# # Copyright 2008, 2009 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # ################################################## # conditional disconnections of wx flow graph ################################################## import wx from gnuradio import gr RUN_ALWAYS = gr.prefs().get_bool ('wxgui', 'run_always', False) class wxgui_hb(object): """ The wxgui hier block helper/wrapper class: A hier block should inherit from this class to make use of the wxgui connect method. To use, call wxgui_connect in place of regular connect; self.win must be defined. The implementation will conditionally enable the copy block after the source (self). This condition depends on weather or not the window is visible with the parent notebooks. This condition will be re-checked on every ui update event. """ def wxgui_connect(self, *points): """ Use wxgui connect when the first point is the self source of the hb. The win property of this object should be set to the wx window. When this method tries to connect self to the next point, it will conditionally make this connection based on the visibility state. All other points will be connected normally. """ try: assert points[0] == self or points[0][0] == self copy = gr.copy(self._hb.input_signature().sizeof_stream_item(0)) handler = self._handler_factory(copy.set_enabled) if RUN_ALWAYS == False: handler(False) #initially disable the copy block else: handler(True) #initially enable the copy block self._bind_to_visible_event(win=self.win, handler=handler) points = list(points) points.insert(1, copy) #insert the copy block into the chain except (AssertionError, IndexError): pass self.connect(*points) #actually connect the blocks @staticmethod def _handler_factory(handler): """ Create a function that will cache the visibility flag, and only call the handler when that flag changes. @param handler the function to call on a change @return a function of 1 argument """ cache = [None] def callback(visible): if cache[0] == visible: return cache[0] = visible #print visible, handler if RUN_ALWAYS == False: handler(visible) else: handler(True) return callback @staticmethod def _bind_to_visible_event(win, handler): """ Bind a handler to a window when its visibility changes. Specifically, call the handler when the window visibility changes. This condition is checked on every update ui event. @param win the wx window @param handler a function of 1 param """ #is the window visible in the hierarchy def is_wx_window_visible(my_win): while True: parent = my_win.GetParent() if not parent: return True #reached the top of the hierarchy #if we are hidden, then finish, otherwise keep traversing up if isinstance(parent, wx.Notebook) and parent.GetCurrentPage() != my_win: return False my_win = parent #call the handler, the arg is shown or not def handler_factory(my_win, my_handler): def callback(evt): my_handler(is_wx_window_visible(my_win)) evt.Skip() #skip so all bound handlers are called return callback handler = handler_factory(win, handler) #bind the handler to all the parent notebooks win.Bind(wx.EVT_UPDATE_UI, handler) ################################################## # Helpful Functions ################################################## #A macro to apply an index to a key index_key = lambda key, i: "%s_%d"%(key, i+1) def _register_access_method(destination, controller, key): """ Helper function for register access methods. This helper creates distinct set and get methods for each key and adds them to the destination object. """ def set(value): controller[key] = value setattr(destination, 'set_'+key, set) def get(): return controller[key] setattr(destination, 'get_'+key, get) def register_access_methods(destination, controller): """ Register setter and getter functions in the destination object for all keys in the controller. @param destination the object to get new setter and getter methods @param controller the pubsub controller """ for key in controller.keys(): _register_access_method(destination, controller, key) ################################################## # Input Watcher Thread ################################################## from gnuradio import gru class input_watcher(gru.msgq_runner): """ Input watcher thread runs forever. Read messages from the message queue. Forward messages to the message handler. """ def __init__ (self, msgq, controller, msg_key, arg1_key='', arg2_key=''): self._controller = controller self._msg_key = msg_key self._arg1_key = arg1_key self._arg2_key = arg2_key gru.msgq_runner.__init__(self, msgq, self.handle_msg) def handle_msg(self, msg): if self._arg1_key: self._controller[self._arg1_key] = msg.arg1() if self._arg2_key: self._controller[self._arg2_key] = msg.arg2() self._controller[self._msg_key] = msg.to_string() ################################################## # Shared Functions ################################################## import numpy import math def get_exp(num): """ Get the exponent of the number in base 10. @param num the floating point number @return the exponent as an integer """ if num == 0: return 0 return int(math.floor(math.log10(abs(num)))) def get_clean_num(num): """ Get the closest clean number match to num with bases 1, 2, 5. @param num the number @return the closest number """ if num == 0: return 0 sign = num > 0 and 1 or -1 exp = get_exp(num) nums = numpy.array((1, 2, 5, 10))*(10**exp) return sign*nums[numpy.argmin(numpy.abs(nums - abs(num)))] def get_clean_incr(num): """ Get the next higher clean number with bases 1, 2, 5. @param num the number @return the next higher number """ num = get_clean_num(num) exp = get_exp(num) coeff = int(round(num/10**exp)) return { -5: -2, -2: -1, -1: -.5, 1: 2, 2: 5, 5: 10, }[coeff]*(10**exp) def get_clean_decr(num): """ Get the next lower clean number with bases 1, 2, 5. @param num the number @return the next lower number """ num = get_clean_num(num) exp = get_exp(num) coeff = int(round(num/10**exp)) return { -5: -10, -2: -5, -1: -2, 1: .5, 2: 1, 5: 2, }[coeff]*(10**exp) def get_min_max(samples): """ Get the minimum and maximum bounds for an array of samples. @param samples the array of real values @return a tuple of min, max """ factor = 2.0 mean = numpy.average(samples) std = numpy.std(samples) fft = numpy.abs(numpy.fft.fft(samples - mean)) envelope = 2*numpy.max(fft)/len(samples) ampl = max(std, envelope) or 0.1 return mean - factor*ampl, mean + factor*ampl def get_min_max_fft(fft_samps): """ Get the minimum and maximum bounds for an array of fft samples. @param samples the array of real values @return a tuple of min, max """ #get the peak level (max of the samples) peak_level = numpy.max(fft_samps) #separate noise samples noise_samps = numpy.sort(fft_samps)[:len(fft_samps)/2] #get the noise floor noise_floor = numpy.average(noise_samps) #get the noise deviation noise_dev = numpy.std(noise_samps) #determine the maximum and minimum levels max_level = peak_level min_level = noise_floor - abs(2*noise_dev) return min_level, max_level