#!/usr/bin/env python # # Copyright 2007,2008,2010 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # try: import scipy from scipy import fftpack except ImportError: print "Please install SciPy to run this script (http://www.scipy.org/)" raise SystemExit, 1 try: from pylab import * except ImportError: print "Please install Matplotlib to run this script (http://matplotlib.sourceforge.net/)" raise SystemExit, 1 from optparse import OptionParser from scipy import log10 from gnuradio.eng_option import eng_option class gr_plot_psd: def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.psdfftsize = options.psd_size self.specfftsize = options.spec_size self.dospec = options.enable_spec # if we want to plot the spectrogram self.datatype = getattr(scipy, datatype) #scipy.complex64 self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.92, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_iq.get_xlim() self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show() def get_data(self): self.position = self.hfile.tell()/self.sizeof_data self.text_file_pos.set_text("File Position: %d" % self.position) try: self.iq = scipy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print "End of File" else: tstep = 1.0 / self.sample_rate self.time = scipy.array([tstep*(self.position + i) for i in xrange(len(self.iq))]) self.iq_psd, self.freq = self.dopsd(self.iq) def dopsd(self, iq): ''' Need to do this here and plot later so we can do the fftshift ''' overlap = self.psdfftsize/4 winfunc = scipy.blackman psd,freq = mlab.psd(iq, self.psdfftsize, self.sample_rate, window = lambda d: d*winfunc(self.psdfftsize), noverlap = overlap) psd = 10.0*log10(abs(psd)) return (psd, freq) def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data*self.start, 1) iqdims = [[0.075, 0.2, 0.4, 0.6], [0.075, 0.55, 0.4, 0.3]] psddims = [[0.575, 0.2, 0.4, 0.6], [0.575, 0.55, 0.4, 0.3]] specdims = [0.2, 0.125, 0.6, 0.3] # Subplot for real and imaginary parts of signal self.sp_iq = self.fig.add_subplot(2,2,1, position=iqdims[self.dospec]) self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold") self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") # Subplot for PSD plot self.sp_psd = self.fig.add_subplot(2,2,2, position=psddims[self.dospec]) self.sp_psd.set_title(("PSD"), fontsize=self.title_font_size, fontweight="bold") self.sp_psd.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.sp_psd.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold") self.get_data() self.plot_iq = self.sp_iq.plot([], 'bo-') # make plot for reals self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags self.draw_time() # draw the plot self.plot_psd = self.sp_psd.plot([], 'b') # make plot for PSD self.draw_psd() # draw the plot if self.dospec: # Subplot for spectrogram plot self.sp_spec = self.fig.add_subplot(2,2,3, position=specdims) self.sp_spec.set_title(("Spectrogram"), fontsize=self.title_font_size, fontweight="bold") self.sp_spec.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_spec.set_ylabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.draw_spec() draw() def draw_time(self): reals = self.iq.real imags = self.iq.imag self.plot_iq[0].set_data([self.time, reals]) self.plot_iq[1].set_data([self.time, imags]) self.sp_iq.set_xlim(self.time.min(), self.time.max()) self.sp_iq.set_ylim([1.5*min([reals.min(), imags.min()]), 1.5*max([reals.max(), imags.max()])]) def draw_psd(self): self.plot_psd[0].set_data([self.freq, self.iq_psd]) self.sp_psd.set_ylim([self.iq_psd.min()-10, self.iq_psd.max()+10]) self.sp_psd.set_xlim([self.freq.min(), self.freq.max()]) def draw_spec(self): overlap = self.specfftsize/4 winfunc = scipy.blackman self.sp_spec.clear() self.sp_spec.specgram(self.iq, self.specfftsize, self.sample_rate, window = lambda d: d*winfunc(self.specfftsize), noverlap = overlap, xextent=[self.time.min(), self.time.max()]) def update_plots(self): self.draw_time() self.draw_psd() if self.dospec: self.draw_spec() self.xlim = self.sp_iq.get_xlim() # so zoom doesn't get called draw() def zoom(self, event): newxlim = scipy.array(self.sp_iq.get_xlim()) curxlim = scipy.array(self.xlim) if(newxlim.all() != curxlim.all()): self.xlim = newxlim xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0] - self.position)))) xmax = min(int(ceil(self.sample_rate*(self.xlim[1] - self.position))), len(self.iq)) iq = scipy.array(self.iq[xmin : xmax]) time = scipy.array(self.time[xmin : xmax]) iq_psd, freq = self.dopsd(iq) self.plot_psd[0].set_data(freq, iq_psd) self.sp_psd.axis([freq.min(), freq.max(), iq_psd.min()-10, iq_psd.max()+10]) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.get_data() self.update_plots() def step_backward(self): # Step back in file position if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ): self.hfile.seek(-2*self.sizeof_data*self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(),1) self.get_data() self.update_plots() def find(item_in, list_search): try: return list_search.index(item_in) != None except ValueError: return False def setup_options(): usage="%prog: [options] input_filename" description = "Takes a GNU Radio binary file (with specified data type using --data-type) and displays the I&Q data versus time as well as the power spectral density (PSD) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples. Finally, the size of the FFT to use for the PSD and spectrogram plots can be set independently with --psd-size and --spec-size, respectively. The spectrogram plot does not display by default and is turned on with -S or --enable-spec." parser = OptionParser(option_class=eng_option, conflict_handler="resolve", usage=usage, description=description) parser.add_option("-d", "--data-type", type="string", default="complex64", help="Specify the data type (complex64, float32, (u)int32, (u)int16, (u)int8) [default=%default]") parser.add_option("-B", "--block", type="int", default=8192, help="Specify the block size [default=%default]") parser.add_option("-s", "--start", type="int", default=0, help="Specify where to start in the file [default=%default]") parser.add_option("-R", "--sample-rate", type="eng_float", default=1.0, help="Set the sampler rate of the data [default=%default]") parser.add_option("", "--psd-size", type="int", default=1024, help="Set the size of the PSD FFT [default=%default]") parser.add_option("", "--spec-size", type="int", default=256, help="Set the size of the spectrogram FFT [default=%default]") parser.add_option("-S", "--enable-spec", action="store_true", default=False, help="Turn on plotting the spectrogram [default=%default]") return parser def main(): parser = setup_options() (options, args) = parser.parse_args () if len(args) != 1: parser.print_help() raise SystemExit, 1 filename = args[0] dc = gr_plot_psd(options.data_type, filename, options) if __name__ == "__main__": try: main() except KeyboardInterrupt: pass