/*---------------------------------------------------------------------------*\
FILE........: lsp.c
AUTHOR......: David Rowe
DATE CREATED: 24/2/93
This file contains functions for LPC to LSP conversion and LSP to
LPC conversion. Note that the LSP coefficients are not in radians
format but in the x domain of the unit circle.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2009 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see .
*/
#include "defines.h"
#include "lsp.h"
#include
#include
#include
/* Only 10 gets used, so far. */
#define LSP_MAX_ORDER 20
/*---------------------------------------------------------------------------*\
Introduction to Line Spectrum Pairs (LSPs)
------------------------------------------
LSPs are used to encode the LPC filter coefficients {ak} for
transmission over the channel. LSPs have several properties (like
less sensitivity to quantisation noise) that make them superior to
direct quantisation of {ak}.
A(z) is a polynomial of order lpcrdr with {ak} as the coefficients.
A(z) is transformed to P(z) and Q(z) (using a substitution and some
algebra), to obtain something like:
A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)] (1)
As you can imagine A(z) has complex zeros all over the z-plane. P(z)
and Q(z) have the very neat property of only having zeros _on_ the
unit circle. So to find them we take a test point z=exp(jw) and
evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0
and pi.
The zeros (roots) of P(z) also happen to alternate, which is why we
swap coefficients as we find roots. So the process of finding the
LSP frequencies is basically finding the roots of 5th order
polynomials.
The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence
the name Line Spectrum Pairs (LSPs).
To convert back to ak we just evaluate (1), "clocking" an impulse
thru it lpcrdr times gives us the impulse response of A(z) which is
{ak}.
\*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*\
FUNCTION....: cheb_poly_eva()
AUTHOR......: David Rowe
DATE CREATED: 24/2/93
This function evalutes a series of chebyshev polynomials
FIXME: performing memory allocation at run time is very inefficient,
replace with stack variables of MAX_P size.
\*---------------------------------------------------------------------------*/
static float
cheb_poly_eva(float *coef,float x,int m)
/* float coef[] coefficients of the polynomial to be evaluated */
/* float x the point where polynomial is to be evaluated */
/* int m order of the polynomial */
{
int i;
float *t,*u,*v,sum;
float T[(LSP_MAX_ORDER / 2) + 1];
/* Initialise pointers */
t = T; /* T[i-2] */
*t++ = 1.0;
u = t--; /* T[i-1] */
*u++ = x;
v = u--; /* T[i] */
/* Evaluate chebyshev series formulation using iterative approach */
for(i=2;i<=m/2;i++)
*v++ = (2*x)*(*u++) - *t++; /* T[i] = 2*x*T[i-1] - T[i-2] */
sum=0.0; /* initialise sum to zero */
t = T; /* reset pointer */
/* Evaluate polynomial and return value also free memory space */
for(i=0;i<=m/2;i++)
sum+=coef[(m/2)-i]**t++;
return sum;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: lpc_to_lsp()
AUTHOR......: David Rowe
DATE CREATED: 24/2/93
This function converts LPC coefficients to LSP coefficients.
\*---------------------------------------------------------------------------*/
int lpc_to_lsp (float *a, int lpcrdr, float *freq, int nb, float delta)
/* float *a lpc coefficients */
/* int lpcrdr order of LPC coefficients (10) */
/* float *freq LSP frequencies in radians */
/* int nb number of sub-intervals (4) */
/* float delta grid spacing interval (0.02) */
{
float psuml,psumr,psumm,temp_xr,xl,xr,xm = 0;
float temp_psumr;
int i,j,m,flag,k;
float *px; /* ptrs of respective P'(z) & Q'(z) */
float *qx;
float *p;
float *q;
float *pt; /* ptr used for cheb_poly_eval()
whether P' or Q' */
int roots=0; /* number of roots found */
float Q[LSP_MAX_ORDER + 1];
float P[LSP_MAX_ORDER + 1];
flag = 1;
m = lpcrdr/2; /* order of P'(z) & Q'(z) polynimials */
/* Allocate memory space for polynomials */
/* determine P'(z)'s and Q'(z)'s coefficients where
P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */
px = P; /* initilaise ptrs */
qx = Q;
p = px;
q = qx;
*px++ = 1.0;
*qx++ = 1.0;
for(i=1;i<=m;i++){
*px++ = a[i]+a[lpcrdr+1-i]-*p++;
*qx++ = a[i]-a[lpcrdr+1-i]+*q++;
}
px = P;
qx = Q;
for(i=0;i= -1.0)){
xr = xl - delta ; /* interval spacing */
psumr = cheb_poly_eva(pt,xr,lpcrdr);/* poly(xl-delta_x) */
temp_psumr = psumr;
temp_xr = xr;
/* if no sign change increment xr and re-evaluate
poly(xr). Repeat til sign change. if a sign change has
occurred the interval is bisected and then checked again
for a sign change which determines in which interval the
zero lies in. If there is no sign change between poly(xm)
and poly(xl) set interval between xm and xr else set
interval between xl and xr and repeat till root is located
within the specified limits */
if((psumr*psuml)<0.0){
roots++;
psumm=psuml;
for(k=0;k<=nb;k++){
xm = (xl+xr)/2; /* bisect the interval */
psumm=cheb_poly_eva(pt,xm,lpcrdr);
if(psumm*psuml>0.){
psuml=psumm;
xl=xm;
}
else{
psumr=psumm;
xr=xm;
}
}
/* once zero is found, reset initial interval to xr */
freq[j] = (xm);
xl = xm;
flag = 0; /* reset flag for next search */
}
else{
psuml=temp_psumr;
xl=temp_xr;
}
}
}
/* convert from x domain to radians */
for(i=0; i