#!/usr/bin/env python # # Copyright 2004,2005,2006,2007 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # # print "Loading revised usrp_oscope with additional options for scopesink..." from gnuradio import gr, gru from gnuradio import usrp from gnuradio import eng_notation from gnuradio.eng_option import eng_option from gnuradio.wxgui import stdgui2, scopesink2, form, slider from optparse import OptionParser import wx import sys from usrpm import usrp_dbid def pick_subdevice(u): """ The user didn't specify a subdevice on the command line. If there's a daughterboard on A, select A. If there's a daughterboard on B, select B. Otherwise, select A. """ if u.db[0][0].dbid() >= 0: # dbid is < 0 if there's no d'board or a problem return (0, 0) if u.db[1][0].dbid() >= 0: return (1, 0) return (0, 0) class app_top_block(stdgui2.std_top_block): def __init__(self, frame, panel, vbox, argv): stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv) self.frame = frame self.panel = panel parser = OptionParser(option_class=eng_option) parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None, help="select USRP Rx side A or B (default=first one with a daughterboard)") parser.add_option("-d", "--decim", type="int", default=16, help="set fgpa decimation rate to DECIM [default=%default]") parser.add_option("-f", "--freq", type="eng_float", default=None, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("-8", "--width-8", action="store_true", default=False, help="Enable 8-bit samples across USB") parser.add_option( "--no-hb", action="store_true", default=False, help="don't use halfband filter in usrp") parser.add_option("-C", "--basic-complex", action="store_true", default=False, help="Use both inputs of a basicRX or LFRX as a single Complex input channel") parser.add_option("-D", "--basic-dualchan", action="store_true", default=False, help="Use both inputs of a basicRX or LFRX as seperate Real input channels") parser.add_option("-n", "--frame-decim", type="int", default=1, help="set oscope frame decimation factor to n [default=1]") parser.add_option("-v", "--v-scale", type="eng_float", default=1000, help="set oscope initial V/div to SCALE [default=%default]") parser.add_option("-t", "--t-scale", type="eng_float", default=49e-6, help="set oscope initial s/div to SCALE [default=50us]") (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) self.show_debug_info = True # build the graph if options.basic_dualchan: self.num_inputs=2 else: self.num_inputs=1 if options.no_hb or (options.decim<8): #Min decimation of this firmware is 4. #contains 4 Rx paths without halfbands and 0 tx paths. self.fpga_filename="std_4rx_0tx.rbf" self.u = usrp.source_c(nchan=self.num_inputs,decim_rate=options.decim, fpga_filename=self.fpga_filename) else: #Min decimation of standard firmware is 8. #standard fpga firmware "std_2rxhb_2tx.rbf" #contains 2 Rx paths with halfband filters and 2 tx paths (the default) self.u = usrp.source_c(nchan=self.num_inputs,decim_rate=options.decim) if options.rx_subdev_spec is None: options.rx_subdev_spec = pick_subdevice(self.u) if options.width_8: width = 8 shift = 8 format = self.u.make_format(width, shift) #print "format =", hex(format) r = self.u.set_format(format) #print "set_format =", r # determine the daughterboard subdevice we're using self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) if (options.basic_complex or options.basic_dualchan ): if ((self.subdev.dbid()==usrp_dbid.BASIC_RX) or (self.subdev.dbid()==usrp_dbid.LF_RX)): side = options.rx_subdev_spec[0] # side A = 0, side B = 1 if options.basic_complex: #force Basic_RX and LF_RX in complex mode (use both I and Q channel) print "Receiver daughterboard forced in complex mode. Both inputs will combined to form a single complex channel." self.dualchan=False if side==0: self.u.set_mux(0x00000010) #enable adc 0 and 1 to form a single complex input on side A else: #side ==1 self.u.set_mux(0x00000032) #enable adc 3 and 2 to form a single complex input on side B elif options.basic_dualchan: #force Basic_RX and LF_RX in dualchan mode (use input A for channel 0 and input B for channel 1) print "Receiver daughterboard forced in dualchannel mode. Each input will be used to form a seperate channel." self.dualchan=True if side==0: self.u.set_mux(gru.hexint(0xf0f0f1f0)) #enable adc 0, side A to form a real input on channel 0 and adc1,side A to form a real input on channel 1 else: #side ==1 self.u.set_mux(0xf0f0f3f2) #enable adc 2, side B to form a real input on channel 0 and adc3,side B to form a real input on channel 1 else: sys.stderr.write('options basic_dualchan or basic_complex is only supported for Basic Rx or LFRX at the moment\n') sys.exit(1) else: self.dualchan=False self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) input_rate = self.u.adc_freq() / self.u.decim_rate() self.scope = scopesink2.scope_sink_c(panel, sample_rate=input_rate, frame_decim=options.frame_decim, v_scale=options.v_scale, t_scale=options.t_scale, num_inputs=self.num_inputs) if self.dualchan: # deinterleave two channels from FPGA self.di = gr.deinterleave(gr.sizeof_gr_complex) self.connect(self.u,self.di) self.connect((self.di,0),(self.scope,0)) self.connect((self.di,1),(self.scope,1)) else: self.connect(self.u, self.scope) self._build_gui(vbox) # set initial values if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.subdev.gain_range() options.gain = float(g[0]+g[1])/2 if options.freq is None: if ((self.subdev.dbid()==usrp_dbid.BASIC_RX) or (self.subdev.dbid()==usrp_dbid.LF_RX)): #for Basic RX and LFRX if no freq is specified you probably want 0.0 Hz and not 45 GHz options.freq=0.0 else: # if no freq was specified, use the mid-point r = self.subdev.freq_range() options.freq = float(r[0]+r[1])/2 self.set_gain(options.gain) if self.show_debug_info: self.myform['decim'].set_value(self.u.decim_rate()) self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) self.myform['dbname'].set_value(self.subdev.name()) self.myform['baseband'].set_value(0) self.myform['ddc'].set_value(0) if self.num_inputs==2: self.myform['baseband2'].set_value(0) self.myform['ddc2'].set_value(0) if not(self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency") if self.num_inputs==2: if not(self.set_freq2(options.freq)): self._set_status_msg("Failed to set initial frequency for channel 2") def _set_status_msg(self, msg): self.frame.GetStatusBar().SetStatusText(msg, 0) def _build_gui(self, vbox): def _form_set_freq(kv): return self.set_freq(kv['freq']) def _form_set_freq2(kv): return self.set_freq2(kv['freq2']) vbox.Add(self.scope.win, 10, wx.EXPAND) # add control area at the bottom self.myform = myform = form.form() hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((5,0), 0, 0) myform['freq'] = form.float_field( parent=self.panel, sizer=hbox, label="Center freq", weight=1, callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg)) if self.num_inputs==2: myform['freq2'] = form.float_field( parent=self.panel, sizer=hbox, label="Center freq2", weight=1, callback=myform.check_input_and_call(_form_set_freq2, self._set_status_msg)) hbox.Add((5,0), 0, 0) g = self.subdev.gain_range() myform['gain'] = form.slider_field(parent=self.panel, sizer=hbox, label="Gain", weight=3, min=int(g[0]), max=int(g[1]), callback=self.set_gain) hbox.Add((5,0), 0, 0) vbox.Add(hbox, 0, wx.EXPAND) self._build_subpanel(vbox) def _build_subpanel(self, vbox_arg): # build a secondary information panel (sometimes hidden) # FIXME figure out how to have this be a subpanel that is always # created, but has its visibility controlled by foo.Show(True/False) def _form_set_decim(kv): return self.set_decim(kv['decim']) if not(self.show_debug_info): return panel = self.panel vbox = vbox_arg myform = self.myform #panel = wx.Panel(self.panel, -1) #vbox = wx.BoxSizer(wx.VERTICAL) hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((5,0), 0) myform['decim'] = form.int_field( parent=panel, sizer=hbox, label="Decim", callback=myform.check_input_and_call(_form_set_decim, self._set_status_msg)) hbox.Add((5,0), 1) myform['fs@usb'] = form.static_float_field( parent=panel, sizer=hbox, label="Fs@USB") hbox.Add((5,0), 1) myform['dbname'] = form.static_text_field( parent=panel, sizer=hbox) hbox.Add((5,0), 1) myform['baseband'] = form.static_float_field( parent=panel, sizer=hbox, label="Analog BB") hbox.Add((5,0), 1) myform['ddc'] = form.static_float_field( parent=panel, sizer=hbox, label="DDC") if self.num_inputs==2: hbox.Add((1,0), 1) myform['baseband2'] = form.static_float_field( parent=panel, sizer=hbox, label="BB2") hbox.Add((1,0), 1) myform['ddc2'] = form.static_float_field( parent=panel, sizer=hbox, label="DDC2") hbox.Add((5,0), 0) vbox.Add(hbox, 0, wx.EXPAND) def set_freq(self, target_freq): """ Set the center frequency we're interested in. @param target_freq: frequency in Hz @rypte: bool Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital down converter. """ r = usrp.tune(self.u, 0, self.subdev, target_freq) if r: self.myform['freq'].set_value(target_freq) # update displayed value if self.show_debug_info: self.myform['baseband'].set_value(r.baseband_freq) self.myform['ddc'].set_value(r.dxc_freq) return True return False def set_freq2(self, target_freq): """ Set the center frequency of we're interested in for the second channel. @param target_freq: frequency in Hz @rypte: bool Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital down converter. """ r = usrp.tune(self.u, 1, self.subdev, target_freq) if r: self.myform['freq2'].set_value(target_freq) # update displayed value if self.show_debug_info: self.myform['baseband2'].set_value(r.baseband_freq) self.myform['ddc2'].set_value(r.dxc_freq) return True return False def set_gain(self, gain): self.myform['gain'].set_value(gain) # update displayed value self.subdev.set_gain(gain) def set_decim(self, decim): ok = self.u.set_decim_rate(decim) if not ok: print "set_decim failed" input_rate = self.u.adc_freq() / self.u.decim_rate() self.scope.set_sample_rate(input_rate) if self.show_debug_info: # update displayed values self.myform['decim'].set_value(self.u.decim_rate()) self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) return ok def main (): app = stdgui2.stdapp(app_top_block, "USRP O'scope", nstatus=1) app.MainLoop() if __name__ == '__main__': main ()