//				Package : omnithread
// omnithread/nt.cc		Created : 6/95 tjr
//
//    Copyright (C) 2006 Free Software Foundation, Inc.
//    Copyright (C) 1995-1999 AT&T Laboratories Cambridge
//
//    This file is part of the omnithread library
//
//    The omnithread library is free software; you can redistribute it and/or
//    modify it under the terms of the GNU Library General Public
//    License as published by the Free Software Foundation; either
//    version 2 of the License, or (at your option) any later version.
//
//    This library is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//    Library General Public License for more details.
//
//    You should have received a copy of the GNU Library General Public
//    License along with this library; if not, write to the Free
//    Software Foundation, Inc., 51 Franklin Street, Boston, MA  
//    02110-1301, USA
//

//
// Implementation of OMNI thread abstraction for NT threads
//

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdlib.h>
#include <errno.h>
#include <WinError.h>
#include <gnuradio/omnithread.h>
#include <process.h>

#define DB(x) // x 
//#include <iostream.h> or #include <iostream> if DB is on.

static void get_time_now(unsigned long* abs_sec, unsigned long* abs_nsec);

///////////////////////////////////////////////////////////////////////////
//
// Mutex
//
///////////////////////////////////////////////////////////////////////////


omni_mutex::omni_mutex(void)
{
    InitializeCriticalSection(&crit);
}

omni_mutex::~omni_mutex(void)
{
    DeleteCriticalSection(&crit);
}



///////////////////////////////////////////////////////////////////////////
//
// Condition variable
//
///////////////////////////////////////////////////////////////////////////


//
// Condition variables are tricky to implement using NT synchronisation
// primitives, since none of them have the atomic "release mutex and wait to be
// signalled" which is central to the idea of a condition variable.  To get
// around this the solution is to record which threads are waiting and
// explicitly wake up those threads.
//
// Here we implement a condition variable using a list of waiting threads
// (protected by a critical section), and a per-thread semaphore (which
// actually only needs to be a binary semaphore).
//
// To wait on the cv, a thread puts itself on the list of waiting threads for
// that cv, then releases the mutex and waits on its own personal semaphore.  A
// signalling thread simply takes a thread from the head of the list and kicks
// that thread's semaphore.  Broadcast is simply implemented by kicking the
// semaphore of each waiting thread.
//
// The only other tricky part comes when a thread gets a timeout from a timed
// wait on its semaphore.  Between returning with a timeout from the wait and
// entering the critical section, a signalling thread could get in, kick the
// waiting thread's semaphore and remove it from the list.  If this happens,
// the waiting thread's semaphore is now out of step so it needs resetting, and
// the thread should indicate that it was signalled rather than that it timed
// out.
//
// It is possible that the thread calling wait or timedwait is not a
// omni_thread. In this case we have to provide a temporary data structure,
// i.e. for the duration of the call, for the thread to link itself on the
// list of waiting threads. _internal_omni_thread_dummy provides such
// a data structure and _internal_omni_thread_helper is a helper class to
// deal with this special case for wait() and timedwait(). Once created,
// the _internal_omni_thread_dummy is cached for use by the next wait() or
// timedwait() call from a non-omni_thread. This is probably worth doing
// because creating a Semaphore is quite heavy weight.

class _internal_omni_thread_helper;

class _internal_omni_thread_dummy : public omni_thread {
public:
  inline _internal_omni_thread_dummy() : next(0) { }
  inline ~_internal_omni_thread_dummy() { }
  friend class _internal_omni_thread_helper;
private:
  _internal_omni_thread_dummy* next;
};

class _internal_omni_thread_helper {
public:
  inline _internal_omni_thread_helper()  { 
    d = 0;
    t = omni_thread::self();
    if (!t) {
      omni_mutex_lock sync(cachelock);
      if (cache) {
	d = cache;
	cache = cache->next;
      }
      else {
	d = new _internal_omni_thread_dummy;
      }
      t = d;
    }
  }
  inline ~_internal_omni_thread_helper() { 
    if (d) {
      omni_mutex_lock sync(cachelock);
      d->next = cache;
      cache = d;
    }
  }
  inline operator omni_thread* () { return t; }
  inline omni_thread* operator->() { return t; }

  static _internal_omni_thread_dummy* cache;
  static omni_mutex                   cachelock;

private:
  _internal_omni_thread_dummy* d;
  omni_thread*                 t;
};

_internal_omni_thread_dummy* _internal_omni_thread_helper::cache = 0;
omni_mutex                   _internal_omni_thread_helper::cachelock;


omni_condition::omni_condition(omni_mutex* m) : mutex(m)
{
    InitializeCriticalSection(&crit);
    waiting_head = waiting_tail = NULL;
}


omni_condition::~omni_condition(void)
{
    DeleteCriticalSection(&crit);
    DB( if (waiting_head != NULL) {
	cerr << "omni_condition::~omni_condition: list of waiting threads "
	     << "is not empty\n";
    } )
}


void
omni_condition::wait(void)
{
    _internal_omni_thread_helper me;

    EnterCriticalSection(&crit);

    me->cond_next = NULL;
    me->cond_prev = waiting_tail;
    if (waiting_head == NULL)
	waiting_head = me;
    else
	waiting_tail->cond_next = me;
    waiting_tail = me;
    me->cond_waiting = TRUE;

    LeaveCriticalSection(&crit);

    mutex->unlock();

    DWORD result = WaitForSingleObject(me->cond_semaphore, INFINITE);

    mutex->lock();

    if (result != WAIT_OBJECT_0)
	throw omni_thread_fatal(GetLastError());
}


int
omni_condition::timedwait(unsigned long abs_sec, unsigned long abs_nsec)
{
    _internal_omni_thread_helper me;

    EnterCriticalSection(&crit);

    me->cond_next = NULL;
    me->cond_prev = waiting_tail;
    if (waiting_head == NULL)
	waiting_head = me;
    else
	waiting_tail->cond_next = me;
    waiting_tail = me;
    me->cond_waiting = TRUE;

    LeaveCriticalSection(&crit);

    mutex->unlock();

    unsigned long now_sec, now_nsec;

    get_time_now(&now_sec, &now_nsec);

    DWORD timeout;
    if ((abs_sec <= now_sec) && ((abs_sec < now_sec) || (abs_nsec < now_nsec)))
      timeout = 0;
    else {
      timeout = (abs_sec-now_sec) * 1000;

      if( abs_nsec < now_nsec )  timeout -= (now_nsec-abs_nsec) / 1000000;
      else                       timeout += (abs_nsec-now_nsec) / 1000000;
    }

    DWORD result = WaitForSingleObject(me->cond_semaphore, timeout);

    if (result == WAIT_TIMEOUT) {
	EnterCriticalSection(&crit);

	if (me->cond_waiting) {
	    if (me->cond_prev != NULL)
		me->cond_prev->cond_next = me->cond_next;
	    else
		waiting_head = me->cond_next;
	    if (me->cond_next != NULL)
		me->cond_next->cond_prev = me->cond_prev;
	    else
		waiting_tail = me->cond_prev;
	    me->cond_waiting = FALSE;

	    LeaveCriticalSection(&crit);

	    mutex->lock();
	    return 0;
	}

	//
	// We timed out but another thread still signalled us.  Wait for
	// the semaphore (it _must_ have been signalled) to decrement it
	// again.  Return that we were signalled, not that we timed out.
	//

	LeaveCriticalSection(&crit);

	result = WaitForSingleObject(me->cond_semaphore, INFINITE);
    }

    if (result != WAIT_OBJECT_0)
	throw omni_thread_fatal(GetLastError());

    mutex->lock();
    return 1;
}


void
omni_condition::signal(void)
{
    EnterCriticalSection(&crit);

    if (waiting_head != NULL) {
	omni_thread* t = waiting_head;
	waiting_head = t->cond_next;
	if (waiting_head == NULL)
	    waiting_tail = NULL;
	else
	    waiting_head->cond_prev = NULL;
	t->cond_waiting = FALSE;

	if (!ReleaseSemaphore(t->cond_semaphore, 1, NULL)) {
	    int rc = GetLastError();
	    LeaveCriticalSection(&crit);
	    throw omni_thread_fatal(rc);
	}
    }

    LeaveCriticalSection(&crit);
}


void
omni_condition::broadcast(void)
{
    EnterCriticalSection(&crit);

    while (waiting_head != NULL) {
	omni_thread* t = waiting_head;
	waiting_head = t->cond_next;
	if (waiting_head == NULL)
	    waiting_tail = NULL;
	else
	    waiting_head->cond_prev = NULL;
	t->cond_waiting = FALSE;

	if (!ReleaseSemaphore(t->cond_semaphore, 1, NULL)) {
	    int rc = GetLastError();
	    LeaveCriticalSection(&crit);
	    throw omni_thread_fatal(rc);
	}
    }

    LeaveCriticalSection(&crit);
}



///////////////////////////////////////////////////////////////////////////
//
// Counting semaphore
//
///////////////////////////////////////////////////////////////////////////


#define SEMAPHORE_MAX 0x7fffffff


omni_semaphore::omni_semaphore(unsigned int initial, unsigned int max_count)
{
    if (max_count > SEMAPHORE_MAX)
      max_count= SEMAPHORE_MAX;

    nt_sem = CreateSemaphore(NULL, initial, max_count, NULL);

    if (nt_sem == NULL) {
      DB( cerr << "omni_semaphore::omni_semaphore: CreateSemaphore error "
	     << GetLastError() << endl );
      throw omni_thread_fatal(GetLastError());
    }
}


omni_semaphore::~omni_semaphore(void)
{
  if (!CloseHandle(nt_sem)) {
    DB( cerr << "omni_semaphore::~omni_semaphore: CloseHandle error "
	     << GetLastError() << endl );
    throw omni_thread_fatal(GetLastError());
  }
}


void
omni_semaphore::wait(void)
{
    if (WaitForSingleObject(nt_sem, INFINITE) != WAIT_OBJECT_0)
	throw omni_thread_fatal(GetLastError());
}


int
omni_semaphore::trywait(void)
{
    switch (WaitForSingleObject(nt_sem, 0)) {

    case WAIT_OBJECT_0:
	return 1;
    case WAIT_TIMEOUT:
	return 0;
    }

    throw omni_thread_fatal(GetLastError());
    return 0; /* keep msvc++ happy */
}


void
omni_semaphore::post(void)
{
    if (!ReleaseSemaphore(nt_sem, 1, NULL)
	&& GetLastError() != ERROR_TOO_MANY_POSTS )	// MinGW fix--see ticket:95 in trac
	throw omni_thread_fatal(GetLastError());
}



///////////////////////////////////////////////////////////////////////////
//
// Thread
//
///////////////////////////////////////////////////////////////////////////


//
// Static variables
//

omni_mutex* omni_thread::next_id_mutex;
int omni_thread::next_id = 0;
static DWORD self_tls_index;

static unsigned int stack_size = 0;

//
// Initialisation function (gets called before any user code).
//

static int& count() {
  static int the_count = 0;
  return the_count;
}

omni_thread::init_t::init_t(void)
{
    if (count()++ != 0)	// only do it once however many objects get created.
	return;

    DB(cerr << "omni_thread::init: NT implementation initialising\n");

    self_tls_index = TlsAlloc();

    if (self_tls_index == 0xffffffff)
	throw omni_thread_fatal(GetLastError());

    next_id_mutex = new omni_mutex;

    //
    // Create object for this (i.e. initial) thread.
    //

    omni_thread* t = new omni_thread;

    t->_state = STATE_RUNNING;

    if (!DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
			 GetCurrentProcess(), &t->handle,
			 0, FALSE, DUPLICATE_SAME_ACCESS))
	throw omni_thread_fatal(GetLastError());

    t->nt_id = GetCurrentThreadId();

    DB(cerr << "initial thread " << t->id() << " NT thread id " << t->nt_id
       << endl);

    if (!TlsSetValue(self_tls_index, (LPVOID)t))
	throw omni_thread_fatal(GetLastError());

    if (!SetThreadPriority(t->handle, nt_priority(PRIORITY_NORMAL)))
	throw omni_thread_fatal(GetLastError());
}

omni_thread::init_t::~init_t(void)
{
    if (--count() != 0) return;

    omni_thread* self = omni_thread::self();
    if (!self) return;

    TlsSetValue(self_tls_index, (LPVOID)0);
    delete self;

    delete next_id_mutex;

    TlsFree(self_tls_index);
}

//
// Wrapper for thread creation.
//

extern "C" 
#ifndef __BCPLUSPLUS__
unsigned __stdcall
#else
void _USERENTRY
#endif
omni_thread_wrapper(void* ptr)
{
    omni_thread* me = (omni_thread*)ptr;

    DB(cerr << "omni_thread_wrapper: thread " << me->id()
       << " started\n");

    if (!TlsSetValue(self_tls_index, (LPVOID)me))
	throw omni_thread_fatal(GetLastError());

    //
    // Now invoke the thread function with the given argument.
    //

    if (me->fn_void != NULL) {
	(*me->fn_void)(me->thread_arg);
	omni_thread::exit();
    }

    if (me->fn_ret != NULL) {
	void* return_value = (*me->fn_ret)(me->thread_arg);
	omni_thread::exit(return_value);
    }

    if (me->detached) {
	me->run(me->thread_arg);
	omni_thread::exit();
    } else {
	void* return_value = me->run_undetached(me->thread_arg);
	omni_thread::exit(return_value);
    }

    // should never get here.
#ifndef __BCPLUSPLUS__
    return 0;
#endif
}


//
// Constructors for omni_thread - set up the thread object but don't
// start it running.
//

// construct a detached thread running a given function.

omni_thread::omni_thread(void (*fn)(void*), void* arg, priority_t pri)
{
    common_constructor(arg, pri, 1);
    fn_void = fn;
    fn_ret = NULL;
}

// construct an undetached thread running a given function.

omni_thread::omni_thread(void* (*fn)(void*), void* arg, priority_t pri)
{
    common_constructor(arg, pri, 0);
    fn_void = NULL;
    fn_ret = fn;
}

// construct a thread which will run either run() or run_undetached().

omni_thread::omni_thread(void* arg, priority_t pri)
{
    common_constructor(arg, pri, 1);
    fn_void = NULL;
    fn_ret = NULL;
}

// common part of all constructors.

void
omni_thread::common_constructor(void* arg, priority_t pri, int det)
{
    _state = STATE_NEW;
    _priority = pri;

    next_id_mutex->lock();
    _id = next_id++;
    next_id_mutex->unlock();

    thread_arg = arg;
    detached = det;	// may be altered in start_undetached()

    cond_semaphore = CreateSemaphore(NULL, 0, SEMAPHORE_MAX, NULL);

    if (cond_semaphore == NULL)
	throw omni_thread_fatal(GetLastError());

    cond_next = cond_prev = NULL;
    cond_waiting = FALSE;

    handle = NULL;

    _dummy       = 0;
    _values      = 0;
    _value_alloc = 0;
}


//
// Destructor for omni_thread.
//

omni_thread::~omni_thread(void)
{
    DB(cerr << "destructor called for thread " << id() << endl);
    if (_values) {
        for (key_t i=0; i < _value_alloc; i++) {
	    if (_values[i]) {
	        delete _values[i];
	    }
        }
	delete [] _values;
    }
    if (handle && !CloseHandle(handle))
	throw omni_thread_fatal(GetLastError());
    if (cond_semaphore && !CloseHandle(cond_semaphore))
	throw omni_thread_fatal(GetLastError());
}


//
// Start the thread
//

void
omni_thread::start(void)
{
    omni_mutex_lock l(mutex);

    if (_state != STATE_NEW)
	throw omni_thread_invalid();

#ifndef __BCPLUSPLUS__
    // MSVC++ or compatiable
    unsigned int t;
    handle = (HANDLE)_beginthreadex(
                        NULL,
			stack_size,
			omni_thread_wrapper,
			(LPVOID)this,
			CREATE_SUSPENDED, 
			&t);
    nt_id = t;
    if (handle == NULL)
      throw omni_thread_fatal(GetLastError());
#else
    // Borland C++
    handle = (HANDLE)_beginthreadNT(omni_thread_wrapper,
				    stack_size,
				    (void*)this,
				    NULL,
				    CREATE_SUSPENDED,
				    &nt_id);
    if (handle == INVALID_HANDLE_VALUE)
      throw omni_thread_fatal(errno);
#endif

    if (!SetThreadPriority(handle, nt_priority(_priority)))
      throw omni_thread_fatal(GetLastError());

    if (ResumeThread(handle) == 0xffffffff)
	throw omni_thread_fatal(GetLastError());

    _state = STATE_RUNNING;
}


//
// Start a thread which will run the member function run_undetached().
//

void
omni_thread::start_undetached(void)
{
    if ((fn_void != NULL) || (fn_ret != NULL))
	throw omni_thread_invalid();

    detached = 0;
    start();
}


//
// join - simply check error conditions & call WaitForSingleObject.
//

void
omni_thread::join(void** status)
{
    mutex.lock();

    if ((_state != STATE_RUNNING) && (_state != STATE_TERMINATED)) {
	mutex.unlock();
	throw omni_thread_invalid();
    }

    mutex.unlock();

    if (this == self())
	throw omni_thread_invalid();

    if (detached)
	throw omni_thread_invalid();

    DB(cerr << "omni_thread::join: doing WaitForSingleObject\n");

    if (WaitForSingleObject(handle, INFINITE) != WAIT_OBJECT_0)
	throw omni_thread_fatal(GetLastError());

    DB(cerr << "omni_thread::join: WaitForSingleObject succeeded\n");

    if (status)
      *status = return_val;

    delete this;
}


//
// Change this thread's priority.
//

void
omni_thread::set_priority(priority_t pri)
{
    omni_mutex_lock l(mutex);

    if (_state != STATE_RUNNING)
	throw omni_thread_invalid();

    _priority = pri;

    if (!SetThreadPriority(handle, nt_priority(pri)))
	throw omni_thread_fatal(GetLastError());
}


//
// create - construct a new thread object and start it running.  Returns thread
// object if successful, null pointer if not.
//

// detached version

omni_thread*
omni_thread::create(void (*fn)(void*), void* arg, priority_t pri)
{
    omni_thread* t = new omni_thread(fn, arg, pri);
    t->start();
    return t;
}

// undetached version

omni_thread*
omni_thread::create(void* (*fn)(void*), void* arg, priority_t pri)
{
    omni_thread* t = new omni_thread(fn, arg, pri);
    t->start();
    return t;
}


//
// exit() _must_ lock the mutex even in the case of a detached thread.  This is
// because a thread may run to completion before the thread that created it has
// had a chance to get out of start().  By locking the mutex we ensure that the
// creating thread must have reached the end of start() before we delete the
// thread object.  Of course, once the call to start() returns, the user can
// still incorrectly refer to the thread object, but that's their problem.
//

void
omni_thread::exit(void* return_value)
{
    omni_thread* me = self();

    if (me)
      {
	me->mutex.lock();

	me->_state = STATE_TERMINATED;

	me->mutex.unlock();

	DB(cerr << "omni_thread::exit: thread " << me->id() << " detached "
	   << me->detached << " return value " << return_value << endl);

	if (me->detached) {
	  delete me;
	} else {
	  me->return_val = return_value;
	}
      }
    else
      {
	DB(cerr << "omni_thread::exit: called with a non-omnithread. Exit quietly." << endl);
      }
#ifndef __BCPLUSPLUS__
    // MSVC++ or compatiable
    //   _endthreadex() does not automatically closes the thread handle.
    //   The omni_thread dtor closes the thread handle.
    _endthreadex(0);
#else
    // Borland C++
    //   _endthread() does not automatically closes the thread handle.
    //   _endthreadex() is only available if __MFC_COMPAT__ is defined and
    //   all it does is to call _endthread().
    _endthread();
#endif
}


omni_thread*
omni_thread::self(void)
{
    LPVOID me;

    me = TlsGetValue(self_tls_index);

    if (me == NULL) {
      DB(cerr << "omni_thread::self: called with a non-ominthread. NULL is returned." << endl);
    }
    return (omni_thread*)me;
}


void
omni_thread::yield(void)
{
    Sleep(0);
}


#define MAX_SLEEP_SECONDS (DWORD)4294966	// (2**32-2)/1000

void
omni_thread::sleep(unsigned long secs, unsigned long nanosecs)
{
    if (secs <= MAX_SLEEP_SECONDS) {
	Sleep(secs * 1000 + nanosecs / 1000000);
	return;
    }

    DWORD no_of_max_sleeps = secs / MAX_SLEEP_SECONDS;

    for (DWORD i = 0; i < no_of_max_sleeps; i++)
	Sleep(MAX_SLEEP_SECONDS * 1000);

    Sleep((secs % MAX_SLEEP_SECONDS) * 1000 + nanosecs / 1000000);
}


void
omni_thread::get_time(unsigned long* abs_sec, unsigned long* abs_nsec,
		      unsigned long rel_sec, unsigned long rel_nsec)
{
    get_time_now(abs_sec, abs_nsec);
    *abs_nsec += rel_nsec;
    *abs_sec += rel_sec + *abs_nsec / 1000000000;
    *abs_nsec = *abs_nsec % 1000000000;
}


int
omni_thread::nt_priority(priority_t pri)
{
    switch (pri) {

    case PRIORITY_LOW:
	return THREAD_PRIORITY_LOWEST;

    case PRIORITY_NORMAL:
	return THREAD_PRIORITY_NORMAL;

    case PRIORITY_HIGH:
	return THREAD_PRIORITY_HIGHEST;
    }

    throw omni_thread_invalid();
    return 0; /* keep msvc++ happy */
}


static void
get_time_now(unsigned long* abs_sec, unsigned long* abs_nsec)
{
    static int days_in_preceding_months[12]
	= { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
    static int days_in_preceding_months_leap[12]
	= { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 };

    SYSTEMTIME st;

    GetSystemTime(&st);
    *abs_nsec = st.wMilliseconds * 1000000;

    // this formula should work until 1st March 2100

    DWORD days = ((st.wYear - 1970) * 365 + (st.wYear - 1969) / 4
		  + ((st.wYear % 4)
		     ? days_in_preceding_months[st.wMonth - 1]
		     : days_in_preceding_months_leap[st.wMonth - 1])
		  + st.wDay - 1);

    *abs_sec = st.wSecond + 60 * (st.wMinute + 60 * (st.wHour + 24 * days));
}

void
omni_thread::stacksize(unsigned long sz)
{
  stack_size = sz;
}

unsigned long
omni_thread::stacksize()
{
  return stack_size;
}

//
// Dummy thread
//

class omni_thread_dummy : public omni_thread {
public:
  inline omni_thread_dummy() : omni_thread()
  {
    _dummy = 1;
    _state = STATE_RUNNING;

    if (!DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
			 GetCurrentProcess(), &handle,
			 0, FALSE, DUPLICATE_SAME_ACCESS))
      throw omni_thread_fatal(GetLastError());

    nt_id = GetCurrentThreadId();

    if (!TlsSetValue(self_tls_index, (LPVOID)this))
      throw omni_thread_fatal(GetLastError());
  }
  inline ~omni_thread_dummy()
  {
    if (!TlsSetValue(self_tls_index, (LPVOID)0))
      throw omni_thread_fatal(GetLastError());
  }
};

omni_thread*
omni_thread::create_dummy()
{
  if (omni_thread::self())
    throw omni_thread_invalid();

  return new omni_thread_dummy;
}

void
omni_thread::release_dummy()
{
  omni_thread* self = omni_thread::self();
  if (!self || !self->_dummy)
    throw omni_thread_invalid();

  omni_thread_dummy* dummy = (omni_thread_dummy*)self;
  delete dummy;
}


#if defined(__DMC__) && defined(_WINDLL)
BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)
{
  return TRUE;
}
#endif


#define INSIDE_THREAD_IMPL_CC
#include "threaddata.cc"
#undef INSIDE_THREAD_IMPL_CC