/*---------------------------------------------------------------------------*\ FILE........: codec2.c AUTHOR......: David Rowe DATE CREATED: 21/8/2010 Codec2 fully quantised encoder and decoder functions. If you want use codec2, the codec2_xxx functions are for you. \*---------------------------------------------------------------------------*/ /* Copyright (C) 2010 David Rowe All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, see . */ #include #include #include #include #include #include "defines.h" #include "sine.h" #include "nlp.h" #include "dump.h" #include "lpc.h" #include "quantise.h" #include "phase.h" #include "interp.h" #include "postfilter.h" #include "codec2.h" #include "codec2_internal.h" /*---------------------------------------------------------------------------*\ FUNCTIONS \*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*\ FUNCTION....: codec2_create AUTHOR......: David Rowe DATE CREATED: 21/8/2010 Create and initialise an instance of the codec. Returns a pointer to the codec states or NULL on failure. One set of states is sufficient for a full duuplex codec (i.e. an encoder and decoder). You don't need separate states for encoders and decoders. See c2enc.c and c2dec.c for examples. \*---------------------------------------------------------------------------*/ void *codec2_create() { CODEC2 *c2; int i,l; c2 = (CODEC2*)malloc(sizeof(CODEC2)); if (c2 == NULL) return NULL; for(i=0; iSn[i] = 1.0; c2->hpf_states[0] = c2->hpf_states[1] = 0.0; for(i=0; i<2*N; i++) c2->Sn_[i] = 0; make_analysis_window(c2->w,c2->W); make_synthesis_window(c2->Pn); quantise_init(); c2->prev_Wo = 0.0; c2->bg_est = 0.0; c2->ex_phase = 0.0; for(l=1; lprev_model.A[l] = 0.0; c2->prev_model.Wo = TWO_PI/P_MAX; c2->prev_model.L = PI/c2->prev_model.Wo; c2->prev_model.voiced = 0; for(i=0; iprev_lsps[i] = i*PI/(LPC_ORD+1); } c2->prev_energy = 1; c2->nlp = nlp_create(); if (c2->nlp == NULL) { free (c2); return NULL; } return (void*)c2; } /*---------------------------------------------------------------------------*\ FUNCTION....: codec2_create AUTHOR......: David Rowe DATE CREATED: 21/8/2010 Destroy an instance of the codec. \*---------------------------------------------------------------------------*/ void codec2_destroy(void *codec2_state) { CODEC2 *c2; assert(codec2_state != NULL); c2 = (CODEC2*)codec2_state; nlp_destroy(c2->nlp); free(codec2_state); } /*---------------------------------------------------------------------------*\ FUNCTION....: codec2_encode AUTHOR......: David Rowe DATE CREATED: 21/8/2010 Encodes 160 speech samples (20ms of speech) into 51 bits. The codec2 algorithm actually operates internally on 10ms (80 sample) frames, so we run the encoding algorithm twice. On the first frame we just send the voicing bit. One the second frame we send all model parameters. The bit allocation is: Parameter bits/frame -------------------------------------- Harmonic magnitudes (LSPs) 36 Low frequency LPC correction 1 Energy 5 Wo (fundamental frequnecy) 7 Voicing (10ms update) 2 TOTAL 51 \*---------------------------------------------------------------------------*/ void codec2_encode(void *codec2_state, unsigned char * bits, short speech[]) { CODEC2 *c2; MODEL model; int voiced1, voiced2; int lsp_indexes[LPC_ORD]; int energy_index; int Wo_index; int i; unsigned int nbit = 0; assert(codec2_state != NULL); c2 = (CODEC2*)codec2_state; /* first 10ms analysis frame - we just want voicing */ analyse_one_frame(c2, &model, speech); voiced1 = model.voiced; /* second 10ms analysis frame */ analyse_one_frame(c2, &model, &speech[N]); voiced2 = model.voiced; Wo_index = encode_Wo(model.Wo); encode_amplitudes(lsp_indexes, &energy_index, &model, c2->Sn, c2->w); memset(bits, '\0', ((CODEC2_BITS_PER_FRAME + 7) / 8)); pack(bits, &nbit, Wo_index, WO_BITS); for(i=0; iprev_model, &model, c2->prev_lsps, c2->prev_energy, lsps, energy, ak_interp); apply_lpc_correction(&model_interp); /* synthesis two 10ms frames */ synthesise_one_frame(c2, speech, &model_interp, ak_interp); synthesise_one_frame(c2, &speech[N], &model, ak); /* update memories (decode states) for next time */ memcpy(&c2->prev_model, &model, sizeof(MODEL)); memcpy(c2->prev_lsps, lsps, sizeof(lsps)); c2->prev_energy = energy; } /*---------------------------------------------------------------------------*\ FUNCTION....: synthesise_one_frame() AUTHOR......: David Rowe DATE CREATED: 23/8/2010 Synthesise 80 speech samples (10ms) from model parameters. \*---------------------------------------------------------------------------*/ void synthesise_one_frame(CODEC2 *c2, short speech[], MODEL *model, float ak[]) { int i; phase_synth_zero_order(model, ak, &c2->ex_phase, LPC_ORD); postfilter(model, &c2->bg_est); synthesise(c2->Sn_, model, c2->Pn, 1); for(i=0; iSn_[i] > 32767.0) speech[i] = 32767; else if (c2->Sn_[i] < -32767.0) speech[i] = -32767; else speech[i] = c2->Sn_[i]; } } /*---------------------------------------------------------------------------*\ FUNCTION....: analyse_one_frame() AUTHOR......: David Rowe DATE CREATED: 23/8/2010 Extract sinusoidal model parameters from 80 speech samples (10ms of speech). \*---------------------------------------------------------------------------*/ void analyse_one_frame(CODEC2 *c2, MODEL *model, short speech[]) { COMP Sw[FFT_ENC]; COMP Sw_[FFT_ENC]; COMP Ew[FFT_ENC]; float pitch; int i; /* Read input speech */ for(i=0; iSn[i] = c2->Sn[i+N]; for(i=0; iSn[i+M-N] = speech[i]; dft_speech(Sw, c2->Sn, c2->w); /* Estimate pitch */ nlp(c2->nlp,c2->Sn,N,M,P_MIN,P_MAX,&pitch,Sw,&c2->prev_Wo); model->Wo = TWO_PI/pitch; model->L = PI/model->Wo; /* estimate model parameters */ two_stage_pitch_refinement(model, Sw); estimate_amplitudes(model, Sw, c2->W); est_voicing_mbe(model, Sw, c2->W, Sw_, Ew, c2->prev_Wo); c2->prev_Wo = model->Wo; }