/*---------------------------------------------------------------------------*\
FILE........: interp.c
AUTHOR......: David Rowe
DATE CREATED: 9/10/09
Interpolation of 20ms frames to 10ms frames.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2009 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see .
*/
#include
#include
#include
#include
#include
#include "defines.h"
#include "interp.h"
#include "lsp.h"
#include "quantise.h"
#include "dump.h"
float sample_log_amp(MODEL *model, float w);
/*---------------------------------------------------------------------------*\
FUNCTION....: interp()
AUTHOR......: David Rowe
DATE CREATED: 22/8/10
Given two frames decribed by model parameters 20ms apart, determines
the model parameters of the 10ms frame between them. Assumes
voicing is available for middle (interpolated) frame. Outputs are
amplitudes and Wo for the interpolated frame.
This version can interpolate the amplitudes between two frames of
different Wo and L.
This version works by log linear interpolation, but listening tests
showed it creates problems in background noise, e.g. hts2a and mmt1.
When this function is used (--dec mode) bg noise appears to be
amplitude modulated, and gets louder. The interp_lsp() function
below seems to do a better job.
\*---------------------------------------------------------------------------*/
void interpolate(
MODEL *interp, /* interpolated model params */
MODEL *prev, /* previous frames model params */
MODEL *next /* next frames model params */
)
{
int l;
float w,log_amp;
/* Wo depends on voicing of this and adjacent frames */
if (interp->voiced) {
if (prev->voiced && next->voiced)
interp->Wo = (prev->Wo + next->Wo)/2.0;
if (!prev->voiced && next->voiced)
interp->Wo = next->Wo;
if (prev->voiced && !next->voiced)
interp->Wo = prev->Wo;
}
else {
interp->Wo = TWO_PI/P_MAX;
}
interp->L = PI/interp->Wo;
/* Interpolate amplitudes using linear interpolation in log domain */
for(l=1; l<=interp->L; l++) {
w = l*interp->Wo;
log_amp = (sample_log_amp(prev, w) + sample_log_amp(next, w))/2.0;
interp->A[l] = pow(10.0, log_amp);
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: sample_log_amp()
AUTHOR......: David Rowe
DATE CREATED: 22/8/10
Samples the amplitude envelope at an arbitrary frequency w. Uses
linear interpolation in the log domain to sample between harmonic
amplitudes.
\*---------------------------------------------------------------------------*/
float sample_log_amp(MODEL *model, float w)
{
int m;
float f, log_amp;
assert(w > 0.0); assert (w <= PI);
m = 0;
while ((m+1)*model->Wo < w) m++;
f = (w - m*model->Wo)/model->Wo;
assert(f <= 1.0);
if (m < 1) {
log_amp = f*log10(model->A[1] + 1E-6);
}
else if ((m+1) > model->L) {
log_amp = (1.0-f)*log10(model->A[model->L] + 1E-6);
}
else {
log_amp = (1.0-f)*log10(model->A[m] + 1E-6) +
f*log10(model->A[m+1] + 1E-6);
//printf("m=%d A[m] %f A[m+1] %f x %f %f %f\n", m, model->A[m],
// model->A[m+1], pow(10.0, log_amp),
// (1-f), f);
}
return log_amp;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: sample_log_amp_quad()
AUTHOR......: David Rowe
DATE CREATED: 9 March 2011
Samples the amplitude envelope at an arbitrary frequency w. Uses
quadratic interpolation in the log domain to sample between harmonic
amplitudes.
y(x) = ax*x + bx + c
We assume three points are x=-1, x=0, x=1, which we map to m-1,m,m+1
c = y(0)
b = (y(1) - y(-1))/2
a = y(-1) + b - y(0)
\*---------------------------------------------------------------------------*/
float sample_log_amp_quad(MODEL *model, float w)
{
int m;
float a,b,c,x, log_amp;
assert(w > 0.0); assert (w <= PI);
m = floor(w/model->Wo + 0.5);
if (m < 2) m = 2;
if (m > (model->L-1)) m = model->L-1;
c = log10(model->A[m]+1E-6);
b = (log10(model->A[m+1]+1E-6) - log10(model->A[m-1]+1E-6))/2.0;
a = log10(model->A[m-1]+1E-6) + b - c;
x = (w - m*model->Wo)/model->Wo;
log_amp = a*x*x + b*x + c;
//printf("m=%d A[m-1] %f A[m] %f A[m+1] %f w %f x %f log_amp %f\n", m,
// model->A[m-1],
// model->A[m], model->A[m+1], w, x, pow(10.0, log_amp));
return log_amp;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: sample_log_amp_quad_nl()
AUTHOR......: David Rowe
DATE CREATED: 10 March 2011
Samples the amplitude envelope at an arbitrary frequency w. Uses
quadratic interpolation in the log domain to sample between harmonic
amplitudes. This version can handle non-linear steps along a freq
axis defined by arbitrary steps.
y(x) = ax*x + bx + c
We assume three points are (x_1,y_1), (0,y0) and (x1,y1).
\*---------------------------------------------------------------------------*/
float sample_log_amp_quad_nl(
float w[], /* frequency points */
float A[], /* for these amplitude samples */
int np, /* number of frequency points */
float w_sample /* frequency of new samples */
)
{
int m,i;
float a,b,c,x, log_amp, best_dist;
float x_1, x1;
float y_1, y0, y1;
//printf("w_sample %f\n", w_sample);
assert(w_sample >= 0.0); assert (w_sample <= 1.1*PI);
/* find closest point to centre quadratic interpolator */
best_dist = 1E32;
for (i=0; i (np-2)) m = np - 2;
/* find polynomial coeffs */
x_1 = w[m-1]- w[m]; x1 = w[m+1] - w[m];
y_1 = log10(A[m-1]+1E-6);
y0 = log10(A[m]+1E-6);
y1 = log10(A[m+1]+1E-6);
c = y0;
a = (y_1*x1 - y1*x_1 + c*x_1 - c*x1)/(x_1*x_1*x1 - x1*x1*x_1);
b = (y1 -a*x1*x1 - c)/x1;
x = w_sample - w[m];
//printf("%f %f %f\n", w[0], w[1], w[2]);
//printf("%f %f %f %f %f %f\n", x_1, y_1, 0.0, y0, x1, y1);
log_amp = a*x*x + b*x + c;
//printf("a %f b %f c %f\n", a, b, c);
//printf("m=%d A[m-1] %f A[m] %f A[m+1] %f w_sample %f w[m] %f x %f log_amp %f\n", m,
// A[m-1],
// A[m], A[m+1], w_sample, w[m], x, log_amp);
//exit(0);
return log_amp;
}
#define M_MAX 40
float fres[] = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1200, 1400, 1600, 1850, 2100, 2350, 2600, 2900, 3400, 3800};
/*---------------------------------------------------------------------------*\
FUNCTION....: resample_amp_nl()
AUTHOR......: David Rowe
DATE CREATED: 7 March 2011
Converts the current model with L {Am} samples spaced Wo apart to
RES_POINTS samples spaced Wo/RES_POINTS apart. Then subtracts
from the previous frames samples to get the delta.
\*---------------------------------------------------------------------------*/
void resample_amp_fixed(MODEL *model,
float w[], float A[],
float wres[], float Ares[],
float AresdB_prev[],
float AresdB[],
float deltat[])
{
int i;
for(i=1; i<=model->L; i++) {
w[i-1] = i*model->Wo;
A[i-1] = model->A[i];
}
for(i=0; iL, wres[i]));
}
/* work out delta T vector for this frame */
for(i=0; iL; i++) {
new_A = pow(10.0,sample_log_amp_quad_nl(wres, Ares, RES_POINTS, model->Wo*i));
signal += pow(model->A[i], 2.0);
noise += pow(model->A[i] - new_A, 2.0);
//printf("%f %f\n", model->A[i], new_A);
model->A[i] = new_A;
}
snr = 10.0*log10(signal/noise);
printf("snr = %3.2f\n", snr);
//exit(0);
return snr;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: resample_amp()
AUTHOR......: David Rowe
DATE CREATED: 10 March 2011
Converts the current model with L {Am} samples spaced Wo apart to M
samples with a non-linear spacing. Then converts back to L {Am}
samples. used to prototype constant rate Amplitude encoding ideas.
Returns the SNR in dB.
\*---------------------------------------------------------------------------*/
float resample_amp(MODEL *model, int m)
{
int i;
MODEL model_m;
float new_A, signal, noise, snr, log_amp_dB;
float n_db = 0.0;
model_m.Wo = PI/(float)m;
model_m.L = PI/model_m.Wo;
for(i=1; i<=model_m.L; i++) {
log_amp_dB = 20.0*sample_log_amp_quad(model, i*model_m.Wo);
log_amp_dB += n_db*(1.0 - 2.0*rand()/RAND_MAX);
model_m.A[i] = pow(10,log_amp_dB/20.0);
}
//dump_resample(&model_m);
signal = noise = 0.0;
for(i=1; iL/4; i++) {
new_A = pow(10,sample_log_amp_quad(&model_m, i*model->Wo));
signal += pow(model->A[i], 2.0);
noise += pow(model->A[i] - new_A, 2.0);
//printf("%f %f\n", model->A[i], new_A);
model->A[i] = new_A;
}
snr = 10.0*log10(signal/noise);
//printf("snr = %3.2f\n", snr);
//exit(0);
return snr;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: interp_lsp()
AUTHOR......: David Rowe
DATE CREATED: 10 Nov 2010
Given two frames decribed by model parameters 20ms apart, determines
the model parameters of the 10ms frame between them. Assumes
voicing is available for middle (interpolated) frame. Outputs are
amplitudes and Wo for the interpolated frame.
This version uses interpolation of LSPs, seems to do a better job
with bg noise.
\*---------------------------------------------------------------------------*/
void interpolate_lsp(
MODEL *interp, /* interpolated model params */
MODEL *prev, /* previous frames model params */
MODEL *next, /* next frames model params */
float *prev_lsps, /* previous frames LSPs */
float prev_e, /* previous frames LPC energy */
float *next_lsps, /* next frames LSPs */
float next_e, /* next frames LPC energy */
float *ak_interp /* interpolated aks for this frame */
)
{
//int l,i;
int i;
float lsps[LPC_ORD],e;
float snr;
/* Wo depends on voicing of this and adjacent frames */
if (interp->voiced) {
if (prev->voiced && next->voiced)
interp->Wo = (prev->Wo + next->Wo)/2.0;
if (!prev->voiced && next->voiced)
interp->Wo = next->Wo;
if (prev->voiced && !next->voiced)
interp->Wo = prev->Wo;
}
else {
interp->Wo = TWO_PI/P_MAX;
}
interp->L = PI/interp->Wo;
/* interpolate LSPs */
for(i=0; i