/*---------------------------------------------------------------------------*\
FILE........: codec2.c
AUTHOR......: David Rowe
DATE CREATED: 21/8/2010
Codec2 fully quantised encoder and decoder functions. If you want use
codec2, the codec2_xxx functions are for you.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2010 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see .
*/
#include
#include
#include
#include
#include
#include "defines.h"
#include "sine.h"
#include "nlp.h"
#include "dump.h"
#include "lpc.h"
#include "quantise.h"
#include "phase.h"
#include "interp.h"
#include "postfilter.h"
#include "codec2.h"
#include "codec2_internal.h"
/*---------------------------------------------------------------------------*\
FUNCTIONS
\*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*\
FUNCTION....: codec2_create
AUTHOR......: David Rowe
DATE CREATED: 21/8/2010
Create and initialise an instance of the codec. Returns a pointer
to the codec states or NULL on failure. One set of states is
sufficient for a full duuplex codec (i.e. an encoder and decoder).
You don't need separate states for encoders and decoders. See
c2enc.c and c2dec.c for examples.
\*---------------------------------------------------------------------------*/
void *codec2_create()
{
CODEC2 *c2;
int i,l;
c2 = (CODEC2*)malloc(sizeof(CODEC2));
if (c2 == NULL)
return NULL;
for(i=0; iSn[i] = 1.0;
c2->hpf_states[0] = c2->hpf_states[1] = 0.0;
for(i=0; i<2*N; i++)
c2->Sn_[i] = 0;
make_analysis_window(c2->w,c2->W);
make_synthesis_window(c2->Pn);
quantise_init();
c2->prev_Wo = 0.0;
c2->bg_est = 0.0;
c2->ex_phase = 0.0;
for(l=1; lprev_model.A[l] = 0.0;
c2->prev_model.Wo = TWO_PI/P_MAX;
c2->prev_model.L = PI/c2->prev_model.Wo;
c2->prev_model.voiced = 0;
for(i=0; iprev_lsps[i] = i*PI/(LPC_ORD+1);
}
c2->prev_energy = 1;
c2->nlp = nlp_create();
if (c2->nlp == NULL) {
free (c2);
return NULL;
}
return (void*)c2;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: codec2_create
AUTHOR......: David Rowe
DATE CREATED: 21/8/2010
Destroy an instance of the codec.
\*---------------------------------------------------------------------------*/
void codec2_destroy(void *codec2_state)
{
CODEC2 *c2;
assert(codec2_state != NULL);
c2 = (CODEC2*)codec2_state;
nlp_destroy(c2->nlp);
free(codec2_state);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: codec2_encode
AUTHOR......: David Rowe
DATE CREATED: 21/8/2010
Encodes 160 speech samples (20ms of speech) into 51 bits.
The codec2 algorithm actually operates internally on 10ms (80
sample) frames, so we run the encoding algorithm twice. On the
first frame we just send the voicing bit. One the second frame we
send all model parameters.
The bit allocation is:
Parameter bits/frame
--------------------------------------
Harmonic magnitudes (LSPs) 36
Low frequency LPC correction 1
Energy 5
Wo (fundamental frequnecy) 7
Voicing (10ms update) 2
TOTAL 51
\*---------------------------------------------------------------------------*/
void codec2_encode(void *codec2_state, unsigned char * bits, short speech[])
{
CODEC2 *c2;
MODEL model;
int voiced1, voiced2;
int lsp_indexes[LPC_ORD];
int energy_index;
int Wo_index;
int i;
unsigned int nbit = 0;
assert(codec2_state != NULL);
c2 = (CODEC2*)codec2_state;
/* first 10ms analysis frame - we just want voicing */
analyse_one_frame(c2, &model, speech);
voiced1 = model.voiced;
/* second 10ms analysis frame */
analyse_one_frame(c2, &model, &speech[N]);
voiced2 = model.voiced;
Wo_index = encode_Wo(model.Wo);
encode_amplitudes(lsp_indexes,
&energy_index,
&model,
c2->Sn,
c2->w);
memset(bits, '\0', ((CODEC2_BITS_PER_FRAME + 7) / 8));
pack(bits, &nbit, Wo_index, WO_BITS);
for(i=0; iprev_model, &model,
c2->prev_lsps, c2->prev_energy, lsps, energy, ak_interp);
apply_lpc_correction(&model_interp);
/* synthesis two 10ms frames */
synthesise_one_frame(c2, speech, &model_interp, ak_interp);
synthesise_one_frame(c2, &speech[N], &model, ak);
/* update memories (decode states) for next time */
memcpy(&c2->prev_model, &model, sizeof(MODEL));
memcpy(c2->prev_lsps, lsps, sizeof(lsps));
c2->prev_energy = energy;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: synthesise_one_frame()
AUTHOR......: David Rowe
DATE CREATED: 23/8/2010
Synthesise 80 speech samples (10ms) from model parameters.
\*---------------------------------------------------------------------------*/
void synthesise_one_frame(CODEC2 *c2, short speech[], MODEL *model, float ak[])
{
int i;
phase_synth_zero_order(model, ak, &c2->ex_phase, LPC_ORD);
postfilter(model, &c2->bg_est);
synthesise(c2->Sn_, model, c2->Pn, 1);
for(i=0; iSn_[i] > 32767.0)
speech[i] = 32767;
else if (c2->Sn_[i] < -32767.0)
speech[i] = -32767;
else
speech[i] = c2->Sn_[i];
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: analyse_one_frame()
AUTHOR......: David Rowe
DATE CREATED: 23/8/2010
Extract sinusoidal model parameters from 80 speech samples (10ms of
speech).
\*---------------------------------------------------------------------------*/
void analyse_one_frame(CODEC2 *c2, MODEL *model, short speech[])
{
COMP Sw[FFT_ENC];
COMP Sw_[FFT_ENC];
COMP Ew[FFT_ENC];
float pitch;
int i;
/* Read input speech */
for(i=0; iSn[i] = c2->Sn[i+N];
for(i=0; iSn[i+M-N] = speech[i];
dft_speech(Sw, c2->Sn, c2->w);
/* Estimate pitch */
nlp(c2->nlp,c2->Sn,N,M,P_MIN,P_MAX,&pitch,Sw,&c2->prev_Wo);
model->Wo = TWO_PI/pitch;
model->L = PI/model->Wo;
/* estimate model parameters */
two_stage_pitch_refinement(model, Sw);
estimate_amplitudes(model, Sw, c2->W);
est_voicing_mbe(model, Sw, c2->W, Sw_, Ew, c2->prev_Wo);
c2->prev_Wo = model->Wo;
}