# # Copyright 2008 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1`301, USA. # ################################################## # Imports ################################################## import plotter import common import wx import numpy import math import pubsub from constants import * from gnuradio import gr #for gr.prefs import forms ################################################## # Constants ################################################## SLIDER_STEPS = 100 AVG_ALPHA_MIN_EXP, AVG_ALPHA_MAX_EXP = -3, 0 DEFAULT_FRAME_RATE = gr.prefs().get_long('wxgui', 'waterfall_rate', 30) DEFAULT_WIN_SIZE = (600, 300) DIV_LEVELS = (1, 2, 5, 10, 20) MIN_DYNAMIC_RANGE, MAX_DYNAMIC_RANGE = 10, 200 COLOR_MODES = ( ('RGB1', 'rgb1'), ('RGB2', 'rgb2'), ('RGB3', 'rgb3'), ('Gray', 'gray'), ) ################################################## # Waterfall window control panel ################################################## class control_panel(wx.Panel): """ A control panel with wx widgits to control the plotter and fft block chain. """ def __init__(self, parent): """ Create a new control panel. @param parent the wx parent window """ self.parent = parent wx.Panel.__init__(self, parent, style=wx.SUNKEN_BORDER) control_box = wx.BoxSizer(wx.VERTICAL) control_box.AddStretchSpacer() options_box = forms.static_box_sizer( parent=self, sizer=control_box, label='Options', bold=True, orient=wx.VERTICAL, ) #average forms.check_box( sizer=options_box, parent=self, label='Average', ps=parent, key=AVERAGE_KEY, ) avg_alpha_text = forms.static_text( sizer=options_box, parent=self, label='Avg Alpha', converter=forms.float_converter(lambda x: '%.4f'%x), ps=parent, key=AVG_ALPHA_KEY, width=50, ) avg_alpha_slider = forms.log_slider( sizer=options_box, parent=self, min_exp=AVG_ALPHA_MIN_EXP, max_exp=AVG_ALPHA_MAX_EXP, num_steps=SLIDER_STEPS, ps=parent, key=AVG_ALPHA_KEY, ) for widget in (avg_alpha_text, avg_alpha_slider): parent.subscribe(AVERAGE_KEY, widget.Enable) widget.Enable(parent[AVERAGE_KEY]) #begin axes box control_box.AddStretchSpacer() axes_box = forms.static_box_sizer( parent=self, sizer=control_box, label='Axes Options', bold=True, orient=wx.VERTICAL, ) #num lines buttons forms.incr_decr_buttons( parent=self, sizer=axes_box, label='Time Scale', on_incr=self._on_incr_time_scale, on_decr=self._on_decr_time_scale, ) #dyanmic range buttons forms.incr_decr_buttons( parent=self, sizer=axes_box, label='Dyn Range', on_incr=self._on_incr_dynamic_range, on_decr=self._on_decr_dynamic_range, ) #ref lvl buttons forms.incr_decr_buttons( parent=self, sizer=axes_box, label='Ref Level', on_incr=self._on_incr_ref_level, on_decr=self._on_decr_ref_level, ) #color mode forms.drop_down( parent=self, sizer=axes_box, width=100, ps=parent, key=COLOR_MODE_KEY, label='Color', choices=map(lambda x: x[1], COLOR_MODES), labels=map(lambda x: x[0], COLOR_MODES), ) #autoscale forms.single_button( parent=self, sizer=axes_box, label='Autoscale', callback=self.parent.autoscale, ) #clear control_box.AddStretchSpacer() forms.single_button( parent=self, sizer=control_box, label='Clear', callback=self._on_clear_button, ) #run/stop forms.toggle_button( sizer=control_box, parent=self, true_label='Stop', false_label='Run', ps=parent, key=RUNNING_KEY, ) #set sizer self.SetSizerAndFit(control_box) ################################################## # Event handlers ################################################## def _on_clear_button(self, event): self.parent[NUM_LINES_KEY] = self.parent[NUM_LINES_KEY] def _on_incr_dynamic_range(self, event): self.parent[DYNAMIC_RANGE_KEY] = min(self.parent[DYNAMIC_RANGE_KEY] + 10, MAX_DYNAMIC_RANGE) def _on_decr_dynamic_range(self, event): self.parent[DYNAMIC_RANGE_KEY] = max(self.parent[DYNAMIC_RANGE_KEY] - 10, MIN_DYNAMIC_RANGE) def _on_incr_ref_level(self, event): self.parent[REF_LEVEL_KEY] = self.parent[REF_LEVEL_KEY] + self.parent[DYNAMIC_RANGE_KEY]*.1 def _on_decr_ref_level(self, event): self.parent[REF_LEVEL_KEY] = self.parent[REF_LEVEL_KEY] - self.parent[DYNAMIC_RANGE_KEY]*.1 def _on_incr_time_scale(self, event): old_rate = self.parent[FRAME_RATE_KEY] self.parent[FRAME_RATE_KEY] *= 0.75 if self.parent[FRAME_RATE_KEY] == old_rate: self.parent[DECIMATION_KEY] += 1 def _on_decr_time_scale(self, event): old_rate = self.parent[FRAME_RATE_KEY] self.parent[FRAME_RATE_KEY] *= 1.25 if self.parent[FRAME_RATE_KEY] == old_rate: self.parent[DECIMATION_KEY] -= 1 ################################################## # Waterfall window with plotter and control panel ################################################## class waterfall_window(wx.Panel, pubsub.pubsub): def __init__( self, parent, controller, size, title, real, fft_size, num_lines, decimation_key, baseband_freq, sample_rate_key, frame_rate_key, dynamic_range, ref_level, average_key, avg_alpha_key, msg_key, ): pubsub.pubsub.__init__(self) #setup self.samples = list() self.real = real self.fft_size = fft_size #proxy the keys self.proxy(MSG_KEY, controller, msg_key) self.proxy(DECIMATION_KEY, controller, decimation_key) self.proxy(FRAME_RATE_KEY, controller, frame_rate_key) self.proxy(AVERAGE_KEY, controller, average_key) self.proxy(AVG_ALPHA_KEY, controller, avg_alpha_key) self.proxy(SAMPLE_RATE_KEY, controller, sample_rate_key) #init panel and plot wx.Panel.__init__(self, parent, style=wx.SIMPLE_BORDER) self.plotter = plotter.waterfall_plotter(self) self.plotter.SetSize(wx.Size(*size)) self.plotter.set_title(title) self.plotter.enable_point_label(True) self.plotter.enable_grid_lines(False) #plotter listeners self.subscribe(COLOR_MODE_KEY, self.plotter.set_color_mode) self.subscribe(NUM_LINES_KEY, self.plotter.set_num_lines) #initialize values self[DYNAMIC_RANGE_KEY] = dynamic_range self[NUM_LINES_KEY] = num_lines self[Y_DIVS_KEY] = 8 self[X_DIVS_KEY] = 8 #approximate self[REF_LEVEL_KEY] = ref_level self[BASEBAND_FREQ_KEY] = baseband_freq self[COLOR_MODE_KEY] = COLOR_MODES[0][1] self[RUNNING_KEY] = True #setup the box with plot and controls self.control_panel = control_panel(self) main_box = wx.BoxSizer(wx.HORIZONTAL) main_box.Add(self.plotter, 1, wx.EXPAND) main_box.Add(self.control_panel, 0, wx.EXPAND) self.SetSizerAndFit(main_box) #register events self.subscribe(MSG_KEY, self.handle_msg) for key in ( DECIMATION_KEY, SAMPLE_RATE_KEY, FRAME_RATE_KEY, BASEBAND_FREQ_KEY, X_DIVS_KEY, Y_DIVS_KEY, NUM_LINES_KEY, ): self.subscribe(key, self.update_grid) #initial update self.update_grid() def autoscale(self, *args): """ Autoscale the waterfall plot to the last frame. Set the dynamic range and reference level. Does not affect the current data in the waterfall. """ if not len(self.samples): return #get the peak level (max of the samples) peak_level = numpy.max(self.samples) #get the noise floor (averge the smallest samples) noise_floor = numpy.average(numpy.sort(self.samples)[:len(self.samples)/4]) #padding noise_floor -= abs(noise_floor)*.5 peak_level += abs(peak_level)*.1 #set the range and level self[REF_LEVEL_KEY] = peak_level self[DYNAMIC_RANGE_KEY] = peak_level - noise_floor def handle_msg(self, msg): """ Handle the message from the fft sink message queue. If complex, reorder the fft samples so the negative bins come first. If real, keep take only the positive bins. Send the data to the plotter. @param msg the fft array as a character array """ if not self[RUNNING_KEY]: return #convert to floating point numbers self.samples = samples = numpy.fromstring(msg, numpy.float32)[:self.fft_size] #only take first frame num_samps = len(samples) #reorder fft if self.real: samples = samples[:(num_samps+1)/2] else: samples = numpy.concatenate((samples[num_samps/2+1:], samples[:(num_samps+1)/2])) #plot the fft self.plotter.set_samples( samples=samples, minimum=self[REF_LEVEL_KEY] - self[DYNAMIC_RANGE_KEY], maximum=self[REF_LEVEL_KEY], ) #update the plotter self.plotter.update() def update_grid(self, *args): """ Update the plotter grid. This update method is dependent on the variables below. Determine the x and y axis grid parameters. The x axis depends on sample rate, baseband freq, and x divs. The y axis depends on y per div, y divs, and ref level. """ #grid parameters sample_rate = self[SAMPLE_RATE_KEY] frame_rate = self[FRAME_RATE_KEY] baseband_freq = self[BASEBAND_FREQ_KEY] num_lines = self[NUM_LINES_KEY] y_divs = self[Y_DIVS_KEY] x_divs = self[X_DIVS_KEY] #determine best fitting x_per_div if self.real: x_width = sample_rate/2.0 else: x_width = sample_rate/1.0 x_per_div = common.get_clean_num(x_width/x_divs) #update the x grid if self.real: self.plotter.set_x_grid( baseband_freq, baseband_freq + sample_rate/2.0, x_per_div, True, ) else: self.plotter.set_x_grid( baseband_freq - sample_rate/2.0, baseband_freq + sample_rate/2.0, x_per_div, True, ) #update x units self.plotter.set_x_label('Frequency', 'Hz') #update y grid duration = float(num_lines)/frame_rate y_per_div = common.get_clean_num(duration/y_divs) self.plotter.set_y_grid(0, duration, y_per_div, True) #update y units self.plotter.set_y_label('Time', 's') #update plotter self.plotter.update()