////////////////////////////////////////////////////////////////////////////// // Filename: vxWorks.cc // Author: Tihomir Sokcevic // Acterna, Eningen. // Description: vxWorks adaptation of the omnithread wrapper classes // Notes: Munching strategy is imperative ////////////////////////////////////////////////////////////////////////////// // $Log$ // Revision 1.1 2004/04/10 18:00:52 eb // Initial revision // // Revision 1.1.1.1 2004/03/01 00:20:27 eb // initial checkin // // Revision 1.1 2003/05/25 05:29:04 eb // see ChangeLog // // Revision 1.1.2.1 2003/02/17 02:03:11 dgrisby // vxWorks port. (Thanks Michael Sturm / Acterna Eningen GmbH). // // Revision 1.1.1.1 2002/11/19 14:58:04 sokcevti // OmniOrb4.0.0 VxWorks port // // Revision 1.4 2002/10/15 07:54:09 kuttlest // change semaphore from SEM_FIFO to SEM_PRIO // --- // // Revision 1.3 2002/07/05 07:38:52 engeln // made priority redefinable on load time by defining int variables // omni_thread_prio_low = 220; // omni_thread_prio_normal = 110; // omni_thread_prio_high = 55; // the default priority is prio_normal. // The normal priority default has been increased from 200 to 110 and the // high priority from 100 to 55. // --- // // Revision 1.2 2002/06/14 12:44:57 engeln // replaced possibly unsafe wakeup procedure in broadcast. // --- // // Revision 1.1.1.1 2002/04/02 10:09:34 sokcevti // omniORB4 initial realease // // Revision 1.0 2001/10/23 14:22:45 sokcevti // Initial Version 4.00 // --- // ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // Include files ////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include // assert #include // intContext ////////////////////////////////////////////////////////////////////////////// // Local defines ////////////////////////////////////////////////////////////////////////////// #define ERRNO(x) (((x) != 0) ? (errno) : 0) #define THROW_ERRORS(x) { if((x) != OK) throw omni_thread_fatal(errno); } #define OMNI_THREAD_ID 0x7F7155AAl #define OMNI_STACK_SIZE 32768l #ifdef _DEBUG #include #define DBG_TRACE(X) X #else // _DEBUG #define DBG_TRACE(X) #endif // _DEBUG #define DBG_ASSERT(X) #define DBG_THROW(X) X int omni_thread_prio_low = 220; int omni_thread_prio_normal = 110; int omni_thread_prio_high = 55; /////////////////////////////////////////////////////////////////////////// // // Mutex // /////////////////////////////////////////////////////////////////////////// omni_mutex::omni_mutex(void):m_bConstructed(false) { mutexID = semMCreate(SEM_Q_PRIORITY | SEM_INVERSION_SAFE); DBG_ASSERT(assert(mutexID != NULL)); if(mutexID==NULL) { DBG_TRACE(cout<<"Exception: omni_mutex::omni_mutex() tid: "<<(int)taskIdSelf()<mutexID<<" tid:"<<(int)taskIdSelf()<mutexID<<" tid:"<<(int)taskIdSelf()< count. STATUS status = semTake(waiters_lock_,WAIT_FOREVER); DBG_ASSERT(assert(status == OK)); if(status != OK) { DBG_TRACE(cout<<"Exception: omni_condition::wait"<unlock(); // Wait to be awakened by a cond_signal() or cond_broadcast(). status = semTake(sema_,WAIT_FOREVER); // reenable task rescheduling taskUnlock(); DBG_ASSERT(assert(status == OK)); if(status != OK) { DBG_TRACE(cout<<"Exception: omni_condition::wait"< count. status = semTake(waiters_lock_,WAIT_FOREVER); DBG_ASSERT(assert(status == OK)); if(status != OK) { DBG_TRACE(cout<<"Exception: omni_condition::wait"<, even when errors // occur because that's the guarantee that we give to our callers. mutex->lock(); } // The time given is absolute. Return 0 is timeout int omni_condition::timedwait(unsigned long secs, unsigned long nanosecs) { STATUS result = OK; timespec now; unsigned long timeout; int ticks; // Prevent race conditions on the count. STATUS status = semTake(waiters_lock_, WAIT_FOREVER); DBG_ASSERT(assert(status == OK)); if(status != OK) { DBG_TRACE(cout<<"Exception: omni_condition::timedwait"<unlock(); // Wait to be awakened by a signal() or broadcast(). ticks = (timeout * sysClkRateGet()) / 1000L; result = semTake(sema_, ticks); // reenable task rescheduling taskUnlock(); // Reacquire lock to avoid race conditions. status = semTake(waiters_lock_, WAIT_FOREVER); DBG_ASSERT(assert(status == OK)); if(status != OK) { DBG_TRACE(cout<<"Exception: omni_condition::timedwait"<id()<<" SemID:"<<(int)sema_<<" errno:"<, even when errors // occur because that's the guarantee that we give to our callers. mutex->lock(); if(result!=OK) // timeout return 0; return 1; } void omni_condition::signal(void) { DBG_TRACE(cout<<"omni_condition::signal mutexID: "<<(int)mutex->mutexID<<" tid:"<<(int)taskIdSelf()< 0; status = semGive(waiters_lock_); DBG_ASSERT(assert(status == OK)); if(status != OK) { DBG_TRACE(cout<<"Exception: omni_condition::signal"<mutexID<<" tid:"<<(int)taskIdSelf()< must be locked before this call is made. // This is needed to ensure that and are // consistent relative to each other. STATUS status = semTake(waiters_lock_, WAIT_FOREVER); DBG_ASSERT(assert(status == OK)); if(status != OK) { DBG_TRACE(cout<<"Exception: omni_condition::signal"< 0) { // We are broadcasting, even if there is just one waiter... // Record the fact that we are broadcasting. This helps the // cond_wait() method know how to optimize itself. Be sure to // set this with the held. have_waiters = 1; } status = semGive(waiters_lock_); DBG_ASSERT(assert(status == OK)); if(status != OK) { DBG_TRACE(cout<<"Exception: omni_condition::signal"<id()<<" SemID:"<<(int)sema_<<" errno:"<spare1 = 0; delete self; delete next_id_mutex; } // // Wrapper for thread creation. // extern "C" void omni_thread_wrapper(void* ptr) { omni_thread* me = (omni_thread*)ptr; DBG_TRACE(cout<<"omni_thread_wrapper: thread "<id()<<" started\n"); // // We can now tweaked the task info since the tcb exist now // me->mutex.lock(); // To ensure that start has had time to finish taskTcb(me->tid)->spare1 = OMNI_THREAD_ID; taskTcb(me->tid)->spare2 = (int)ptr; me->mutex.unlock(); // // Now invoke the thread function with the given argument. // if(me->fn_void != NULL) { (*me->fn_void)(me->thread_arg); omni_thread::exit(); } if(me->fn_ret != NULL) { void* return_value = (*me->fn_ret)(me->thread_arg); omni_thread::exit(return_value); } if(me->detached) { me->run(me->thread_arg); omni_thread::exit(); } else { void* return_value = me->run_undetached(me->thread_arg); omni_thread::exit(return_value); } } // // Special functions for VxWorks only // void omni_thread::attach(void) { DBG_TRACE(cout<<"omni_thread_attach: VxWorks mapping thread initialising\n"); int _tid = taskIdSelf(); // Check the task is not already attached if(taskTcb(_tid)->spare1 == OMNI_THREAD_ID) return; // Create the mutex required to lock the threads debugging id (create before the thread!!!) if(next_id_mutex == 0) next_id_mutex = new omni_mutex; // Create a thread object for THIS running process omni_thread* t = new omni_thread; // Lock its mutex straigh away! omni_mutex_lock l(t->mutex); // Adjust data members of this instance t->_state = STATE_RUNNING; t->tid = taskIdSelf(); // Set the thread values so it can be recongnised as a omni_thread // Set the id last can possibly prevent race condition taskTcb(t->tid)->spare2 = (int)t; taskTcb(t->tid)->spare1 = OMNI_THREAD_ID; // Create the running_mutex at this stage, but leave it empty. We are not running // in the task context HERE, so taking it would be disastrous. t->running_cond = new omni_condition(&t->mutex); } void omni_thread::detach(void) { DBG_TRACE(cout<<"omni_thread_detach: VxWorks detaching thread mapping\n"); int _tid = taskIdSelf(); // Check the task has a OMNI_THREAD attached if(taskTcb(_tid)->spare1 != OMNI_THREAD_ID) return; // Invalidate the id NOW ! taskTcb(_tid)->spare1 = 0; // Even if NULL, it is safe to delete the thread omni_thread* t = (omni_thread*)taskTcb(_tid)->spare2; // Fininsh cleaning the tcb structure taskTcb(_tid)->spare2 = 0; delete t; } // // Constructors for omni_thread - set up the thread object but don't // start it running. // // construct a detached thread running a given function. omni_thread::omni_thread(void (*fn)(void*), void* arg, priority_t pri) { common_constructor(arg, pri, 1); fn_void = fn; fn_ret = NULL; } // construct an undetached thread running a given function. omni_thread::omni_thread(void* (*fn)(void*), void* arg, priority_t pri) { common_constructor(arg, pri, 0); fn_void = NULL; fn_ret = fn; } // construct a thread which will run either run() or run_undetached(). omni_thread::omni_thread(void* arg, priority_t pri) { common_constructor(arg, pri, 1); fn_void = NULL; fn_ret = NULL; } // common part of all constructors. void omni_thread::common_constructor(void* arg, priority_t pri, int det) { _state = STATE_NEW; _priority = pri; // Set the debugging id next_id_mutex->lock(); _id = next_id++; next_id_mutex->unlock(); // Note : tid can only be setup when the task is up and running tid = 0; thread_arg = arg; detached = det; // may be altered in start_undetached() _dummy = 0; _values = 0; _value_alloc = 0; } // // Destructor for omni_thread. // omni_thread::~omni_thread(void) { DBG_TRACE(cout<<"omni_thread::~omni_thread for thread "<wait(); mutex.unlock(); if(status) *status = return_val; delete this; } // // Change this thread's priority. // void omni_thread::set_priority(priority_t pri) { omni_mutex_lock l(mutex); DBG_ASSERT(assert(_state == STATE_RUNNING)); if(_state != STATE_RUNNING) { DBG_THROW(throw omni_thread_invalid()); } _priority = pri; if(taskPrioritySet(tid, vxworks_priority(pri))==ERROR) { DBG_ASSERT(assert(false)); DBG_THROW(throw omni_thread_fatal(errno)); } } // // create - construct a new thread object and start it running. Returns thread // object if successful, null pointer if not. // // detached version (the entry point is a void) omni_thread* omni_thread::create(void (*fn)(void*), void* arg, priority_t pri) { omni_thread* t = new omni_thread(fn, arg, pri); t->start(); return t; } // undetached version (the entry point is a void*) omni_thread* omni_thread::create(void* (*fn)(void*), void* arg, priority_t pri) { omni_thread* t = new omni_thread(fn, arg, pri); t->start(); return t; } // // exit() _must_ lock the mutex even in the case of a detached thread. This is // because a thread may run to completion before the thread that created it has // had a chance to get out of start(). By locking the mutex we ensure that the // creating thread must have reached the end of start() before we delete the // thread object. Of course, once the call to start() returns, the user can // still incorrectly refer to the thread object, but that's their problem. // void omni_thread::exit(void* return_value) { omni_thread* me = self(); if(me) { me->mutex.lock(); me->return_val = return_value; me->_state = STATE_TERMINATED; me->running_cond->signal(); me->mutex.unlock(); DBG_TRACE(cout<<"omni_thread::exit: thread "<id()<<" detached "<detached<<" return value "<<(int)return_value<detached) delete me; } else DBG_TRACE(cout<<"omni_thread::exit: called with a non-omnithread. Exit quietly."<spare1 != OMNI_THREAD_ID) return NULL; return (omni_thread*)taskTcb(taskIdSelf())->spare2; } void omni_thread::yield(void) { taskDelay(NO_WAIT); } void omni_thread::sleep(unsigned long secs, unsigned long nanosecs) { int tps = sysClkRateGet(); // Convert to us to avoid overflow in the multiplication // tps should always be less than 1000 ! nanosecs /= 1000; taskDelay(secs*tps + (nanosecs*tps)/1000000l); } void omni_thread::get_time( unsigned long* abs_sec, unsigned long* abs_nsec, unsigned long rel_sec, unsigned long rel_nsec) { timespec abs; clock_gettime(CLOCK_REALTIME, &abs); abs.tv_nsec += rel_nsec; abs.tv_sec += rel_sec + abs.tv_nsec / 1000000000; abs.tv_nsec = abs.tv_nsec % 1000000000; *abs_sec = abs.tv_sec; *abs_nsec = abs.tv_nsec; } int omni_thread::vxworks_priority(priority_t pri) { switch (pri) { case PRIORITY_LOW: return omni_thread_prio_low; case PRIORITY_NORMAL: return omni_thread_prio_normal; case PRIORITY_HIGH: return omni_thread_prio_high; } DBG_ASSERT(assert(false)); DBG_THROW(throw omni_thread_invalid()); } void omni_thread::stacksize(unsigned long sz) { stack_size = sz; } unsigned long omni_thread::stacksize() { return stack_size; } void omni_thread::show(void) { omni_thread *pThread; int s1, s2; int tid = taskIdSelf(); printf("TaskId is %.8x\n", tid); s1 = taskTcb(tid)->spare1; if(s1 != OMNI_THREAD_ID) { printf("Spare 1 is %.8x, and not recongnized\n", s1); return; } else { printf("Spare 1 indicate an omni_thread.\n"); } s2 = taskTcb(tid)->spare2; if(s2 == 0) { printf("Spare 2 is NULL! - No thread object attached !!\n"); return; } else { printf("Thread object at %.8x\n", s2); } pThread = (omni_thread *)s2; state_t status = pThread->_state; printf(" | Thread status is "); switch (status) { case STATE_NEW: printf("NEW\n"); break; case STATE_RUNNING: printf("STATE_RUNNING\n"); break; case STATE_TERMINATED: printf("TERMINATED\n"); break; default: printf("Illegal (=%.8x)\n", (unsigned int)status); return; } if(pThread->tid != tid) { printf(" | Task ID in thread object is different!! (=%.8x)\n", pThread->tid); return; } else { printf(" | Task ID in thread consistent\n"); } printf("\n"); } // // Dummy thread // class omni_thread_dummy : public omni_thread { public: inline omni_thread_dummy() : omni_thread() { _dummy = 1; _state = STATE_RUNNING; // Adjust data members of this instance tid = taskIdSelf(); // Set the thread values so it can be recongnised as a omni_thread // Set the id last can possibly prevent race condition taskTcb(tid)->spare2 = (int)this; taskTcb(tid)->spare1 = OMNI_THREAD_ID; } inline ~omni_thread_dummy() { taskTcb(taskIdSelf())->spare1 = 0; } }; omni_thread* omni_thread::create_dummy() { if (omni_thread::self()) throw omni_thread_invalid(); return new omni_thread_dummy; } void omni_thread::release_dummy() { omni_thread* self = omni_thread::self(); if (!self || !self->_dummy) throw omni_thread_invalid(); omni_thread_dummy* dummy = (omni_thread_dummy*)self; delete dummy; } #define INSIDE_THREAD_IMPL_CC #include "threaddata.cc" #undef INSIDE_THREAD_IMPL_CC