+------------+
   * 
   *  Bit 7  -- 1 turns on refclk, 0 allows IO use
   *  Bits 6:0 Divider value
   * 
*/ virtual bool write_refclk(int which_side, int value) = 0; virtual bool write_atr_mask(int which_side, int value) = 0; virtual bool write_atr_txval(int which_side, int value) = 0; virtual bool write_atr_rxval(int which_side, int value) = 0; /*! * \brief Write auxiliary digital to analog converter. * * \param which_side [0,1] which d'board * N.B., SLOT_TX_A and SLOT_RX_A share the same AUX DAC's. * SLOT_TX_B and SLOT_RX_B share the same AUX DAC's. * \param which_dac [2,3] TX slots must use only 2 and 3. * \param value [0,4095] * \returns true iff successful */ virtual bool write_aux_dac (int which_side, int which_dac, int value) = 0; /*! * \brief Read auxiliary analog to digital converter. * * \param which_side [0,1] which d'board * \param which_adc [0,1] * \param value return 12-bit value [0,4095] * \returns true iff successful */ virtual bool read_aux_adc (int which_side, int which_adc, int *value) = 0; /*! * \brief Read auxiliary analog to digital converter. * * \param which_side [0,1] which d'board * \param which_adc [0,1] * \returns value in the range [0,4095] if successful, else READ_FAILED. */ virtual int read_aux_adc (int which_side, int which_adc) = 0; /*! * \brief returns current fusb block size */ virtual int block_size() const = 0; /*! * \brief returns A/D or D/A converter rate in Hz */ virtual long converter_rate() const = 0; // END virtual daughterboard control functions // ---------------------------------------------------------------- // Low level implementation routines. // You probably shouldn't be using these... // bool _set_led (int which_led, bool on); /*! * \brief Write FPGA register. * \param regno 7-bit register number * \param value 32-bit value * \returns true iff successful */ bool _write_fpga_reg (int regno, int value); //< 7-bit regno, 32-bit value /*! * \brief Read FPGA register. * \param regno 7-bit register number * \param value 32-bit value * \returns true iff successful */ bool _read_fpga_reg (int regno, int *value); //< 7-bit regno, 32-bit value /*! * \brief Read FPGA register. * \param regno 7-bit register number * \returns register value if successful, else READ_FAILED */ int _read_fpga_reg (int regno); /*! * \brief Write FPGA register with mask. * \param regno 7-bit register number * \param value 16-bit value * \param mask 16-bit value * \returns true if successful * Only use this for registers who actually implement a mask in the verilog firmware, like FR_RX_MASTER_SLAVE */ bool _write_fpga_reg_masked (int regno, int value, int mask); /*! * \brief Write AD9862 register. * \param which_codec 0 or 1 * \param regno 6-bit register number * \param value 8-bit value * \returns true iff successful */ bool _write_9862 (int which_codec, int regno, unsigned char value); /*! * \brief Read AD9862 register. * \param which_codec 0 or 1 * \param regno 6-bit register number * \param value 8-bit value * \returns true iff successful */ bool _read_9862 (int which_codec, int regno, unsigned char *value) const; /*! * \brief Read AD9862 register. * \param which_codec 0 or 1 * \param regno 6-bit register number * \returns register value if successful, else READ_FAILED */ int _read_9862 (int which_codec, int regno) const; /*! * \brief Write data to SPI bus peripheral. * * \param optional_header 0,1 or 2 bytes to write before buf. * \param enables bitmask of peripherals to write. See usrp_spi_defs.h * \param format transaction format. See usrp_spi_defs.h SPI_FMT_* * \param buf the data to write * \returns true iff successful * Writes are limited to a maximum of 64 bytes. * * If \p format specifies that optional_header bytes are present, they are * written to the peripheral immediately prior to writing \p buf. */ bool _write_spi (int optional_header, int enables, int format, std::string buf); /* * \brief Read data from SPI bus peripheral. * * \param optional_header 0,1 or 2 bytes to write before buf. * \param enables bitmask of peripheral to read. See usrp_spi_defs.h * \param format transaction format. See usrp_spi_defs.h SPI_FMT_* * \param len number of bytes to read. Must be in [0,64]. * \returns the data read if sucessful, else a zero length string. * * Reads are limited to a maximum of 64 bytes. * * If \p format specifies that optional_header bytes are present, they * are written to the peripheral first. Then \p len bytes are read from * the peripheral and returned. */ std::string _read_spi (int optional_header, int enables, int format, int len); /*! * \brief Start data transfers. * Called in base class to derived class order. */ bool start (); /*! * \brief Stop data transfers. * Called in base class to derived class order. */ bool stop (); }; /*! * \brief class for accessing the receive side of the USRP * \ingroup usrp */ class usrp_basic_rx : public usrp_basic { private: fusb_devhandle *d_devhandle; fusb_ephandle *d_ephandle; int d_bytes_seen; // how many bytes we've seen bool d_first_read; bool d_rx_enable; protected: /*! * \param which_board Which USRP board on usb (not particularly useful; use 0) * \param fusb_block_size fast usb xfer block size. Must be a multiple of 512. * Use zero for a reasonable default. * \param fusb_nblocks number of fast usb URBs to allocate. Use zero for a reasonable default. * \param fpga_filename name of the rbf file to load * \param firmware_filename name of ihx file to load */ usrp_basic_rx (int which_board, int fusb_block_size=0, int fusb_nblocks=0, const std::string fpga_filename = "", const std::string firmware_filename = "" ); // throws if trouble bool set_rx_enable (bool on); bool rx_enable () const { return d_rx_enable; } bool disable_rx (); // conditional disable, return prev state void restore_rx (bool on); // conditional set void probe_rx_slots (bool verbose); public: ~usrp_basic_rx (); /*! * \brief invokes constructor, returns instance or 0 if trouble * * \param which_board Which USRP board on usb (not particularly useful; use 0) * \param fusb_block_size fast usb xfer block size. Must be a multiple of 512. * Use zero for a reasonable default. * \param fusb_nblocks number of fast usb URBs to allocate. Use zero for a reasonable default. * \param fpga_filename name of file that contains image to load into FPGA * \param firmware_filename name of file that contains image to load into FX2 */ static usrp_basic_rx *make (int which_board, int fusb_block_size=0, int fusb_nblocks=0, const std::string fpga_filename = "", const std::string firmware_filename = "" ); /*! * \brief tell the fpga the rate rx samples are coming from the A/D's * * div = fpga_master_clock_freq () / sample_rate * * sample_rate is determined by a myriad of registers * in the 9862. That's why you have to tell us, so * we can tell the fpga. */ bool set_fpga_rx_sample_rate_divisor (unsigned int div); /*! * \brief read data from the D/A's via the FPGA. * \p len must be a multiple of 512 bytes. * * \returns the number of bytes read, or -1 on error. * * If overrun is non-NULL it will be set true iff an RX overrun is detected. */ int read (void *buf, int len, bool *overrun); //! sampling rate of A/D converter virtual long converter_rate() const { return fpga_master_clock_freq(); } // 64M long adc_rate() const { return converter_rate(); } int daughterboard_id (int which_side) const { return d_dbid[which_side & 0x1]; } bool set_pga (int which_amp, double gain_in_db); double pga (int which_amp) const; double pga_min () const; double pga_max () const; double pga_db_per_step () const; bool _write_oe (int which_side, int value, int mask); bool write_io (int which_side, int value, int mask); bool read_io (int which_side, int *value); int read_io (int which_side); bool write_refclk(int which_side, int value); bool write_atr_mask(int which_side, int value); bool write_atr_txval(int which_side, int value); bool write_atr_rxval(int which_side, int value); bool write_aux_dac (int which_side, int which_dac, int value); bool read_aux_adc (int which_side, int which_adc, int *value); int read_aux_adc (int which_side, int which_adc); int block_size() const; // called in base class to derived class order bool start (); bool stop (); }; /*! * \brief class for accessing the transmit side of the USRP * \ingroup usrp */ class usrp_basic_tx : public usrp_basic { private: fusb_devhandle *d_devhandle; fusb_ephandle *d_ephandle; int d_bytes_seen; // how many bytes we've seen bool d_first_write; bool d_tx_enable; protected: /*! * \param which_board Which USRP board on usb (not particularly useful; use 0) * \param fusb_block_size fast usb xfer block size. Must be a multiple of 512. * Use zero for a reasonable default. * \param fusb_nblocks number of fast usb URBs to allocate. Use zero for a reasonable default. * \param fpga_filename name of file that contains image to load into FPGA * \param firmware_filename name of file that contains image to load into FX2 */ usrp_basic_tx (int which_board, int fusb_block_size=0, int fusb_nblocks=0, const std::string fpga_filename = "", const std::string firmware_filename = "" ); // throws if trouble bool set_tx_enable (bool on); bool tx_enable () const { return d_tx_enable; } bool disable_tx (); // conditional disable, return prev state void restore_tx (bool on); // conditional set void probe_tx_slots (bool verbose); public: ~usrp_basic_tx (); /*! * \brief invokes constructor, returns instance or 0 if trouble * * \param which_board Which USRP board on usb (not particularly useful; use 0) * \param fusb_block_size fast usb xfer block size. Must be a multiple of 512. * Use zero for a reasonable default. * \param fusb_nblocks number of fast usb URBs to allocate. Use zero for a reasonable default. * \param fpga_filename name of file that contains image to load into FPGA * \param firmware_filename name of file that contains image to load into FX2 */ static usrp_basic_tx *make (int which_board, int fusb_block_size=0, int fusb_nblocks=0, const std::string fpga_filename = "", const std::string firmware_filename = "" ); /*! * \brief tell the fpga the rate tx samples are going to the D/A's * * div = fpga_master_clock_freq () * 2 * * sample_rate is determined by a myriad of registers * in the 9862. That's why you have to tell us, so * we can tell the fpga. */ bool set_fpga_tx_sample_rate_divisor (unsigned int div); /*! * \brief Write data to the A/D's via the FPGA. * * \p len must be a multiple of 512 bytes. * \returns number of bytes written or -1 on error. * * if \p underrun is non-NULL, it will be set to true iff * a transmit underrun condition is detected. */ int write (const void *buf, int len, bool *underrun); /* * Block until all outstanding writes have completed. * This is typically used to assist with benchmarking */ void wait_for_completion (); //! sampling rate of D/A converter virtual long converter_rate() const { return fpga_master_clock_freq () * 2; } // 128M long dac_rate() const { return converter_rate(); } int daughterboard_id (int which_side) const { return d_dbid[which_side & 0x1]; } bool set_pga (int which_amp, double gain_in_db); double pga (int which_amp) const; double pga_min () const; double pga_max () const; double pga_db_per_step () const; bool _write_oe (int which_side, int value, int mask); bool write_io (int which_side, int value, int mask); bool read_io (int which_side, int *value); int read_io (int which_side); bool write_refclk(int which_side, int value); bool write_atr_mask(int which_side, int value); bool write_atr_txval(int which_side, int value); bool write_atr_rxval(int which_side, int value); bool write_aux_dac (int which_side, int which_dac, int value); bool read_aux_adc (int which_side, int which_adc, int *value); int read_aux_adc (int which_side, int which_adc); int block_size() const; // called in base class to derived class order bool start (); bool stop (); }; #endif