// // Copyright 2008,2009 Free Software Foundation, Inc. // // This file is part of GNU Radio // // GNU Radio is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either asversion 3, or (at your option) // any later version. // // GNU Radio is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with GNU Radio; see the file COPYING. If not, write to // the Free Software Foundation, Inc., 51 Franklin Street, // Boston, MA 02110-1301, USA. #include #include "db_wbxng_adf4350.h" #include #include // d'board i/o pin defs // Tx and Rx have shared defs, but different i/o regs #define ENABLE_5 (1 << 7) // enables 5.0V power supply #define ENABLE_33 (1 << 6) // enables 3.3V supply #define RX_TXN (1 << 5) // Tx only: T/R antenna switch for TX/RX port #define RX2_RX1N (1 << 5) // Rx only: antenna switch between RX2 and TX/RX port #define RXBB_EN (1 << 4) #define TXMOD_EN (1 << 4) #define PLL_CE (1 << 3) #define PLL_PDBRF (1 << 2) #define PLL_MUXOUT (1 << 1) #define PLL_LOCK_DETECT (1 << 0) // RX Attenuator constants #define ATTN_SHIFT 8 #define ATTN_MASK (63 << ATTN_SHIFT) wbxng_base::wbxng_base(usrp_basic_sptr _usrp, int which, int _power_on) : db_base(_usrp, which), d_power_on(_power_on) { /* @param usrp: instance of usrp.source_c @param which: which side: 0 or 1 corresponding to side A or B respectively @type which: int */ usrp()->_write_oe(d_which, 0, 0xffff); // turn off all outputs d_first = true; d_spi_format = SPI_FMT_MSB | SPI_FMT_HDR_0; _enable_refclk(false); // disable refclk set_auto_tr(false); } wbxng_base::~wbxng_base() { if (d_common) delete d_common; } struct freq_result_t wbxng_base::set_freq(double freq) { /* @returns (ok, actual_baseband_freq) where: ok is True or False and indicates success or failure, actual_baseband_freq is the RF frequency that corresponds to DC in the IF. */ freq_t int_freq = freq_t(freq); bool ok = d_common->_set_freq(int_freq*2); double freq_result = (double) d_common->_get_freq()/2.0; struct freq_result_t args = {ok, freq_result}; /* Wait before reading Lock Detect*/ timespec t; t.tv_sec = 0; t.tv_nsec = 10000000; nanosleep(&t, NULL); fprintf(stderr,"Setting WBXNG frequency, requested %d, obtained %f, lock_detect %d\n", int_freq, freq_result, d_common->_get_locked()); // FIXME // Offsetting the LO helps get the Tx carrier leakage out of the way. // This also ensures that on Rx, we're not getting hosed by the // FPGA's DC removal loop's time constant. We were seeing a // problem when running with discontinuous transmission. // Offsetting the LO made the problem go away. //freq += d_lo_offset; return args; } bool wbxng_base::_set_pga(float pga_gain) { if(d_which == 0) { usrp()->set_pga(0, pga_gain); usrp()->set_pga(1, pga_gain); } else { usrp()->set_pga(2, pga_gain); usrp()->set_pga(3, pga_gain); } return true; } bool wbxng_base::is_quadrature() { /* Return True if this board requires both I & Q analog channels. This bit of info is useful when setting up the USRP Rx mux register. */ return true; } double wbxng_base::freq_min() { return (double) d_common->_get_min_freq()/2.0; } double wbxng_base::freq_max() { return (double) d_common->_get_max_freq()/2.0; } // ---------------------------------------------------------------- wbxng_base_tx::wbxng_base_tx(usrp_basic_sptr _usrp, int which, int _power_on) : wbxng_base(_usrp, which, _power_on) { /* @param usrp: instance of usrp.sink_c @param which: 0 or 1 corresponding to side TX_A or TX_B respectively. */ if(which == 0) { d_spi_enable = SPI_ENABLE_TX_A; } else { d_spi_enable = SPI_ENABLE_TX_B; } d_common = new adf4350(_usrp, d_which, d_spi_enable); // FIXME: power up the transmit side, but don't enable the mixer usrp()->_write_oe(d_which,(RX_TXN|TXMOD_EN|ENABLE_33|ENABLE_5), (RX_TXN|TXMOD_EN|ENABLE_33|ENABLE_5)); usrp()->write_io(d_which, (power_on()|RX_TXN|TXMOD_EN|ENABLE_33|ENABLE_5), (RX_TXN|TXMOD_EN|ENABLE_33|ENABLE_5)); fprintf(stderr,"Setting WBXNG TXMOD on"); //set_lo_offset(4e6); set_gain((gain_min() + gain_max()) / 2.0); // initialize gain } wbxng_base_tx::~wbxng_base_tx() { shutdown(); } void wbxng_base_tx::shutdown() { // fprintf(stderr, "wbxng_base_tx::shutdown d_is_shutdown = %d\n", d_is_shutdown); if (!d_is_shutdown){ d_is_shutdown = true; // do whatever there is to do to shutdown // Power down and leave the T/R switch in the R position usrp()->write_io(d_which, (power_off()|RX_TXN), (RX_TXN|ENABLE_33|ENABLE_5)); // Power down VCO/PLL d_common->_enable(false); /* _write_control(_compute_control_reg()); */ _enable_refclk(false); // turn off refclk set_auto_tr(false); } } bool wbxng_base_tx::set_auto_tr(bool on) { bool ok = true; if(on) { ok &= set_atr_mask (RX_TXN | ENABLE_33 | ENABLE_5); ok &= set_atr_txval(0 | ENABLE_33 | ENABLE_5); ok &= set_atr_rxval(RX_TXN | 0); } else { ok &= set_atr_mask (0); ok &= set_atr_txval(0); ok &= set_atr_rxval(0); } return ok; } bool wbxng_base_tx::set_enable(bool on) { /* Enable transmitter if on is true */ int v; int mask = RX_TXN | ENABLE_5 | ENABLE_33; if(on) { v = ENABLE_5 | ENABLE_33; } else { v = RX_TXN; } return usrp()->write_io(d_which, v, mask); } float wbxng_base_tx::gain_min() { return usrp()->pga_max(); } float wbxng_base_tx::gain_max() { return usrp()->pga_max() + 25.0; } float wbxng_base_tx::gain_db_per_step() { return 1; } bool wbxng_base_tx::set_gain(float gain) { /* Set the gain. @param gain: gain in decibels @returns True/False */ // clamp gain gain = std::max(gain_min(), std::min(gain, gain_max())); float pga_gain, agc_gain; float V_maxgain, V_mingain, V_fullscale, dac_value; float maxgain = gain_max() - usrp()->pga_max(); float mingain = gain_min(); if(gain > maxgain) { pga_gain = gain-maxgain; assert(pga_gain <= usrp()->pga_max()); agc_gain = maxgain; } else { pga_gain = 0; agc_gain = gain; } V_maxgain = 0.7; V_mingain = 1.4; V_fullscale = 3.3; dac_value = (agc_gain*(V_maxgain-V_mingain)/(maxgain-mingain) + V_mingain)*4096/V_fullscale; fprintf(stderr, "TXGAIN: %f dB, Dac Code: %d, Voltage: %f\n", gain, int(dac_value), float((dac_value/4096.0)*V_fullscale)); assert(dac_value>=0 && dac_value<4096); return (usrp()->write_aux_dac(d_which, 0, int(dac_value)) && _set_pga(int(pga_gain))); } /**************************************************************************/ wbxng_base_rx::wbxng_base_rx(usrp_basic_sptr _usrp, int which, int _power_on) : wbxng_base(_usrp, which, _power_on) { /* @param usrp: instance of usrp.source_c @param which: 0 or 1 corresponding to side RX_A or RX_B respectively. */ if(which == 0) { d_spi_enable = SPI_ENABLE_RX_A; } else { d_spi_enable = SPI_ENABLE_RX_B; } d_common = new adf4350(_usrp, d_which, d_spi_enable); usrp()->_write_oe(d_which, (RX2_RX1N|RXBB_EN|ATTN_MASK|ENABLE_33|ENABLE_5), (RX2_RX1N|RXBB_EN|ATTN_MASK|ENABLE_33|ENABLE_5)); usrp()->write_io(d_which, (power_on()|RX2_RX1N|RXBB_EN|ENABLE_33|ENABLE_5), (RX2_RX1N|RXBB_EN|ATTN_MASK|ENABLE_33|ENABLE_5)); fprintf(stderr,"Setting WBXNG RXBB on"); // set up for RX on TX/RX port select_rx_antenna("TX/RX"); bypass_adc_buffers(true); /* set_lo_offset(-4e6); */ } wbxng_base_rx::~wbxng_base_rx() { shutdown(); } void wbxng_base_rx::shutdown() { // fprintf(stderr, "wbxng_base_rx::shutdown d_is_shutdown = %d\n", d_is_shutdown); if (!d_is_shutdown){ d_is_shutdown = true; // do whatever there is to do to shutdown // Power down usrp()->common_write_io(C_RX, d_which, power_off(), (ENABLE_33|ENABLE_5)); // Power down VCO/PLL d_common->_enable(false); // fprintf(stderr, "wbxng_base_rx::shutdown before _write_control\n"); //_write_control(_compute_control_reg()); // fprintf(stderr, "wbxng_base_rx::shutdown before _enable_refclk\n"); _enable_refclk(false); // turn off refclk // fprintf(stderr, "wbxng_base_rx::shutdown before set_auto_tr\n"); set_auto_tr(false); // fprintf(stderr, "wbxng_base_rx::shutdown after set_auto_tr\n"); } } bool wbxng_base_rx::set_auto_tr(bool on) { bool ok = true; if(on) { ok &= set_atr_mask (ENABLE_33|ENABLE_5); ok &= set_atr_txval( 0); ok &= set_atr_rxval(ENABLE_33|ENABLE_5); } else { ok &= set_atr_mask (0); ok &= set_atr_txval(0); ok &= set_atr_rxval(0); } return true; } bool wbxng_base_rx::select_rx_antenna(int which_antenna) { /* Specify which antenna port to use for reception. @param which_antenna: either 'TX/RX' or 'RX2' */ if(which_antenna == 0) { usrp()->write_io(d_which, 0,RX2_RX1N); } else if(which_antenna == 1) { usrp()->write_io(d_which, RX2_RX1N, RX2_RX1N); } else { return false; } return true; } bool wbxng_base_rx::select_rx_antenna(const std::string &which_antenna) { /* Specify which antenna port to use for reception. @param which_antenna: either 'TX/RX' or 'RX2' */ if(which_antenna == "TX/RX") { usrp()->write_io(d_which, 0, RX2_RX1N); } else if(which_antenna == "RX2") { usrp()->write_io(d_which, RX2_RX1N, RX2_RX1N); } else { return false; } return true; } bool wbxng_base_rx::set_gain(float gain) { /* Set the gain. @param gain: gain in decibels @returns True/False */ // clamp gain gain = std::max(gain_min(), std::min(gain, gain_max())); float pga_gain, agc_gain; float maxgain = gain_max() - usrp()->pga_max(); float mingain = gain_min(); if(gain > maxgain) { pga_gain = gain-maxgain; assert(pga_gain <= usrp()->pga_max()); agc_gain = maxgain; } else { pga_gain = 0; agc_gain = gain; } return _set_attn(maxgain-agc_gain) && _set_pga(int(pga_gain)); } bool wbxng_base_rx::_set_attn(float attn) { int attn_code = int(floor(attn/0.5)); unsigned int iobits = (~attn_code) << ATTN_SHIFT; fprintf(stderr, "Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x \n", attn, attn_code, iobits & ATTN_MASK, ATTN_MASK); return usrp()->write_io(d_which, iobits, ATTN_MASK); } // ---------------------------------------------------------------- db_wbxng_tx::db_wbxng_tx(usrp_basic_sptr usrp, int which) : wbxng_base_tx(usrp, which) { } db_wbxng_tx::~db_wbxng_tx() { } db_wbxng_rx::db_wbxng_rx(usrp_basic_sptr usrp, int which) : wbxng_base_rx(usrp, which) { set_gain((gain_min() + gain_max()) / 2.0); // initialize gain } db_wbxng_rx::~db_wbxng_rx() { } float db_wbxng_rx::gain_min() { return usrp()->pga_min(); } float db_wbxng_rx::gain_max() { return usrp()->pga_max()+30.5; } float db_wbxng_rx::gain_db_per_step() { return 0.05; } bool db_wbxng_rx::i_and_q_swapped() { return false; }