# # Copyright 2008 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # ################################################## # Imports ################################################## import plotter import common import wx import numpy import math import pubsub from constants import * from gnuradio import gr #for gr.prefs ################################################## # Constants ################################################## SLIDER_STEPS = 100 AVG_ALPHA_MIN_EXP, AVG_ALPHA_MAX_EXP = -3, 0 DEFAULT_WIN_SIZE = (600, 300) DEFAULT_FRAME_RATE = gr.prefs().get_long('wxgui', 'fft_rate', 30) DIV_LEVELS = (1, 2, 5, 10, 20) FFT_PLOT_COLOR_SPEC = (0.3, 0.3, 1.0) PEAK_VALS_COLOR_SPEC = (0.0, 0.8, 0.0) NO_PEAK_VALS = list() ################################################## # FFT window control panel ################################################## class control_panel(wx.Panel): """ A control panel with wx widgits to control the plotter and fft block chain. """ def __init__(self, parent): """ Create a new control panel. @param parent the wx parent window """ self.parent = parent wx.Panel.__init__(self, parent, style=wx.SUNKEN_BORDER) control_box = wx.BoxSizer(wx.VERTICAL) #checkboxes for average and peak hold control_box.AddStretchSpacer() control_box.Add(common.LabelText(self, 'Options'), 0, wx.ALIGN_CENTER) peak_hold_check_box = common.CheckBoxController(self, 'Peak Hold', parent, PEAK_HOLD_KEY) control_box.Add(peak_hold_check_box, 0, wx.EXPAND) average_check_box = common.CheckBoxController(self, 'Average', parent, AVERAGE_KEY) control_box.Add(average_check_box, 0, wx.EXPAND) control_box.AddSpacer(2) avg_alpha_slider = common.LogSliderController( self, 'Avg Alpha', AVG_ALPHA_MIN_EXP, AVG_ALPHA_MAX_EXP, SLIDER_STEPS, parent, AVG_ALPHA_KEY, formatter=lambda x: ': %.4f'%x, ) parent.subscribe(AVERAGE_KEY, avg_alpha_slider.Enable) control_box.Add(avg_alpha_slider, 0, wx.EXPAND) #radio buttons for div size control_box.AddStretchSpacer() control_box.Add(common.LabelText(self, 'Set dB/div'), 0, wx.ALIGN_CENTER) radio_box = wx.BoxSizer(wx.VERTICAL) self.radio_buttons = list() for y_per_div in DIV_LEVELS: radio_button = wx.RadioButton(self, label="%d dB/div"%y_per_div) radio_button.Bind(wx.EVT_RADIOBUTTON, self._on_y_per_div) self.radio_buttons.append(radio_button) radio_box.Add(radio_button, 0, wx.ALIGN_LEFT) parent.subscribe(Y_PER_DIV_KEY, self._on_set_y_per_div) control_box.Add(radio_box, 0, wx.EXPAND) #ref lvl buttons control_box.AddStretchSpacer() control_box.Add(common.LabelText(self, 'Set Ref Level'), 0, wx.ALIGN_CENTER) control_box.AddSpacer(2) _ref_lvl_buttons = common.IncrDecrButtons(self, self._on_incr_ref_level, self._on_decr_ref_level) control_box.Add(_ref_lvl_buttons, 0, wx.ALIGN_CENTER) #autoscale control_box.AddStretchSpacer() autoscale_button = wx.Button(self, label='Autoscale', style=wx.BU_EXACTFIT) autoscale_button.Bind(wx.EVT_BUTTON, self.parent.autoscale) control_box.Add(autoscale_button, 0, wx.EXPAND) #run/stop run_button = common.ToggleButtonController(self, parent, RUNNING_KEY, 'Stop', 'Run') control_box.Add(run_button, 0, wx.EXPAND) #set sizer self.SetSizerAndFit(control_box) #mouse wheel event def on_mouse_wheel(event): if event.GetWheelRotation() < 0: self._on_incr_ref_level(event) else: self._on_decr_ref_level(event) parent.plotter.Bind(wx.EVT_MOUSEWHEEL, on_mouse_wheel) ################################################## # Event handlers ################################################## def _on_set_y_per_div(self, y_per_div): try: index = list(DIV_LEVELS).index(y_per_div) self.radio_buttons[index].SetValue(True) except: pass def _on_y_per_div(self, event): selected_radio_button = filter(lambda rb: rb.GetValue(), self.radio_buttons)[0] index = self.radio_buttons.index(selected_radio_button) self.parent[Y_PER_DIV_KEY] = DIV_LEVELS[index] def _on_incr_ref_level(self, event): self.parent[REF_LEVEL_KEY] = self.parent[REF_LEVEL_KEY] + self.parent[Y_PER_DIV_KEY] def _on_decr_ref_level(self, event): self.parent[REF_LEVEL_KEY] = self.parent[REF_LEVEL_KEY] - self.parent[Y_PER_DIV_KEY] ################################################## # FFT window with plotter and control panel ################################################## class fft_window(wx.Panel, pubsub.pubsub): def __init__( self, parent, controller, size, title, real, fft_size, baseband_freq, sample_rate_key, y_per_div, y_divs, ref_level, average_key, avg_alpha_key, peak_hold, msg_key, ): pubsub.pubsub.__init__(self) #ensure y_per_div if y_per_div not in DIV_LEVELS: y_per_div = DIV_LEVELS[0] #setup self.samples = list() self.real = real self.fft_size = fft_size self._reset_peak_vals() #proxy the keys self.proxy(MSG_KEY, controller, msg_key) self.proxy(AVERAGE_KEY, controller, average_key) self.proxy(AVG_ALPHA_KEY, controller, avg_alpha_key) self.proxy(SAMPLE_RATE_KEY, controller, sample_rate_key) #init panel and plot wx.Panel.__init__(self, parent, style=wx.SIMPLE_BORDER) self.plotter = plotter.channel_plotter(self) self.plotter.SetSize(wx.Size(*size)) self.plotter.set_title(title) self.plotter.enable_legend(True) self.plotter.enable_point_label(True) self.plotter.enable_grid_lines(True) #setup the box with plot and controls self.control_panel = control_panel(self) main_box = wx.BoxSizer(wx.HORIZONTAL) main_box.Add(self.plotter, 1, wx.EXPAND) main_box.Add(self.control_panel, 0, wx.EXPAND) self.SetSizerAndFit(main_box) #initialize values self[AVERAGE_KEY] = self[AVERAGE_KEY] self[AVG_ALPHA_KEY] = self[AVG_ALPHA_KEY] self[PEAK_HOLD_KEY] = peak_hold self[Y_PER_DIV_KEY] = y_per_div self[Y_DIVS_KEY] = y_divs self[X_DIVS_KEY] = 8 #approximate self[REF_LEVEL_KEY] = ref_level self[BASEBAND_FREQ_KEY] = baseband_freq self[RUNNING_KEY] = True #register events self.subscribe(AVERAGE_KEY, lambda x: self._reset_peak_vals()) self.subscribe(MSG_KEY, self.handle_msg) self.subscribe(SAMPLE_RATE_KEY, self.update_grid) for key in ( BASEBAND_FREQ_KEY, Y_PER_DIV_KEY, X_DIVS_KEY, Y_DIVS_KEY, REF_LEVEL_KEY, ): self.subscribe(key, self.update_grid) #initial update self.update_grid() def autoscale(self, *args): """ Autoscale the fft plot to the last frame. Set the dynamic range and reference level. """ if not len(self.samples): return #get the peak level (max of the samples) peak_level = numpy.max(self.samples) #get the noise floor (averge the smallest samples) noise_floor = numpy.average(numpy.sort(self.samples)[:len(self.samples)/4]) #padding noise_floor -= abs(noise_floor)*.5 peak_level += abs(peak_level)*.1 #set the reference level to a multiple of y divs self[REF_LEVEL_KEY] = self[Y_DIVS_KEY]*math.ceil(peak_level/self[Y_DIVS_KEY]) #set the range to a clean number of the dynamic range self[Y_PER_DIV_KEY] = common.get_clean_num((peak_level - noise_floor)/self[Y_DIVS_KEY]) def _reset_peak_vals(self): self.peak_vals = NO_PEAK_VALS def handle_msg(self, msg): """ Handle the message from the fft sink message queue. If complex, reorder the fft samples so the negative bins come first. If real, keep take only the positive bins. Plot the samples onto the grid as channel 1. If peak hold is enabled, plot peak vals as channel 2. @param msg the fft array as a character array """ if not self[RUNNING_KEY]: return #convert to floating point numbers samples = numpy.fromstring(msg, numpy.float32)[:self.fft_size] #only take first frame num_samps = len(samples) #reorder fft if self.real: samples = samples[:num_samps/2] else: samples = numpy.concatenate((samples[num_samps/2:], samples[:num_samps/2])) self.samples = samples #peak hold calculation if self[PEAK_HOLD_KEY]: if len(self.peak_vals) != len(samples): self.peak_vals = samples self.peak_vals = numpy.maximum(samples, self.peak_vals) #plot the peak hold self.plotter.set_waveform( channel='Peak', samples=self.peak_vals, color_spec=PEAK_VALS_COLOR_SPEC, ) else: self._reset_peak_vals() self.plotter.clear_waveform(channel='Peak') #plot the fft self.plotter.set_waveform( channel='FFT', samples=samples, color_spec=FFT_PLOT_COLOR_SPEC, ) #update the plotter self.plotter.update() def update_grid(self, *args): """ Update the plotter grid. This update method is dependent on the variables below. Determine the x and y axis grid parameters. The x axis depends on sample rate, baseband freq, and x divs. The y axis depends on y per div, y divs, and ref level. """ #grid parameters sample_rate = self[SAMPLE_RATE_KEY] baseband_freq = self[BASEBAND_FREQ_KEY] y_per_div = self[Y_PER_DIV_KEY] y_divs = self[Y_DIVS_KEY] x_divs = self[X_DIVS_KEY] ref_level = self[REF_LEVEL_KEY] #determine best fitting x_per_div if self.real: x_width = sample_rate/2.0 else: x_width = sample_rate/1.0 x_per_div = common.get_clean_num(x_width/x_divs) #update the x grid if self.real: self.plotter.set_x_grid( baseband_freq, baseband_freq + sample_rate/2.0, x_per_div, True, ) else: self.plotter.set_x_grid( baseband_freq - sample_rate/2.0, baseband_freq + sample_rate/2.0, x_per_div, True, ) #update x units self.plotter.set_x_label('Frequency', 'Hz') #update y grid self.plotter.set_y_grid(ref_level-y_per_div*y_divs, ref_level, y_per_div) #update y units self.plotter.set_y_label('Amplitude', 'dB') #update plotter self.plotter.update()