// // Copyright 2008 Free Software Foundation, Inc. // // This file is part of GNU Radio // // GNU Radio is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either asversion 3, or (at your option) // any later version. // // GNU Radio is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with GNU Radio; see the file COPYING. If not, write to // the Free Software Foundation, Inc., 51 Franklin Street, // Boston, MA 02110-1301, USA. #include #include #include /* ------------------------------------------------------------------------ * A few comments about the XCVR2450: * * It is half-duplex. I.e., transmit and receive are mutually exclusive. * There is a single LO for both the Tx and Rx sides. * For our purposes the board is always either receiving or transmitting. * * Each board is uniquely identified by the *USRP hardware* instance and side * This dictionary holds a weak reference to existing board controller so it * can be created or retrieved as needed. */ /*****************************************************************************/ xcvr2450::xcvr2450(usrp_basic_sptr _usrp, int which) : d_weak_usrp(_usrp), d_which(which) { // Handler for Tv Rx daughterboards. // // @param usrp: instance of usrp.source_c // @param which: which side: 0, 1 corresponding to RX_A or RX_B respectively // Use MSB with no header d_spi_format = SPI_FMT_MSB | SPI_FMT_HDR_0; if(which == 0) { d_spi_enable = SPI_ENABLE_RX_A; } else { d_spi_enable = SPI_ENABLE_RX_B; } // Sane defaults d_mimo = 1; // 0 = OFF, 1 = ON d_int_div = 192; // 128 = min, 255 = max d_frac_div = 0; // 0 = min, 65535 = max d_highband = 0; // 0 = freq <= 5.4e9, 1 = freq > 5.4e9 d_five_gig = 0; // 0 = freq <= 3.e9, 1 = freq > 3e9 d_cp_current = 0; // 0 = 2mA, 1 = 4mA d_ref_div = 4; // 1 to 7 d_rssi_hbw = 0; // 0 = 2 MHz, 1 = 6 MHz d_txlpf_bw = 1; // 1 = 12 MHz, 2 = 18 MHz, 3 = 24 MHz d_rxlpf_bw = 1; // 0 = 7.5 MHz, 1 = 9.5 MHz, 2 = 14 MHz, 3 = 18 MHz d_rxlpf_fine = 2; // 0 = 90%, 1 = 95%, 2 = 100%, 3 = 105%, 4 = 110% d_rxvga_ser = 1; // 0 = RXVGA controlled by B7:1, 1=controlled serially d_rssi_range = 1; // 0 = low range (datasheet typo), 1=high range (0.5V - 2.0V) d_rssi_mode = 1; // 0 = enable follows RXHP, 1 = enabled d_rssi_mux = 0; // 0 = RSSI, 1 = TEMP d_rx_hp_pin = 0; // 0 = Fc set by rx_hpf, 1 = 600 KHz d_rx_hpf = 0; // 0 = 100Hz, 1 = 30KHz d_rx_ant = 0; // 0 = Ant. #1, 1 = Ant. #2 d_tx_ant = 0; // 0 = Ant. #1, 1 = Ant. #2 d_txvga_ser = 1; // 0 = TXVGA controlled by B6:1, 1=controlled serially d_tx_driver_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin) d_tx_vga_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin) d_tx_upconv_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin) d_tx_bb_gain = 3; // 0=maxgain-5dB, 1=max-3dB, 2=max-1.5dB, 3=max d_pabias_delay = 15; // 0 = 0, 15 = 7uS d_pabias = 0; // 0 = 0 uA, 63 = 315uA d_rx_rf_gain = 0; // 0 = 0dB, 1 = 0dB, 2 = 15dB, 3 = 30dB d_rx_bb_gain = 16; // 0 = min, 31 = max (0 - 62 dB) d_txgain = 63; // 0 = min, 63 = max // Initialize GPIO and ATR tx_write_io(TX_SAFE_IO, TX_OE_MASK); tx_write_oe(TX_OE_MASK, ~0); tx_set_atr_txval(TX_SAFE_IO); tx_set_atr_rxval(TX_SAFE_IO); tx_set_atr_mask(TX_OE_MASK); rx_write_io(RX_SAFE_IO, RX_OE_MASK); rx_write_oe(RX_OE_MASK, ~0); rx_set_atr_rxval(RX_SAFE_IO); rx_set_atr_txval(RX_SAFE_IO); rx_set_atr_mask(RX_OE_MASK); // Initialize chipset // TODO: perform reset sequence to ensure power up defaults set_reg_standby(); set_reg_bandselpll(); set_reg_cal(); set_reg_lpf(); set_reg_rxrssi_ctrl(); set_reg_txlin_gain(); set_reg_pabias(); set_reg_rxgain(); set_reg_txgain(); //FIXME: set_freq(2.45e9); } xcvr2450::~xcvr2450() { //printf("xcvr2450::destructor\n"); tx_set_atr_txval(TX_SAFE_IO); tx_set_atr_rxval(TX_SAFE_IO); rx_set_atr_rxval(RX_SAFE_IO); rx_set_atr_txval(RX_SAFE_IO); } bool xcvr2450::operator==(xcvr2450_key x) { if((x.serial_no == usrp()->serial_number()) && (x.which == d_which)) { return true; } else { return false; } } void xcvr2450::set_reg_standby() { d_reg_standby = ((d_mimo<<17) | (1<<16) | (1<<6) | (1<<5) | (1<<4) | 2); send_reg(d_reg_standby); } void xcvr2450::set_reg_int_divider() { d_reg_int_divider = (((d_frac_div & 0x03)<<16) | (d_int_div<<4) | 3); send_reg(d_reg_int_divider); } void xcvr2450::set_reg_frac_divider() { d_reg_frac_divider = ((d_frac_div & 0xfffc)<<2) | 4; send_reg(d_reg_frac_divider); } void xcvr2450::set_reg_bandselpll() { d_reg_bandselpll = ((d_mimo<<17) | (1<<16) | (1<<15) | (1<<11) | (d_highband<<10) | (d_cp_current<<9) | (d_ref_div<<5) | (d_five_gig<<4) | 5); send_reg(d_reg_bandselpll); } void xcvr2450::set_reg_cal() { // FIXME do calibration d_reg_cal = (1<<14)|6; send_reg(d_reg_cal); } void xcvr2450::set_reg_lpf() { d_reg_lpf = ( (d_rssi_hbw<<15) | (d_txlpf_bw<<10) | (d_rxlpf_bw<<9) | (d_rxlpf_fine<<4) | 7); send_reg(d_reg_lpf); } void xcvr2450::set_reg_rxrssi_ctrl() { d_reg_rxrssi_ctrl = ((d_rxvga_ser<<16) | (d_rssi_range<<15) | (d_rssi_mode<<14) | (d_rssi_mux<<12) | (1<<9) | (d_rx_hpf<<6) | (1<<4) | 8); send_reg(d_reg_rxrssi_ctrl); } void xcvr2450::set_reg_txlin_gain() { d_reg_txlin_gain = ((d_txvga_ser<<14) | (d_tx_driver_lin<<12) | (d_tx_vga_lin<<10) | (d_tx_upconv_lin<<6) | (d_tx_bb_gain<<4) | 9); send_reg(d_reg_txlin_gain); } void xcvr2450::set_reg_pabias() { d_reg_pabias = ( (d_pabias_delay<<10) | (d_pabias<<4) | 10); send_reg(d_reg_pabias); } void xcvr2450::set_reg_rxgain() { d_reg_rxgain = ( (d_rx_rf_gain<<9) | (d_rx_bb_gain<<4) | 11); send_reg(d_reg_rxgain); } void xcvr2450::set_reg_txgain() { d_reg_txgain = (d_txgain<<4) | 12; send_reg(d_reg_txgain); } void xcvr2450::send_reg(int v) { // Send 24 bits, it keeps last 18 clocked in char c[3]; c[0] = (char)((v >> 16) & 0xff); c[1] = (char)((v >> 8) & 0xff); c[2] = (char)((v & 0xff)); std::string s(c, 3); usrp()->_write_spi(0, d_spi_enable, d_spi_format, s); //printf("xcvr2450: Setting reg %d to %06X\n", (v&15), v); } // -------------------------------------------------------------------- // These methods control the GPIO bus. Since the board has to access // both the io_rx_* and io_tx_* pins, we define our own methods to do so. // This bypasses any code in db_base. // // The board operates in ATR mode, always. Thus, when the board is first // initialized, it is in receive mode, until bits show up in the TX FIFO. // // FIXME these should just call the similarly named common_* method on usrp_basic bool xcvr2450::tx_write_oe(int value, int mask) { int reg; if(d_which) reg = FR_OE_0; else reg = FR_OE_2; return usrp()->_write_fpga_reg(reg, (mask << 16) | value); } bool xcvr2450::tx_write_io(int value, int mask) { int reg; if(d_which) reg = FR_IO_0; else reg = FR_IO_2; return usrp()->_write_fpga_reg(reg, (mask << 16) | value); } int xcvr2450::tx_read_io() { int val; if(d_which) val = FR_RB_IO_RX_A_IO_TX_A; else val = FR_RB_IO_RX_B_IO_TX_B; int t = usrp()->_read_fpga_reg(val); return t & 0xffff; } bool xcvr2450::rx_write_oe(int value, int mask) { int reg; if(d_which) reg = FR_OE_1; else reg = FR_OE_3; return usrp()->_write_fpga_reg(reg, (mask << 16) | value); } bool xcvr2450::rx_write_io(int value, int mask) { int reg; if(d_which) reg = FR_IO_1; else reg = FR_IO_3; return usrp()->_write_fpga_reg(reg, (mask << 16) | value); } int xcvr2450::rx_read_io() { int val; if(d_which) val = FR_RB_IO_RX_A_IO_TX_A; else val = FR_RB_IO_RX_B_IO_TX_B; int t = usrp()->_read_fpga_reg(val); return (t >> 16) & 0xffff; } bool xcvr2450::tx_set_atr_mask(int v) { int reg; if(d_which) reg = FR_ATR_MASK_0; else reg = FR_ATR_MASK_2; return usrp()->_write_fpga_reg(reg, v); } bool xcvr2450::tx_set_atr_txval(int v) { int reg; if(d_which) reg = FR_ATR_TXVAL_0; else reg = FR_ATR_TXVAL_2; return usrp()->_write_fpga_reg(reg, v); } bool xcvr2450::tx_set_atr_rxval(int v) { int reg; if(d_which) reg = FR_ATR_RXVAL_0; else reg = FR_ATR_RXVAL_2; return usrp()->_write_fpga_reg(reg, v); } bool xcvr2450::rx_set_atr_mask(int v) { int reg; if(d_which) reg = FR_ATR_MASK_1; else reg = FR_ATR_MASK_3; return usrp()->_write_fpga_reg(reg, v); } bool xcvr2450::rx_set_atr_txval(int v) { int reg; if(d_which) reg = FR_ATR_TXVAL_1; else reg = FR_ATR_TXVAL_3; return usrp()->_write_fpga_reg(reg, v); } bool xcvr2450::rx_set_atr_rxval(int v) { int reg; if(d_which) reg = FR_ATR_RXVAL_1; else reg = FR_ATR_RXVAL_3; return usrp()->_write_fpga_reg(reg, v); } // ---------------------------------------------------------------- void xcvr2450::set_gpio() { // We calculate four values: // // io_rx_while_rx: what to drive onto io_rx_* when receiving // io_rx_while_tx: what to drive onto io_rx_* when transmitting // io_tx_while_rx: what to drive onto io_tx_* when receiving // io_tx_while_tx: what to drive onto io_tx_* when transmitting // // B1-B7 is ignored as gain is set serially for now. int rx_hp, tx_antsel, rx_antsel, tx_pa_sel; if(d_rx_hp_pin) rx_hp = 0; else rx_hp = RX_HP; if(d_tx_ant) tx_antsel = ANTSEL_TX1_RX2; else tx_antsel = ANTSEL_TX2_RX1; if(d_rx_ant) rx_antsel = ANTSEL_TX1_RX2; else rx_antsel = ANTSEL_TX2_RX1; if(d_five_gig) tx_pa_sel = HB_PA_OFF; else tx_pa_sel = LB_PA_OFF; int io_rx_while_rx = EN|rx_hp|RX_EN; int io_rx_while_tx = EN|rx_hp; int io_tx_while_rx = HB_PA_OFF|LB_PA_OFF|rx_antsel|AD9515DIV; int io_tx_while_tx = tx_pa_sel|tx_antsel|TX_EN|AD9515DIV; rx_set_atr_rxval(io_rx_while_rx); rx_set_atr_txval(io_rx_while_tx); tx_set_atr_rxval(io_tx_while_rx); tx_set_atr_txval(io_tx_while_tx); //printf("GPIO: RXRX=%04X RXTX=%04X TXRX=%04X TXTX=%04X", // io_rx_while_rx, io_rx_while_tx, io_tx_while_rx, io_tx_while_tx); } struct freq_result_t xcvr2450::set_freq(double target_freq) { struct freq_result_t args = {false, 0}; double scaler; if(target_freq > 3e9) { d_five_gig = 1; d_ref_div = 1; d_ad9515_div = 3; scaler = 4.0/5.0; } else { d_five_gig = 0; d_ref_div = 1; d_ad9515_div = 3; scaler = 4.0/3.0; } if(target_freq > 5.27e9) { d_highband = 1; } else { d_highband = 0; } double vco_freq = target_freq*scaler; double sys_clk = usrp()->fpga_master_clock_freq(); // Usually 64e6 double ref_clk = sys_clk / d_ad9515_div; double phdet_freq = ref_clk/d_ref_div; double div = vco_freq/phdet_freq; d_int_div = int(floor(div)); d_frac_div = int((div-d_int_div)*65536.0); double actual_freq = phdet_freq*(d_int_div+(d_frac_div/65536.0))/scaler; //printf("RF=%f VCO=%f R=%d PHD=%f DIV=%3.5f I=%3d F=%5d ACT=%f", // target_freq, vco_freq, d_ref_div, phdet_freq, // div, d_int_div, d_frac_div, actual_freq); set_gpio(); set_reg_int_divider(); set_reg_frac_divider(); set_reg_bandselpll(); args.ok = lock_detect(); args.baseband_freq = actual_freq; if(args.ok) { if((target_freq > 5.275e9) && (target_freq <= 5.35e9)) { d_highband = 0; set_reg_bandselpll(); args.ok = lock_detect(); printf("swap to 0 at %f, ok %d\n", target_freq, args.ok); } if((target_freq >= 5.25e9) && (target_freq <= 5.275e9)) { d_highband = 1; set_reg_bandselpll(); args.ok = lock_detect(); printf("swap to 1 at %f, ok %d\n", target_freq, args.ok); } if(!args.ok){ printf("Fail %f\n", target_freq); } } return args; } bool xcvr2450::lock_detect() { /* @returns: the value of the VCO/PLL lock detect bit. @rtype: 0 or 1 */ if(rx_read_io() & LOCKDET) { return true; } else { // Give it a second chance if(rx_read_io() & LOCKDET) return true; else return false; } } bool xcvr2450::set_rx_gain(float gain) { if(gain < 0.0) gain = 0.0; if(gain > 92.0) gain = 92.0; // Split the gain between RF and baseband // This is experimental, not prescribed if(gain < 31.0) { d_rx_rf_gain = 0; // 0 dB RF gain rx_bb_gain = int(gain/2.0); } if(gain >= 30.0 and gain < 60.5) { d_rx_rf_gain = 2; // 15 dB RF gain d_rx_bb_gain = int((gain-15.0)/2.0); } if(gain >= 60.5) { d_rx_rf_gain = 3; // 30.5 dB RF gain d_rx_bb_gain = int((gain-30.5)/2.0); } set_reg_rxgain(); return true; } bool xcvr2450::set_tx_gain(float gain) { if(gain < 0.0) { gain = 0.0; } if(gain > 30.0) { gain = 30.0; } d_txgain = int((gain/30.0)*63); set_reg_txgain(); return true; } /*****************************************************************************/ //_xcvr2450_inst = weakref.WeakValueDictionary() std::vector _xcvr2450_inst; xcvr2450_sptr _get_or_make_xcvr2450(usrp_basic_sptr usrp, int which) { xcvr2450_sptr inst; xcvr2450_key key = {usrp->serial_number(), which}; std::vector::iterator itr; // = //std::find(_xcvr2450_inst.begin(), _xcvr2450_inst.end(), key); for(itr = _xcvr2450_inst.begin(); itr != _xcvr2450_inst.end(); itr++) { if(*(*itr) == key) { printf("Using existing xcvr2450 instance\n"); inst = *itr; break; } } if(itr != _xcvr2450_inst.end()) { printf("Creating new xcvr2450 instance\n"); inst = xcvr2450_sptr(new xcvr2450(usrp, which)); _xcvr2450_inst.push_back(inst); } return inst; } /*****************************************************************************/ db_xcvr2450_base::db_xcvr2450_base(usrp_basic_sptr usrp, int which) : db_base(usrp, which) { /* * Abstract base class for all xcvr2450 boards. * * Derive board specific subclasses from db_xcvr2450_base_{tx,rx} * * @param usrp: instance of usrp.source_c * @param which: which side: 0 or 1 corresponding to side A or B respectively * @type which: int */ d_xcvr = _get_or_make_xcvr2450(usrp, which); } db_xcvr2450_base::~db_xcvr2450_base() { } struct freq_result_t db_xcvr2450_base::set_freq(double target_freq) { /* * @returns (ok, actual_baseband_freq) where: * ok is True or False and indicates success or failure, * actual_baseband_freq is the RF frequency that corresponds to DC in the IF. */ return d_xcvr->set_freq(target_freq); } bool db_xcvr2450_base::is_quadrature() { /* * Return True if this board requires both I & Q analog channels. * * This bit of info is useful when setting up the USRP Rx mux register. */ return true; } double db_xcvr2450_base::freq_min() { return 2.4e9; } double db_xcvr2450_base::freq_max() { return 6.0e9; } /******************************************************************************/ db_xcvr2450_tx::db_xcvr2450_tx(usrp_basic_sptr usrp, int which) : db_xcvr2450_base(usrp, which) { printf("db_xcvr2450_tx::db_xcvr2450_tx\n"); } db_xcvr2450_tx::~db_xcvr2450_tx() { } float db_xcvr2450_tx::gain_min() { return 0; } float db_xcvr2450_tx::gain_max() { return 30; } float db_xcvr2450_tx::gain_db_per_step() { return (30.0/63.0); } bool db_xcvr2450_tx::set_gain(float gain) { return d_xcvr->set_tx_gain(gain); } bool db_xcvr2450_tx::i_and_q_swapped() { return true; } /******************************************************************************/ db_xcvr2450_rx::db_xcvr2450_rx(usrp_basic_sptr usrp, int which) : db_xcvr2450_base(usrp, which) { /* * @param usrp: instance of usrp.source_c * @param which: 0 or 1 corresponding to side RX_A or RX_B respectively. */ printf("db_xcvr2450_rx:d_xcvr_2450_rx\n"); } db_xcvr2450_rx::~db_xcvr2450_rx() { } float db_xcvr2450_rx::gain_min() { return 0.0; } float db_xcvr2450_rx::gain_max() { return 92.0; } float db_xcvr2450_rx::gain_db_per_step() { return 1; } bool db_xcvr2450_rx::set_gain(float gain) { return d_xcvr->set_rx_gain(gain); }