/* -*- c++ -*- */ /* * Copyright 2011 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ %include "std_string.i" %include "stdint.i" %{ #include <boost/intrusive_ptr.hpp> #include <boost/shared_ptr.hpp> #include <boost/any.hpp> #include <complex> #include <string> #include <stdint.h> #include <iosfwd> #include <stdexcept> #include <gruel/pmt.h> %} //load generated python docstrings %include "pmt_swig_doc.i" //////////////////////////////////////////////////////////////////////// // Language independent exception handler //////////////////////////////////////////////////////////////////////// %include exception.i %exception { try { $action } catch(std::exception &e) { SWIG_exception(SWIG_RuntimeError, e.what()); } catch(...) { SWIG_exception(SWIG_RuntimeError, "Unknown exception"); } } // Template intrusive_ptr for Swig to avoid dereferencing issues namespace pmt{ class pmt_base; } //%import <intrusive_ptr.i> %import <gr_intrusive_ptr.i> %template(swig_int_ptr) boost::intrusive_ptr<pmt::pmt_base>; namespace pmt{ typedef boost::intrusive_ptr<pmt_base> pmt_t; /* * ------------------------------------------------------------------------ * Booleans. Two constants, #t and #f. * * In predicates, anything that is not #f is considered true. * I.e., there is a single false value, #f. * ------------------------------------------------------------------------ */ extern const pmt_t PMT_T; extern const pmt_t PMT_F; //! Return true if obj is \#t or \#f, else return false. bool pmt_is_bool(pmt_t obj); //! Return false if obj is \#f, else return true. bool pmt_is_true(pmt_t obj); //! Return true if obj is \#f, else return true. bool pmt_is_false(pmt_t obj); //! Return \#f is val is false, else return \#t. pmt_t pmt_from_bool(bool val); //! Return true if val is PMT_T, return false when val is PMT_F, // else raise wrong_type exception. bool pmt_to_bool(pmt_t val); /* * ------------------------------------------------------------------------ * Symbols * ------------------------------------------------------------------------ */ //! Return true if obj is a symbol, else false. bool pmt_is_symbol(const pmt_t& obj); //! Return the symbol whose name is \p s. pmt_t pmt_string_to_symbol(const std::string &s); //! Alias for pmt_string_to_symbol pmt_t pmt_intern(const std::string &s); /*! * If \p is a symbol, return the name of the symbol as a string. * Otherwise, raise the wrong_type exception. */ const std::string pmt_symbol_to_string(const pmt_t& sym); /* * ------------------------------------------------------------------------ * Numbers: we support integer, real and complex * ------------------------------------------------------------------------ */ //! Return true if obj is any kind of number, else false. bool pmt_is_number(pmt_t obj); /* * ------------------------------------------------------------------------ * Integers * ------------------------------------------------------------------------ */ //! Return true if \p x is an integer number, else false bool pmt_is_integer(pmt_t x); //! Return the pmt value that represents the integer \p x. pmt_t pmt_from_long(long x); /*! * \brief Convert pmt to long if possible. * * When \p x represents an exact integer that fits in a long, * return that integer. Else raise an exception, either wrong_type * when x is not an exact integer, or out_of_range when it doesn't fit. */ long pmt_to_long(pmt_t x); /* * ------------------------------------------------------------------------ * uint64_t * ------------------------------------------------------------------------ */ //! Return true if \p x is an uint64 number, else false bool pmt_is_uint64(pmt_t x); //! Return the pmt value that represents the uint64 \p x. pmt_t pmt_from_uint64(uint64_t x); /*! * \brief Convert pmt to uint64 if possible. * * When \p x represents an exact integer that fits in a uint64, * return that uint64. Else raise an exception, either wrong_type * when x is not an exact uint64, or out_of_range when it doesn't fit. */ uint64_t pmt_to_uint64(pmt_t x); /* * ------------------------------------------------------------------------ * Reals * ------------------------------------------------------------------------ */ /* * \brief Return true if \p obj is a real number, else false. */ bool pmt_is_real(pmt_t obj); //! Return the pmt value that represents double \p x. pmt_t pmt_from_double(double x); /*! * \brief Convert pmt to double if possible. * * Returns the number closest to \p val that is representable * as a double. The argument \p val must be a real or integer, otherwise * a wrong_type exception is raised. */ double pmt_to_double(pmt_t x); /* * ------------------------------------------------------------------------ * Complex * ------------------------------------------------------------------------ */ /*! * \brief return true if \p obj is a complex number, false otherwise. */ bool pmt_is_complex(pmt_t obj); //! Return a complex number constructed of the given real and imaginary parts. pmt_t pmt_make_rectangular(double re, double im); /*! * If \p z is complex, real or integer, return the closest complex<double>. * Otherwise, raise the wrong_type exception. */ std::complex<double> pmt_to_complex(pmt_t z); /* * ------------------------------------------------------------------------ * Pairs * ------------------------------------------------------------------------ */ extern const pmt_t PMT_NIL; //< the empty list //! Return true if \p x is the empty list, otherwise return false. bool pmt_is_null(const pmt_t& x); //! Return true if \p obj is a pair, else false. bool pmt_is_pair(const pmt_t& obj); //! Return a newly allocated pair whose car is \p x and whose cdr is \p y. pmt_t pmt_cons(const pmt_t& x, const pmt_t& y); //! If \p pair is a pair, return the car of the \p pair, otherwise raise wrong_type. pmt_t pmt_car(const pmt_t& pair); //! If \p pair is a pair, return the cdr of the \p pair, otherwise raise wrong_type. pmt_t pmt_cdr(const pmt_t& pair); //! Stores \p value in the car field of \p pair. void pmt_set_car(pmt_t pair, pmt_t value); //! Stores \p value in the cdr field of \p pair. void pmt_set_cdr(pmt_t pair, pmt_t value); pmt_t pmt_caar(pmt_t pair); pmt_t pmt_cadr(pmt_t pair); pmt_t pmt_cdar(pmt_t pair); pmt_t pmt_cddr(pmt_t pair); pmt_t pmt_caddr(pmt_t pair); pmt_t pmt_cadddr(pmt_t pair); /* * ------------------------------------------------------------------------ * Tuples * * Store a fixed number of objects. Tuples are not modifiable, and thus * are excellent for use as messages. Indexing is zero based. * Access time to an element is O(1). * ------------------------------------------------------------------------ */ //! Return true if \p x is a tuple, othewise false. bool pmt_is_tuple(pmt_t x); pmt_t pmt_make_tuple(); pmt_t pmt_make_tuple(const pmt_t &e0); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5, const pmt_t &e6); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5, const pmt_t &e6, const pmt_t &e7); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5, const pmt_t &e6, const pmt_t &e7, const pmt_t &e8); pmt_t pmt_make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5, const pmt_t &e6, const pmt_t &e7, const pmt_t &e8, const pmt_t &e9); /*! * If \p x is a vector or proper list, return a tuple containing the elements of x */ pmt_t pmt_to_tuple(const pmt_t &x); /*! * Return the contents of position \p k of \p tuple. * \p k must be a valid index of \p tuple. */ pmt_t pmt_tuple_ref(const pmt_t &tuple, size_t k); /* * ------------------------------------------------------------------------ * Vectors * * These vectors can hold any kind of objects. Indexing is zero based. * ------------------------------------------------------------------------ */ //! Return true if \p x is a vector, othewise false. bool pmt_is_vector(pmt_t x); //! Make a vector of length \p k, with initial values set to \p fill pmt_t pmt_make_vector(size_t k, pmt_t fill); /*! * Return the contents of position \p k of \p vector. * \p k must be a valid index of \p vector. */ pmt_t pmt_vector_ref(pmt_t vector, size_t k); //! Store \p obj in position \p k. void pmt_vector_set(pmt_t vector, size_t k, pmt_t obj); //! Store \p fill in every position of \p vector void pmt_vector_fill(pmt_t vector, pmt_t fill); /* * ------------------------------------------------------------------------ * Binary Large Objects (BLOBs) * * Handy for passing around uninterpreted chunks of memory. * ------------------------------------------------------------------------ */ //! Return true if \p x is a blob, othewise false. bool pmt_is_blob(pmt_t x); /*! * \brief Make a blob given a pointer and length in bytes * * \param buf is the pointer to data to use to create blob * \param len is the size of the data in bytes. * * The data is copied into the blob. */ pmt_t pmt_make_blob(const void *buf, size_t len); //! Return a pointer to the blob's data const void *pmt_blob_data(pmt_t blob); //! Return the blob's length in bytes size_t pmt_blob_length(pmt_t blob); /*! * <pre> * ------------------------------------------------------------------------ * Uniform Numeric Vectors * * A uniform numeric vector is a vector whose elements are all of single * numeric type. pmt offers uniform numeric vectors for signed and * unsigned 8-bit, 16-bit, 32-bit, and 64-bit integers, two sizes of * floating point values, and complex floating-point numbers of these * two sizes. Indexing is zero based. * * The names of the functions include these tags in their names: * * u8 unsigned 8-bit integers * s8 signed 8-bit integers * u16 unsigned 16-bit integers * s16 signed 16-bit integers * u32 unsigned 32-bit integers * s32 signed 32-bit integers * u64 unsigned 64-bit integers * s64 signed 64-bit integers * f32 the C++ type float * f64 the C++ type double * c32 the C++ type complex<float> * c64 the C++ type complex<double> * ------------------------------------------------------------------------ * </pre> */ //! true if \p x is any kind of uniform numeric vector bool pmt_is_uniform_vector(pmt_t x); bool pmt_is_u8vector(pmt_t x); bool pmt_is_s8vector(pmt_t x); bool pmt_is_u16vector(pmt_t x); bool pmt_is_s16vector(pmt_t x); bool pmt_is_u32vector(pmt_t x); bool pmt_is_s32vector(pmt_t x); bool pmt_is_u64vector(pmt_t x); bool pmt_is_s64vector(pmt_t x); bool pmt_is_f32vector(pmt_t x); bool pmt_is_f64vector(pmt_t x); bool pmt_is_c32vector(pmt_t x); bool pmt_is_c64vector(pmt_t x); pmt_t pmt_make_u8vector(size_t k, uint8_t fill); pmt_t pmt_make_s8vector(size_t k, int8_t fill); pmt_t pmt_make_u16vector(size_t k, uint16_t fill); pmt_t pmt_make_s16vector(size_t k, int16_t fill); pmt_t pmt_make_u32vector(size_t k, uint32_t fill); pmt_t pmt_make_s32vector(size_t k, int32_t fill); pmt_t pmt_make_u64vector(size_t k, uint64_t fill); pmt_t pmt_make_s64vector(size_t k, int64_t fill); pmt_t pmt_make_f32vector(size_t k, float fill); pmt_t pmt_make_f64vector(size_t k, double fill); pmt_t pmt_make_c32vector(size_t k, std::complex<float> fill); pmt_t pmt_make_c64vector(size_t k, std::complex<double> fill); pmt_t pmt_init_u8vector(size_t k, const uint8_t *data); pmt_t pmt_init_s8vector(size_t k, const int8_t *data); pmt_t pmt_init_u16vector(size_t k, const uint16_t *data); pmt_t pmt_init_s16vector(size_t k, const int16_t *data); pmt_t pmt_init_u32vector(size_t k, const uint32_t *data); pmt_t pmt_init_s32vector(size_t k, const int32_t *data); pmt_t pmt_init_f32vector(size_t k, const float *data); pmt_t pmt_init_f64vector(size_t k, const double *data); pmt_t pmt_init_c32vector(size_t k, const std::complex<float> *data); pmt_t pmt_init_c64vector(size_t k, const std::complex<double> *data); uint8_t pmt_u8vector_ref(pmt_t v, size_t k); int8_t pmt_s8vector_ref(pmt_t v, size_t k); uint16_t pmt_u16vector_ref(pmt_t v, size_t k); int16_t pmt_s16vector_ref(pmt_t v, size_t k); uint32_t pmt_u32vector_ref(pmt_t v, size_t k); int32_t pmt_s32vector_ref(pmt_t v, size_t k); uint64_t pmt_u64vector_ref(pmt_t v, size_t k); int64_t pmt_s64vector_ref(pmt_t v, size_t k); float pmt_f32vector_ref(pmt_t v, size_t k); double pmt_f64vector_ref(pmt_t v, size_t k); std::complex<float> pmt_c32vector_ref(pmt_t v, size_t k); std::complex<double> pmt_c64vector_ref(pmt_t v, size_t k); void pmt_u8vector_set(pmt_t v, size_t k, uint8_t x); //< v[k] = x void pmt_s8vector_set(pmt_t v, size_t k, int8_t x); void pmt_u16vector_set(pmt_t v, size_t k, uint16_t x); void pmt_s16vector_set(pmt_t v, size_t k, int16_t x); void pmt_u32vector_set(pmt_t v, size_t k, uint32_t x); void pmt_s32vector_set(pmt_t v, size_t k, int32_t x); void pmt_u64vector_set(pmt_t v, size_t k, uint64_t x); void pmt_s64vector_set(pmt_t v, size_t k, int64_t x); void pmt_f32vector_set(pmt_t v, size_t k, float x); void pmt_f64vector_set(pmt_t v, size_t k, double x); void pmt_c32vector_set(pmt_t v, size_t k, std::complex<float> x); void pmt_c64vector_set(pmt_t v, size_t k, std::complex<double> x); // Return const pointers to the elements const void *pmt_uniform_vector_elements(pmt_t v, size_t &len); //< works with any; len is in bytes const uint8_t *pmt_u8vector_elements(pmt_t v, size_t &len); //< len is in elements const int8_t *pmt_s8vector_elements(pmt_t v, size_t &len); //< len is in elements const uint16_t *pmt_u16vector_elements(pmt_t v, size_t &len); //< len is in elements const int16_t *pmt_s16vector_elements(pmt_t v, size_t &len); //< len is in elements const uint32_t *pmt_u32vector_elements(pmt_t v, size_t &len); //< len is in elements const int32_t *pmt_s32vector_elements(pmt_t v, size_t &len); //< len is in elements const uint64_t *pmt_u64vector_elements(pmt_t v, size_t &len); //< len is in elements const int64_t *pmt_s64vector_elements(pmt_t v, size_t &len); //< len is in elements const float *pmt_f32vector_elements(pmt_t v, size_t &len); //< len is in elements const double *pmt_f64vector_elements(pmt_t v, size_t &len); //< len is in elements const std::complex<float> *pmt_c32vector_elements(pmt_t v, size_t &len); //< len is in elements const std::complex<double> *pmt_c64vector_elements(pmt_t v, size_t &len); //< len is in elements // Return non-const pointers to the elements void *pmt_uniform_vector_writable_elements(pmt_t v, size_t &len); //< works with any; len is in bytes uint8_t *pmt_u8vector_writable_elements(pmt_t v, size_t &len); //< len is in elements int8_t *pmt_s8vector_writable_elements(pmt_t v, size_t &len); //< len is in elements uint16_t *pmt_u16vector_writable_elements(pmt_t v, size_t &len); //< len is in elements int16_t *pmt_s16vector_writable_elements(pmt_t v, size_t &len); //< len is in elements uint32_t *pmt_u32vector_writable_elements(pmt_t v, size_t &len); //< len is in elements int32_t *pmt_s32vector_writable_elements(pmt_t v, size_t &len); //< len is in elements uint64_t *pmt_u64vector_writable_elements(pmt_t v, size_t &len); //< len is in elements int64_t *pmt_s64vector_writable_elements(pmt_t v, size_t &len); //< len is in elements float *pmt_f32vector_writable_elements(pmt_t v, size_t &len); //< len is in elements double *pmt_f64vector_writable_elements(pmt_t v, size_t &len); //< len is in elements std::complex<float> *pmt_c32vector_writable_elements(pmt_t v, size_t &len); //< len is in elements std::complex<double> *pmt_c64vector_writable_elements(pmt_t v, size_t &len); //< len is in elements /* * ------------------------------------------------------------------------ * Dictionary (a.k.a associative array, hash, map) * * This is a functional data structure that is persistent. Updating a * functional data structure does not destroy the existing version, but * rather creates a new version that coexists with the old. * ------------------------------------------------------------------------ */ //! Return true if \p obj is a dictionary bool pmt_is_dict(const pmt_t &obj); //! Make an empty dictionary pmt_t pmt_make_dict(); //! Return a new dictionary with \p key associated with \p value. pmt_t pmt_dict_add(const pmt_t &dict, const pmt_t &key, const pmt_t &value); //! Return a new dictionary with \p key removed. pmt_t pmt_dict_delete(const pmt_t &dict, const pmt_t &key); //! Return true if \p key exists in \p dict bool pmt_dict_has_key(const pmt_t &dict, const pmt_t &key); //! If \p key exists in \p dict, return associated value; otherwise return \p not_found. pmt_t pmt_dict_ref(const pmt_t &dict, const pmt_t &key, const pmt_t ¬_found); //! Return list of (key . value) pairs pmt_t pmt_dict_items(pmt_t dict); //! Return list of keys pmt_t pmt_dict_keys(pmt_t dict); //! Return list of values pmt_t pmt_dict_values(pmt_t dict); /* * ------------------------------------------------------------------------ * Any (wraps boost::any -- can be used to wrap pretty much anything) * * Cannot be serialized or used across process boundaries. * See http://www.boost.org/doc/html/any.html * ------------------------------------------------------------------------ */ //! Return true if \p obj is an any bool pmt_is_any(pmt_t obj); //! make an any pmt_t pmt_make_any(const boost::any &any); //! Return underlying boost::any boost::any pmt_any_ref(pmt_t obj); //! Store \p any in \p obj void pmt_any_set(pmt_t obj, const boost::any &any); /* * ------------------------------------------------------------------------ * msg_accepter -- pmt representation of gruel::msg_accepter * ------------------------------------------------------------------------ */ //! Return true if \p obj is a msg_accepter bool pmt_is_msg_accepter(const pmt_t &obj); //! make a msg_accepter pmt_t pmt_make_msg_accepter(boost::shared_ptr<gruel::msg_accepter> ma); //! Return underlying msg_accepter boost::shared_ptr<gruel::msg_accepter> pmt_msg_accepter_ref(const pmt_t &obj); /* * ------------------------------------------------------------------------ * General functions * ------------------------------------------------------------------------ */ //! Return true if x and y are the same object; otherwise return false. bool pmt_eq(const pmt_t& x, const pmt_t& y); /*! * \brief Return true if x and y should normally be regarded as the same object, else false. * * <pre> * eqv returns true if: * x and y are the same object. * x and y are both \#t or both \#f. * x and y are both symbols and their names are the same. * x and y are both numbers, and are numerically equal. * x and y are both the empty list (nil). * x and y are pairs or vectors that denote same location in store. * </pre> */ bool pmt_eqv(const pmt_t& x, const pmt_t& y); /*! * pmt_equal recursively compares the contents of pairs and vectors, * applying pmt_eqv on other objects such as numbers and symbols. * pmt_equal may fail to terminate if its arguments are circular data * structures. */ bool pmt_equal(const pmt_t& x, const pmt_t& y); //! Return the number of elements in v size_t pmt_length(const pmt_t& v); /*! * \brief Find the first pair in \p alist whose car field is \p obj * and return that pair. * * \p alist (for "association list") must be a list of pairs. If no pair * in \p alist has \p obj as its car then \#f is returned. * Uses pmt_eq to compare \p obj with car fields of the pairs in \p alist. */ pmt_t pmt_assq(pmt_t obj, pmt_t alist); /*! * \brief Find the first pair in \p alist whose car field is \p obj * and return that pair. * * \p alist (for "association list") must be a list of pairs. If no pair * in \p alist has \p obj as its car then \#f is returned. * Uses pmt_eqv to compare \p obj with car fields of the pairs in \p alist. */ pmt_t pmt_assv(pmt_t obj, pmt_t alist); /*! * \brief Find the first pair in \p alist whose car field is \p obj * and return that pair. * * \p alist (for "association list") must be a list of pairs. If no pair * in \p alist has \p obj as its car then \#f is returned. * Uses pmt_equal to compare \p obj with car fields of the pairs in \p alist. */ pmt_t pmt_assoc(pmt_t obj, pmt_t alist); /*! * \brief Apply \p proc element-wise to the elements of list and returns * a list of the results, in order. * * \p list must be a list. The dynamic order in which \p proc is * applied to the elements of \p list is unspecified. */ pmt_t pmt_map(pmt_t proc(const pmt_t&), pmt_t list); /*! * \brief reverse \p list. * * \p list must be a proper list. */ pmt_t pmt_reverse(pmt_t list); /*! * \brief destructively reverse \p list. * * \p list must be a proper list. */ pmt_t pmt_reverse_x(pmt_t list); /*! * \brief (acons x y a) == (cons (cons x y) a) */ inline static pmt_t pmt_acons(pmt_t x, pmt_t y, pmt_t a) { return pmt_cons(pmt_cons(x, y), a); } /*! * \brief locates \p nth element of \n list where the car is the 'zeroth' element. */ pmt_t pmt_nth(size_t n, pmt_t list); /*! * \brief returns the tail of \p list that would be obtained by calling * cdr \p n times in succession. */ pmt_t pmt_nthcdr(size_t n, pmt_t list); /*! * \brief Return the first sublist of \p list whose car is \p obj. * If \p obj does not occur in \p list, then \#f is returned. * pmt_memq use pmt_eq to compare \p obj with the elements of \p list. */ pmt_t pmt_memq(pmt_t obj, pmt_t list); /*! * \brief Return the first sublist of \p list whose car is \p obj. * If \p obj does not occur in \p list, then \#f is returned. * pmt_memv use pmt_eqv to compare \p obj with the elements of \p list. */ pmt_t pmt_memv(pmt_t obj, pmt_t list); /*! * \brief Return the first sublist of \p list whose car is \p obj. * If \p obj does not occur in \p list, then \#f is returned. * pmt_member use pmt_equal to compare \p obj with the elements of \p list. */ pmt_t pmt_member(pmt_t obj, pmt_t list); /*! * \brief Return true if every element of \p list1 appears in \p list2, and false otherwise. * Comparisons are done with pmt_eqv. */ bool pmt_subsetp(pmt_t list1, pmt_t list2); /*! * \brief Return a list of length 1 containing \p x1 */ pmt_t pmt_list1(const pmt_t& x1); /*! * \brief Return a list of length 2 containing \p x1, \p x2 */ pmt_t pmt_list2(const pmt_t& x1, const pmt_t& x2); /*! * \brief Return a list of length 3 containing \p x1, \p x2, \p x3 */ pmt_t pmt_list3(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3); /*! * \brief Return a list of length 4 containing \p x1, \p x2, \p x3, \p x4 */ pmt_t pmt_list4(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4); /*! * \brief Return a list of length 5 containing \p x1, \p x2, \p x3, \p x4, \p x5 */ pmt_t pmt_list5(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4, const pmt_t& x5); /*! * \brief Return a list of length 6 containing \p x1, \p x2, \p x3, \p x4, \p * x5, \p x6 */ pmt_t pmt_list6(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4, const pmt_t& x5, const pmt_t& x6); /*! * \brief Return \p list with \p item added to it. */ pmt_t pmt_list_add(pmt_t list, const pmt_t& item); /* * ------------------------------------------------------------------------ * read / write * ------------------------------------------------------------------------ */ extern const pmt_t PMT_EOF; //< The end of file object //! return true if obj is the EOF object, otherwise return false. bool pmt_is_eof_object(pmt_t obj); /*! * read converts external representations of pmt objects into the * objects themselves. Read returns the next object parsable from * the given input port, updating port to point to the first * character past the end of the external representation of the * object. * * If an end of file is encountered in the input before any * characters are found that can begin an object, then an end of file * object is returned. The port remains open, and further attempts * to read will also return an end of file object. If an end of file * is encountered after the beginning of an object's external * representation, but the external representation is incomplete and * therefore not parsable, an error is signaled. */ pmt_t pmt_read(std::istream &port); /*! * Write a written representation of \p obj to the given \p port. */ void pmt_write(pmt_t obj, std::ostream &port); /*! * Return a string representation of \p obj. * This is the same output as would be generated by pmt_write. */ std::string pmt_write_string(pmt_t obj); /*! * \brief Write pmt string representation to stdout. */ void pmt_print(pmt_t v); /* * ------------------------------------------------------------------------ * portable byte stream representation * ------------------------------------------------------------------------ */ /*! * \brief Write portable byte-serial representation of \p obj to \p sink */ bool pmt_serialize(pmt_t obj, std::streambuf &sink); /*! * \brief Create obj from portable byte-serial representation */ pmt_t pmt_deserialize(std::streambuf &source); void pmt_dump_sizeof(); // debugging /*! * \brief Provide a simple string generating interface to pmt's serialize function */ std::string pmt_serialize_str(pmt_t obj); /*! * \brief Provide a simple string generating interface to pmt's deserialize function */ pmt_t pmt_deserialize_str(std::string str); } //namespace pmt