/* -*- c++ -*- */ /* * Copyright 2003,2004 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * ---------------------------------------------------------------------- * Mid level interface to the Universal Software Radio Peripheral (Rev 1) * * These classes implement the basic functionality for talking to the * USRP. They try to be as independent of the signal processing code * in FPGA as possible. They implement access to the low level * peripherals on the board, provide a common way for reading and * writing registers in the FPGA, and provide the high speed interface * to streaming data across the USB. * * It is expected that subclasses will be derived that provide * access to the functionality to a particular FPGA configuration. * ---------------------------------------------------------------------- */ #ifndef INCLUDED_USRP_BASIC_H #define INCLUDED_USRP_BASIC_H #include #include struct usb_dev_handle; class fusb_devhandle; class fusb_ephandle; /*! * \brief base class for usrp operations */ class usrp_basic { private: // NOT IMPLEMENTED usrp_basic (const usrp_basic &rhs); // no copy constructor usrp_basic &operator= (const usrp_basic &rhs); // no assignment operator protected: struct usb_dev_handle *d_udh; int d_usb_data_rate; // bytes/sec int d_bytes_per_poll; // how often to poll for overruns bool d_verbose; static const int MAX_REGS = 128; unsigned int d_fpga_shadows[MAX_REGS]; usrp_basic (int which_board, struct usb_dev_handle *open_interface (struct usb_device *dev), const std::string fpga_filename = "", const std::string firmware_filename = ""); /*! * \brief advise usrp_basic of usb data rate (bytes/sec) * * N.B., this doesn't tweak any hardware. Derived classes * should call this to inform us of the data rate whenever it's * first set or if it changes. * * \param usb_data_rate bytes/sec */ void set_usb_data_rate (int usb_data_rate); /*! * \brief Write auxiliary digital to analog converter. * * \param slot Which Tx or Rx slot to write. * N.B., SLOT_TX_A and SLOT_RX_A share the same AUX DAC's. * SLOT_TX_B and SLOT_RX_B share the same AUX DAC's. * \param which_dac [0,3] RX slots must use only 0 and 1. TX slots must use only 2 and 3. * \param value [0,4095] * \returns true iff successful */ bool write_aux_dac (int slot, int which_dac, int value); /*! * \brief Read auxiliary analog to digital converter. * * \param slot 2-bit slot number. E.g., SLOT_TX_A * \param which_adc [0,1] * \param value return 12-bit value [0,4095] * \returns true iff successful */ bool read_aux_adc (int slot, int which_adc, int *value); /*! * \brief Read auxiliary analog to digital converter. * * \param slot 2-bit slot number. E.g., SLOT_TX_A * \param which_adc [0,1] * \returns value in the range [0,4095] if successful, else READ_FAILED. */ int read_aux_adc (int slot, int which_adc); public: virtual ~usrp_basic (); /*! * \brief return frequency of master oscillator on USRP */ long fpga_master_clock_freq () const { return 64000000; } /*! * \returns usb data rate in bytes/sec */ int usb_data_rate () const { return d_usb_data_rate; } void set_verbose (bool on) { d_verbose = on; } //! magic value used on alternate register read interfaces static const int READ_FAILED = -99999; /*! * \brief Write EEPROM on motherboard or any daughterboard. * \param i2c_addr I2C bus address of EEPROM * \param eeprom_offset byte offset in EEPROM to begin writing * \param buf the data to write * \returns true iff sucessful */ bool write_eeprom (int i2c_addr, int eeprom_offset, const std::string buf); /*! * \brief Read EEPROM on motherboard or any daughterboard. * \param i2c_addr I2C bus address of EEPROM * \param eeprom_offset byte offset in EEPROM to begin reading * \param len number of bytes to read * \returns the data read if successful, else a zero length string. */ std::string read_eeprom (int i2c_addr, int eeprom_offset, int len); /*! * \brief Write to I2C peripheral * \param i2c_addr I2C bus address (7-bits) * \param buf the data to write * \returns true iff successful * Writes are limited to a maximum of of 64 bytes. */ bool write_i2c (int i2c_addr, const std::string buf); /*! * \brief Read from I2C peripheral * \param i2c_addr I2C bus address (7-bits) * \param len number of bytes to read * \returns the data read if successful, else a zero length string. * Reads are limited to a maximum of 64 bytes. */ std::string read_i2c (int i2c_addr, int len); /*! * \brief Set ADC offset correction * \param which which ADC[0,3]: 0 = RX_A I, 1 = RX_A Q... * \param offset 16-bit value to subtract from raw ADC input. */ bool set_adc_offset (int which, int offset); /*! * \brief Set DAC offset correction * \param which which DAC[0,3]: 0 = TX_A I, 1 = TX_A Q... * \param offset 10-bit offset value (ambiguous format: See AD9862 datasheet). * \param offset_pin 1-bit value. If 0 offset applied to -ve differential pin; * If 1 offset applied to +ve differential pin. */ bool set_dac_offset (int which, int offset, int offset_pin); /*! * \brief Control ADC input buffer * \param which which ADC[0,3] * \param bypass if non-zero, bypass input buffer and connect input * directly to switched cap SHA input of RxPGA. */ bool set_adc_buffer_bypass (int which, bool bypass); /*! * \brief return the usrp's serial number. * * \returns non-zero length string iff successful. */ std::string serial_number(); // ---------------------------------------------------------------- // Low level implementation routines. // You probably shouldn't be using these... // bool _set_led (int which, bool on); /*! * \brief Write FPGA register. * \param regno 7-bit register number * \param value 32-bit value * \returns true iff successful */ bool _write_fpga_reg (int regno, int value); //< 7-bit regno, 32-bit value /*! * \brief Read FPGA register. * \param regno 7-bit register number * \param value 32-bit value * \returns true iff successful */ bool _read_fpga_reg (int regno, int *value); //< 7-bit regno, 32-bit value /*! * \brief Read FPGA register. * \param regno 7-bit register number * \returns register value if successful, else READ_FAILED */ int _read_fpga_reg (int regno); /*! * \brief Write FPGA register with mask. * \param regno 7-bit register number * \param value 16-bit value * \param mask 16-bit value * \returns true if successful * Only use this for registers who actually implement a mask in the verilog firmware, like FR_RX_MASTER_SLAVE */ bool _write_fpga_reg_masked (int regno, int value, int mask); /*! * \brief Write AD9862 register. * \param which_codec 0 or 1 * \param regno 6-bit register number * \param value 8-bit value * \returns true iff successful */ bool _write_9862 (int which_codec, int regno, unsigned char value); /*! * \brief Read AD9862 register. * \param which_codec 0 or 1 * \param regno 6-bit register number * \param value 8-bit value * \returns true iff successful */ bool _read_9862 (int which_codec, int regno, unsigned char *value) const; /*! * \brief Read AD9862 register. * \param which_codec 0 or 1 * \param regno 6-bit register number * \returns register value if successful, else READ_FAILED */ int _read_9862 (int which_codec, int regno) const; /*! * \brief Write data to SPI bus peripheral. * * \param optional_header 0,1 or 2 bytes to write before buf. * \param enables bitmask of peripherals to write. See usrp_spi_defs.h * \param format transaction format. See usrp_spi_defs.h SPI_FMT_* * \param buf the data to write * \returns true iff successful * Writes are limited to a maximum of 64 bytes. * * If \p format specifies that optional_header bytes are present, they are * written to the peripheral immediately prior to writing \p buf. */ bool _write_spi (int optional_header, int enables, int format, std::string buf); /* * \brief Read data from SPI bus peripheral. * * \param optional_header 0,1 or 2 bytes to write before buf. * \param enables bitmask of peripheral to read. See usrp_spi_defs.h * \param format transaction format. See usrp_spi_defs.h SPI_FMT_* * \param len number of bytes to read. Must be in [0,64]. * \returns the data read if sucessful, else a zero length string. * * Reads are limited to a maximum of 64 bytes. * * If \p format specifies that optional_header bytes are present, they * are written to the peripheral first. Then \p len bytes are read from * the peripheral and returned. */ std::string _read_spi (int optional_header, int enables, int format, int len); /*! * \brief Start data transfers. * Called in base class to derived class order. */ bool start (); /*! * \brief Stop data transfers. * Called in base class to derived class order. */ bool stop (); }; /*! * \brief class for accessing the receive side of the USRP */ class usrp_basic_rx : public usrp_basic { private: fusb_devhandle *d_devhandle; fusb_ephandle *d_ephandle; int d_bytes_seen; // how many bytes we've seen bool d_first_read; bool d_rx_enable; protected: int d_dbid[2]; // Rx daughterboard ID's /*! * \param which_board Which USRP board on usb (not particularly useful; use 0) * \param fusb_block_size fast usb xfer block size. Must be a multiple of 512. * Use zero for a reasonable default. * \param fusb_nblocks number of fast usb URBs to allocate. Use zero for a reasonable default. */ usrp_basic_rx (int which_board, int fusb_block_size=0, int fusb_nblocks=0, const std::string fpga_filename = "", const std::string firmware_filename = "" ); // throws if trouble bool set_rx_enable (bool on); bool rx_enable () const { return d_rx_enable; } bool disable_rx (); // conditional disable, return prev state void restore_rx (bool on); // conditional set void probe_rx_slots (bool verbose); int dboard_to_slot (int dboard) { return (dboard << 1) | 1; } public: ~usrp_basic_rx (); /*! * \brief invokes constructor, returns instance or 0 if trouble * * \param which_board Which USRP board on usb (not particularly useful; use 0) * \param fusb_block_size fast usb xfer block size. Must be a multiple of 512. * Use zero for a reasonable default. * \param fusb_nblocks number of fast usb URBs to allocate. Use zero for a reasonable default. */ static usrp_basic_rx *make (int which_board, int fusb_block_size=0, int fusb_nblocks=0, const std::string fpga_filename = "", const std::string firmware_filename = "" ); // MANIPULATORS /*! * \brief tell the fpga the rate rx samples are coming from the A/D's * * div = fpga_master_clock_freq () / sample_rate * * sample_rate is determined by a myriad of registers * in the 9862. That's why you have to tell us, so * we can tell the fpga. */ bool set_fpga_rx_sample_rate_divisor (unsigned int div); /*! * \brief read data from the D/A's via the FPGA. * \p len must be a multiple of 512 bytes. * * \returns the number of bytes read, or -1 on error. * * If overrun is non-NULL it will be set true iff an RX overrun is detected. */ int read (void *buf, int len, bool *overrun); // ACCESSORS //! sampling rate of A/D converter virtual long converter_rate() const { return fpga_master_clock_freq(); } // 64M long adc_rate() const { return converter_rate(); } long adc_freq() const { return converter_rate(); } //!< deprecated method name /*! * \brief Return daughterboard ID for given Rx daughterboard slot [0,1]. * * \param which_dboard [0,1] which Rx daughterboard * * \return daughterboard id >= 0 if successful * \return -1 if no daugherboard * \return -2 if invalid EEPROM on daughterboard */ int daughterboard_id (int which_dboard) const { return d_dbid[which_dboard & 0x1]; } // ---------------------------------------------------------------- // routines for controlling the Programmable Gain Amplifier /*! * \brief Set Programmable Gain Amplifier (PGA) * * \param which which A/D [0,3] * \param gain_in_db gain value (linear in dB) * * gain is rounded to closest setting supported by hardware. * * \returns true iff sucessful. * * \sa pga_min(), pga_max(), pga_db_per_step() */ bool set_pga (int which, double gain_in_db); /*! * \brief Return programmable gain amplifier gain setting in dB. * * \param which which A/D [0,3] */ double pga (int which) const; /*! * \brief Return minimum legal PGA gain in dB. */ double pga_min () const { return 0.0; } /*! * \brief Return maximum legal PGA gain in dB. */ double pga_max () const { return 20.0; } /*! * \brief Return hardware step size of PGA (linear in dB). */ double pga_db_per_step () const { return 20.0 / 20; } /*! * \brief Write direction register (output enables) for pins that go to daughterboard. * * \param which_dboard [0,1] which d'board * \param value value to write into register * \param mask which bits of value to write into reg * * Each d'board has 16-bits of general purpose i/o. * Setting the bit makes it an output from the FPGA to the d'board. * * This register is initialized based on a value stored in the * d'board EEPROM. In general, you shouldn't be using this routine * without a very good reason. Using this method incorrectly will * kill your USRP motherboard and/or daughterboard. */ bool _write_oe (int which_dboard, int value, int mask); /*! * \brief Write daughterboard i/o pin value * * \param which_dboard [0,1] which d'board * \param value value to write into register * \param mask which bits of value to write into reg */ bool write_io (int which_dboard, int value, int mask); /*! * \brief Read daughterboard i/o pin value * * \param which_dboard [0,1] which d'board * \param value output */ bool read_io (int which_dboard, int *value); /*! * \brief Read daughterboard i/o pin value * * \param which_dboard [0,1] which d'board * \returns register value if successful, else READ_FAILED */ int read_io (int which_dboard); /*! * \brief Write auxiliary digital to analog converter. * * \param which_dboard [0,1] which d'board * N.B., SLOT_TX_A and SLOT_RX_A share the same AUX DAC's. * SLOT_TX_B and SLOT_RX_B share the same AUX DAC's. * \param which_dac [2,3] TX slots must use only 2 and 3. * \param value [0,4095] * \returns true iff successful */ bool write_aux_dac (int which_board, int which_dac, int value); /*! * \brief Read auxiliary analog to digital converter. * * \param which_dboard [0,1] which d'board * \param which_adc [0,1] * \param value return 12-bit value [0,4095] * \returns true iff successful */ bool read_aux_adc (int which_dboard, int which_adc, int *value); /*! * \brief Read auxiliary analog to digital converter. * * \param which_dboard [0,1] which d'board * \param which_adc [0,1] * \returns value in the range [0,4095] if successful, else READ_FAILED. */ int read_aux_adc (int which_dboard, int which_adc); /*! * \brief returns current fusb block size */ int block_size() const; /*! * \brief Enable/disable automatic DC offset removal control loop in FPGA * * \param bits which control loops to enable * \param mask which \p bits to pay attention to * * If the corresponding bit is set, enable the automatic DC * offset correction control loop. * *
   * The 4 low bits are significant:
   *
   *   ADC0 = (1 << 0)
   *   ADC1 = (1 << 1)
   *   ADC2 = (1 << 2)
   *   ADC3 = (1 << 3)
   * 
* * By default the control loop is enabled on all ADC's. */ bool set_dc_offset_cl_enable(int bits, int mask); // called in base class to derived class order bool start (); bool stop (); }; /*! * \brief class for accessing the transmit side of the USRP */ class usrp_basic_tx : public usrp_basic { private: fusb_devhandle *d_devhandle; fusb_ephandle *d_ephandle; int d_bytes_seen; // how many bytes we've seen bool d_first_write; bool d_tx_enable; protected: int d_dbid[2]; // Tx daughterboard ID's /*! * \param which_board Which USRP board on usb (not particularly useful; use 0) * \param fusb_block_size fast usb xfer block size. Must be a multiple of 512. * Use zero for a reasonable default. * \param fusb_nblocks number of fast usb URBs to allocate. Use zero for a reasonable default. */ usrp_basic_tx (int which_board, int fusb_block_size=0, int fusb_nblocks=0, const std::string fpga_filename = "", const std::string firmware_filename = "" ); // throws if trouble bool set_tx_enable (bool on); bool tx_enable () const { return d_tx_enable; } bool disable_tx (); // conditional disable, return prev state void restore_tx (bool on); // conditional set void probe_tx_slots (bool verbose); int dboard_to_slot (int dboard) { return (dboard << 1) | 0; } public: ~usrp_basic_tx (); /*! * \brief invokes constructor, returns instance or 0 if trouble * * \param which_board Which USRP board on usb (not particularly useful; use 0) * \param fusb_block_size fast usb xfer block size. Must be a multiple of 512. * Use zero for a reasonable default. * \param fusb_nblocks number of fast usb URBs to allocate. Use zero for a reasonable default. */ static usrp_basic_tx *make (int which_board, int fusb_block_size=0, int fusb_nblocks=0, const std::string fpga_filename = "", const std::string firmware_filename = "" ); // MANIPULATORS /*! * \brief tell the fpga the rate tx samples are going to the D/A's * * div = fpga_master_clock_freq () * 2 * * sample_rate is determined by a myriad of registers * in the 9862. That's why you have to tell us, so * we can tell the fpga. */ bool set_fpga_tx_sample_rate_divisor (unsigned int div); /*! * \brief Write data to the A/D's via the FPGA. * * \p len must be a multiple of 512 bytes. * \returns number of bytes written or -1 on error. * * if \p underrun is non-NULL, it will be set to true iff * a transmit underrun condition is detected. */ int write (const void *buf, int len, bool *underrun); /* * Block until all outstanding writes have completed. * This is typically used to assist with benchmarking */ void wait_for_completion (); // ACCESSORS //! sampling rate of D/A converter virtual long converter_rate() const { return fpga_master_clock_freq () * 2; } // 128M long dac_rate() const { return converter_rate(); } long dac_freq() const { return converter_rate(); } //!< deprecated method name /*! * \brief Return daughterboard ID for given Tx daughterboard slot [0,1]. * * \return daughterboard id >= 0 if successful * \return -1 if no daugherboard * \return -2 if invalid EEPROM on daughterboard */ int daughterboard_id (int which_dboard) const { return d_dbid[which_dboard & 0x1]; } // ---------------------------------------------------------------- // routines for controlling the Programmable Gain Amplifier /*! * \brief Set Programmable Gain Amplifier (PGA) * * \param which which D/A [0,3] * \param gain_in_db gain value (linear in dB) * * gain is rounded to closest setting supported by hardware. * Note that DAC 0 and DAC 1 share a gain setting as do DAC 2 and DAC 3. * Setting DAC 0 affects DAC 1 and vice versa. Same with DAC 2 and DAC 3. * * \returns true iff sucessful. * * \sa pga_min(), pga_max(), pga_db_per_step() */ bool set_pga (int which, double gain_in_db); /*! * \brief Return programmable gain amplifier gain in dB. * * \param which which D/A [0,3] */ double pga (int which) const; /*! * \brief Return minimum legal PGA gain in dB. */ double pga_min () const { return -20.0; } /*! * \brief Return maximum legal PGA gain in dB. */ double pga_max () const { return 0.0; } /*! * \brief Return hardware step size of PGA (linear in dB). */ double pga_db_per_step () const { return 20.0/255; } /*! * \brief Write direction register (output enables) for pins that go to daughterboard. * * \param which_dboard [0,1] which d'board * \param value value to write into register * \param mask which bits of value to write into reg * * Each d'board has 16-bits of general purpose i/o. * Setting the bit makes it an output from the FPGA to the d'board. * * This register is initialized based on a value stored in the * d'board EEPROM. In general, you shouldn't be using this routine * without a very good reason. Using this method incorrectly will * kill your USRP motherboard and/or daughterboard. */ bool _write_oe (int which_dboard, int value, int mask); /*! * \brief Write daughterboard i/o pin value * * \param which_dboard [0,1] which d'board * \param value value to write into register * \param mask which bits of value to write into reg */ bool write_io (int which_dboard, int value, int mask); /*! * \brief Read daughterboard i/o pin value * * \param which_dboard [0,1] which d'board * \param value return value */ bool read_io (int which_dboard, int *value); /*! * \brief Read daughterboard i/o pin value * * \param which_dboard [0,1] which d'board * \returns register value if successful, else READ_FAILED */ int read_io (int which_dboard); /*! * \brief Write auxiliary digital to analog converter. * * \param which_dboard [0,1] which d'board * N.B., SLOT_TX_A and SLOT_RX_A share the same AUX DAC's. * SLOT_TX_B and SLOT_RX_B share the same AUX DAC's. * \param which_dac [2,3] TX slots must use only 2 and 3. * \param value [0,4095] * \returns true iff successful */ bool write_aux_dac (int which_board, int which_dac, int value); /*! * \brief Read auxiliary analog to digital converter. * * \param which_dboard [0,1] which d'board * \param which_adc [0,1] * \param value return 12-bit value [0,4095] * \returns true iff successful */ bool read_aux_adc (int which_dboard, int which_adc, int *value); /*! * \brief Read auxiliary analog to digital converter. * * \param which_dboard [0,1] which d'board * \param which_adc [0,1] * \returns value in the range [0,4095] if successful, else READ_FAILED. */ int read_aux_adc (int which_dboard, int which_adc); /*! * \brief returns current fusb block size */ int block_size() const; // called in base class to derived class order bool start (); bool stop (); }; #endif