#!/usr/bin/env python # # Copyright 2004,2005,2007,2008,2010 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gru from gnuradio import usrp from gnuradio import eng_notation from gnuradio.eng_option import eng_option from gnuradio.wxgui import stdgui2, fftsink2, waterfallsink2, scopesink2, form, slider from optparse import OptionParser import wx import sys import numpy def pick_subdevice(u): """ The user didn't specify a subdevice on the command line. If there's a daughterboard on A, select A. If there's a daughterboard on B, select B. Otherwise, select A. """ if u.db(0, 0).dbid() >= 0: # dbid is < 0 if there's no d'board or a problem return (0, 0) if u.db(1, 0).dbid() >= 0: return (1, 0) return (0, 0) class app_top_block(stdgui2.std_top_block): def __init__(self, frame, panel, vbox, argv): stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv) self.frame = frame self.panel = panel parser = OptionParser(option_class=eng_option) parser.add_option("-w", "--which", type="int", default=0, help="select which USRP (0, 1, ...) default is %default", metavar="NUM") parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None, help="select USRP Rx side A or B (default=first one with a daughterboard)") parser.add_option("-A", "--antenna", default=None, help="select Rx Antenna (only on RFX-series boards)") parser.add_option("-d", "--decim", type="int", default=16, help="set fgpa decimation rate to DECIM [default=%default]") parser.add_option("-f", "--freq", type="eng_float", default=None, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB [default is midpoint]") parser.add_option("-W", "--waterfall", action="store_true", default=False, help="Enable waterfall display") parser.add_option("-8", "--width-8", action="store_true", default=False, help="Enable 8-bit samples across USB") parser.add_option( "--no-hb", action="store_true", default=False, help="don't use halfband filter in usrp") parser.add_option("-S", "--oscilloscope", action="store_true", default=False, help="Enable oscilloscope display") parser.add_option("", "--avg-alpha", type="eng_float", default=1e-1, help="Set fftsink averaging factor, [default=%default]") parser.add_option("", "--ref-scale", type="eng_float", default=13490.0, help="Set dBFS=0dB input value, [default=%default]") parser.add_option("", "--fft-size", type="int", default=1024, help="Set FFT frame size, [default=%default]"); (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) self.options = options self.show_debug_info = True # build the graph if options.no_hb or (options.decim<8): #Min decimation of this firmware is 4. #contains 4 Rx paths without halfbands and 0 tx paths. self.fpga_filename="std_4rx_0tx.rbf" self.u = usrp.source_c(which=options.which, decim_rate=options.decim, fpga_filename=self.fpga_filename) else: #Min decimation of standard firmware is 8. #standard fpga firmware "std_2rxhb_2tx.rbf" #contains 2 Rx paths with halfband filters and 2 tx paths (the default) self.u = usrp.source_c(which=options.which, decim_rate=options.decim) if options.rx_subdev_spec is None: options.rx_subdev_spec = pick_subdevice(self.u) self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) if options.width_8: width = 8 shift = 8 format = self.u.make_format(width, shift) print "format =", hex(format) r = self.u.set_format(format) print "set_format =", r # determine the daughterboard subdevice we're using self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) input_rate = self.u.adc_freq() / self.u.decim_rate() if options.waterfall: self.scope = \ waterfallsink2.waterfall_sink_c (panel, fft_size=options.fft_size, sample_rate=input_rate) elif options.oscilloscope: self.scope = scopesink2.scope_sink_c(panel, sample_rate=input_rate) else: self.scope = fftsink2.fft_sink_c (panel, fft_size=options.fft_size, sample_rate=input_rate, ref_scale=options.ref_scale, ref_level=0.0, y_divs = 10, avg_alpha=options.avg_alpha) self.connect(self.u, self.scope) self._build_gui(vbox) self._setup_events() # set initial values if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.subdev.gain_range() options.gain = float(g[0]+g[1])/2 if options.freq is None: # if no freq was specified, use the mid-point r = self.subdev.freq_range() options.freq = float(r[0]+r[1])/2 self.set_gain(options.gain) if options.antenna is not None: print "Selecting antenna %s" % (options.antenna,) self.subdev.select_rx_antenna(options.antenna) if self.show_debug_info: self.myform['decim'].set_value(self.u.decim_rate()) self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) self.myform['dbname'].set_value(self.subdev.name()) self.myform['baseband'].set_value(0) self.myform['ddc'].set_value(0) if not(self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency") def _set_status_msg(self, msg): self.frame.GetStatusBar().SetStatusText(msg, 0) def _build_gui(self, vbox): def _form_set_freq(kv): return self.set_freq(kv['freq']) vbox.Add(self.scope.win, 10, wx.EXPAND) # add control area at the bottom self.myform = myform = form.form() hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((5,0), 0, 0) myform['freq'] = form.float_field( parent=self.panel, sizer=hbox, label="Center freq", weight=1, callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg)) hbox.Add((5,0), 0, 0) g = self.subdev.gain_range() myform['gain'] = form.slider_field(parent=self.panel, sizer=hbox, label="Gain", weight=3, min=int(g[0]), max=int(g[1]), callback=self.set_gain) hbox.Add((5,0), 0, 0) vbox.Add(hbox, 0, wx.EXPAND) self._build_subpanel(vbox) def _build_subpanel(self, vbox_arg): # build a secondary information panel (sometimes hidden) # FIXME figure out how to have this be a subpanel that is always # created, but has its visibility controlled by foo.Show(True/False) def _form_set_decim(kv): return self.set_decim(kv['decim']) if not(self.show_debug_info): return panel = self.panel vbox = vbox_arg myform = self.myform #panel = wx.Panel(self.panel, -1) #vbox = wx.BoxSizer(wx.VERTICAL) hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((5,0), 0) myform['decim'] = form.int_field( parent=panel, sizer=hbox, label="Decim", callback=myform.check_input_and_call(_form_set_decim, self._set_status_msg)) hbox.Add((5,0), 1) myform['fs@usb'] = form.static_float_field( parent=panel, sizer=hbox, label="Fs@USB") hbox.Add((5,0), 1) myform['dbname'] = form.static_text_field( parent=panel, sizer=hbox) hbox.Add((5,0), 1) myform['baseband'] = form.static_float_field( parent=panel, sizer=hbox, label="Analog BB") hbox.Add((5,0), 1) myform['ddc'] = form.static_float_field( parent=panel, sizer=hbox, label="DDC") hbox.Add((5,0), 0) vbox.Add(hbox, 0, wx.EXPAND) def set_freq(self, target_freq): """ Set the center frequency we're interested in. @param target_freq: frequency in Hz @rypte: bool Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital down converter. """ r = self.u.tune(0, self.subdev, target_freq) if r: self.myform['freq'].set_value(target_freq) # update displayed value if self.show_debug_info: self.myform['baseband'].set_value(r.baseband_freq) self.myform['ddc'].set_value(r.dxc_freq) if not self.options.oscilloscope: self.scope.set_baseband_freq(target_freq) return True return False def set_gain(self, gain): self.myform['gain'].set_value(gain) # update displayed value self.subdev.set_gain(gain) def set_decim(self, decim): ok = self.u.set_decim_rate(decim) if not ok: print "set_decim failed" input_rate = self.u.adc_freq() / self.u.decim_rate() self.scope.set_sample_rate(input_rate) if self.show_debug_info: # update displayed values self.myform['decim'].set_value(self.u.decim_rate()) self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) return ok def _setup_events(self): if not self.options.waterfall and not self.options.oscilloscope: self.scope.win.Bind(wx.EVT_LEFT_DCLICK, self.evt_left_dclick) def evt_left_dclick(self, event): (ux, uy) = self.scope.win.GetXY(event) if event.CmdDown(): # Re-center on maximum power points = self.scope.win._points if self.scope.win.peak_hold: if self.scope.win.peak_vals is not None: ind = numpy.argmax(self.scope.win.peak_vals) else: ind = int(points.shape()[0]/2) else: ind = numpy.argmax(points[:,1]) (freq, pwr) = points[ind] target_freq = freq/self.scope.win._scale_factor print ind, freq, pwr self.set_freq(target_freq) else: # Re-center on clicked frequency target_freq = ux/self.scope.win._scale_factor self.set_freq(target_freq) def main (): app = stdgui2.stdapp(app_top_block, "USRP FFT", nstatus=1) app.MainLoop() if __name__ == '__main__': main ()