# # Copyright 2008, 2009 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # ################################################## # Imports ################################################## import plotter import common import wx import numpy import math import pubsub from constants import * from gnuradio import gr #for gr.prefs import forms ################################################## # Constants ################################################## SLIDER_STEPS = 100 AVG_ALPHA_MIN_EXP, AVG_ALPHA_MAX_EXP = -3, 0 DEFAULT_WIN_SIZE = (600, 300) DEFAULT_FRAME_RATE = gr.prefs().get_long('wxgui', 'fft_rate', 30) DB_DIV_MIN, DB_DIV_MAX = 1, 20 FFT_PLOT_COLOR_SPEC = (0.3, 0.3, 1.0) PEAK_VALS_COLOR_SPEC = (0.0, 0.8, 0.0) EMPTY_TRACE = list() TRACES = ('A', 'B') TRACES_COLOR_SPEC = { 'A': (1.0, 0.0, 0.0), 'B': (0.8, 0.0, 0.8), } ################################################## # FFT window control panel ################################################## class control_panel(wx.Panel): """ A control panel with wx widgits to control the plotter and fft block chain. """ def __init__(self, parent): """ Create a new control panel. @param parent the wx parent window """ self.parent = parent wx.Panel.__init__(self, parent, style=wx.SUNKEN_BORDER) control_box = wx.BoxSizer(wx.VERTICAL) control_box.AddStretchSpacer() #checkboxes for average and peak hold options_box = forms.static_box_sizer( parent=self, sizer=control_box, label='Trace Options', bold=True, orient=wx.VERTICAL, ) forms.check_box( sizer=options_box, parent=self, label='Peak Hold', ps=parent, key=PEAK_HOLD_KEY, ) forms.check_box( sizer=options_box, parent=self, label='Average', ps=parent, key=AVERAGE_KEY, ) #static text and slider for averaging avg_alpha_text = forms.static_text( sizer=options_box, parent=self, label='Avg Alpha', converter=forms.float_converter(lambda x: '%.4f'%x), ps=parent, key=AVG_ALPHA_KEY, width=50, ) avg_alpha_slider = forms.log_slider( sizer=options_box, parent=self, min_exp=AVG_ALPHA_MIN_EXP, max_exp=AVG_ALPHA_MAX_EXP, num_steps=SLIDER_STEPS, ps=parent, key=AVG_ALPHA_KEY, ) for widget in (avg_alpha_text, avg_alpha_slider): parent.subscribe(AVERAGE_KEY, widget.Enable) widget.Enable(parent[AVERAGE_KEY]) #trace menu for trace in TRACES: trace_box = wx.BoxSizer(wx.HORIZONTAL) options_box.Add(trace_box, 0, wx.EXPAND) forms.check_box( sizer=trace_box, parent=self, ps=parent, key=TRACE_SHOW_KEY+trace, label='Trace %s'%trace, ) trace_box.AddSpacer(10) forms.single_button( sizer=trace_box, parent=self, ps=parent, key=TRACE_STORE_KEY+trace, label='Store', style=wx.BU_EXACTFIT, ) trace_box.AddSpacer(10) #radio buttons for div size control_box.AddStretchSpacer() y_ctrl_box = forms.static_box_sizer( parent=self, sizer=control_box, label='Axis Options', bold=True, orient=wx.VERTICAL, ) forms.incr_decr_buttons( parent=self, sizer=y_ctrl_box, label='dB/Div', on_incr=self._on_incr_db_div, on_decr=self._on_decr_db_div, ) #ref lvl buttons forms.incr_decr_buttons( parent=self, sizer=y_ctrl_box, label='Ref Level', on_incr=self._on_incr_ref_level, on_decr=self._on_decr_ref_level, ) y_ctrl_box.AddSpacer(2) #autoscale forms.single_button( sizer=y_ctrl_box, parent=self, label='Autoscale', callback=self.parent.autoscale, ) #run/stop control_box.AddStretchSpacer() forms.toggle_button( sizer=control_box, parent=self, true_label='Stop', false_label='Run', ps=parent, key=RUNNING_KEY, ) #set sizer self.SetSizerAndFit(control_box) #mouse wheel event def on_mouse_wheel(event): if event.GetWheelRotation() < 0: self._on_incr_ref_level(event) else: self._on_decr_ref_level(event) parent.plotter.Bind(wx.EVT_MOUSEWHEEL, on_mouse_wheel) ################################################## # Event handlers ################################################## def _on_incr_ref_level(self, event): self.parent[REF_LEVEL_KEY] = self.parent[REF_LEVEL_KEY] + self.parent[Y_PER_DIV_KEY] def _on_decr_ref_level(self, event): self.parent[REF_LEVEL_KEY] = self.parent[REF_LEVEL_KEY] - self.parent[Y_PER_DIV_KEY] def _on_incr_db_div(self, event): self.parent[Y_PER_DIV_KEY] = min(DB_DIV_MAX, common.get_clean_incr(self.parent[Y_PER_DIV_KEY])) def _on_decr_db_div(self, event): self.parent[Y_PER_DIV_KEY] = max(DB_DIV_MIN, common.get_clean_decr(self.parent[Y_PER_DIV_KEY])) ################################################## # FFT window with plotter and control panel ################################################## class fft_window(wx.Panel, pubsub.pubsub): def __init__( self, parent, controller, size, title, real, fft_size, baseband_freq, sample_rate_key, y_per_div, y_divs, ref_level, average_key, avg_alpha_key, peak_hold, msg_key, ): pubsub.pubsub.__init__(self) #setup self.samples = EMPTY_TRACE self.real = real self.fft_size = fft_size self._reset_peak_vals() self._traces = dict() #proxy the keys self.proxy(MSG_KEY, controller, msg_key) self.proxy(AVERAGE_KEY, controller, average_key) self.proxy(AVG_ALPHA_KEY, controller, avg_alpha_key) self.proxy(SAMPLE_RATE_KEY, controller, sample_rate_key) #initialize values self[PEAK_HOLD_KEY] = peak_hold self[Y_PER_DIV_KEY] = y_per_div self[Y_DIVS_KEY] = y_divs self[X_DIVS_KEY] = 8 #approximate self[REF_LEVEL_KEY] = ref_level self[BASEBAND_FREQ_KEY] = baseband_freq self[RUNNING_KEY] = True for trace in TRACES: #a function that returns a function #so the function wont use local trace def new_store_trace(my_trace): def store_trace(*args): self._traces[my_trace] = self.samples self.update_grid() return store_trace def new_toggle_trace(my_trace): def toggle_trace(toggle): #do an automatic store if toggled on and empty trace if toggle and not len(self._traces[my_trace]): self._traces[my_trace] = self.samples self.update_grid() return toggle_trace self._traces[trace] = EMPTY_TRACE self[TRACE_STORE_KEY+trace] = False self[TRACE_SHOW_KEY+trace] = False self.subscribe(TRACE_STORE_KEY+trace, new_store_trace(trace)) self.subscribe(TRACE_SHOW_KEY+trace, new_toggle_trace(trace)) #init panel and plot wx.Panel.__init__(self, parent, style=wx.SIMPLE_BORDER) self.plotter = plotter.channel_plotter(self) self.plotter.SetSize(wx.Size(*size)) self.plotter.set_title(title) self.plotter.enable_legend(True) self.plotter.enable_point_label(True) self.plotter.enable_grid_lines(True) #setup the box with plot and controls self.control_panel = control_panel(self) main_box = wx.BoxSizer(wx.HORIZONTAL) main_box.Add(self.plotter, 1, wx.EXPAND) main_box.Add(self.control_panel, 0, wx.EXPAND) self.SetSizerAndFit(main_box) #register events self.subscribe(AVERAGE_KEY, self._reset_peak_vals) self.subscribe(MSG_KEY, self.handle_msg) self.subscribe(SAMPLE_RATE_KEY, self.update_grid) for key in ( BASEBAND_FREQ_KEY, Y_PER_DIV_KEY, X_DIVS_KEY, Y_DIVS_KEY, REF_LEVEL_KEY, ): self.subscribe(key, self.update_grid) #initial update self.update_grid() def autoscale(self, *args): """ Autoscale the fft plot to the last frame. Set the dynamic range and reference level. """ if not len(self.samples): return min_level, max_level = common.get_min_max_fft(self.samples) #set the range to a clean number of the dynamic range self[Y_PER_DIV_KEY] = common.get_clean_num(1+(max_level - min_level)/self[Y_DIVS_KEY]) #set the reference level to a multiple of y per div self[REF_LEVEL_KEY] = self[Y_PER_DIV_KEY]*round(.5+max_level/self[Y_PER_DIV_KEY]) def _reset_peak_vals(self, *args): self.peak_vals = EMPTY_TRACE def handle_msg(self, msg): """ Handle the message from the fft sink message queue. If complex, reorder the fft samples so the negative bins come first. If real, keep take only the positive bins. Plot the samples onto the grid as channel 1. If peak hold is enabled, plot peak vals as channel 2. @param msg the fft array as a character array """ if not self[RUNNING_KEY]: return #convert to floating point numbers samples = numpy.fromstring(msg, numpy.float32)[:self.fft_size] #only take first frame num_samps = len(samples) #reorder fft if self.real: samples = samples[:(num_samps+1)/2] else: samples = numpy.concatenate((samples[num_samps/2+1:], samples[:(num_samps+1)/2])) self.samples = samples #peak hold calculation if self[PEAK_HOLD_KEY]: if len(self.peak_vals) != len(samples): self.peak_vals = samples self.peak_vals = numpy.maximum(samples, self.peak_vals) #plot the peak hold self.plotter.set_waveform( channel='Peak', samples=self.peak_vals, color_spec=PEAK_VALS_COLOR_SPEC, ) else: self._reset_peak_vals() self.plotter.clear_waveform(channel='Peak') #plot the fft self.plotter.set_waveform( channel='FFT', samples=samples, color_spec=FFT_PLOT_COLOR_SPEC, ) #update the plotter self.plotter.update() def update_grid(self, *args): """ Update the plotter grid. This update method is dependent on the variables below. Determine the x and y axis grid parameters. The x axis depends on sample rate, baseband freq, and x divs. The y axis depends on y per div, y divs, and ref level. """ for trace in TRACES: channel = '%s'%trace.upper() if self[TRACE_SHOW_KEY+trace]: self.plotter.set_waveform( channel=channel, samples=self._traces[trace], color_spec=TRACES_COLOR_SPEC[trace], ) else: self.plotter.clear_waveform(channel=channel) #grid parameters sample_rate = self[SAMPLE_RATE_KEY] baseband_freq = self[BASEBAND_FREQ_KEY] y_per_div = self[Y_PER_DIV_KEY] y_divs = self[Y_DIVS_KEY] x_divs = self[X_DIVS_KEY] ref_level = self[REF_LEVEL_KEY] #determine best fitting x_per_div if self.real: x_width = sample_rate/2.0 else: x_width = sample_rate/1.0 x_per_div = common.get_clean_num(x_width/x_divs) #update the x grid if self.real: self.plotter.set_x_grid( baseband_freq, baseband_freq + sample_rate/2.0, x_per_div, True, ) else: self.plotter.set_x_grid( baseband_freq - sample_rate/2.0, baseband_freq + sample_rate/2.0, x_per_div, True, ) #update x units self.plotter.set_x_label('Frequency', 'Hz') #update y grid self.plotter.set_y_grid(ref_level-y_per_div*y_divs, ref_level, y_per_div) #update y units self.plotter.set_y_label('Amplitude', 'dB') #update plotter self.plotter.update()