/* * Copyright 2010-2012 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_GR_UHD_USRP_SOURCE_H #define INCLUDED_GR_UHD_USRP_SOURCE_H #include #include #include #ifndef INCLUDED_UHD_STREAM_HPP namespace uhd{ struct GR_UHD_API stream_args_t{ stream_args_t( const std::string &cpu = "", const std::string &otw = "" ){ cpu_format = cpu; otw_format = otw; } std::string cpu_format; std::string otw_format; device_addr_t args; std::vector channels; }; } # define INCLUDED_UHD_STREAM_HPP #else # define GR_UHD_USE_STREAM_API #endif class uhd_usrp_source; /*! * \brief Make a new USRP source block. * \ingroup uhd_blk * * The USRP source block receives samples and writes to a stream. * The source block also provides API calls for receiver settings. * * RX Stream tagging: * * The following tag keys will be produced by the work function: * - pmt::pmt_string_to_symbol("rx_time") * - pmt::pmt_string_to_symbol("rx_rate") * - pmt::pmt_string_to_symbol("rx_freq") * * The timstamp tag value is a pmt tuple of the following: * (uint64 seconds, and double fractional seconds). * A timestamp tag is produced at start() and after overflows. * * The sample rate and center frequency tags are doubles, * representing the sample rate in Sps and frequency in Hz. * These tags are produced upon the user changing parameters. * * See the UHD manual for more detailed documentation: * http://code.ettus.com/redmine/ettus/projects/uhd/wiki * * \param device_addr the address to identify the hardware * \param io_type the desired output data type * \param num_channels number of stream from the device * \return a new USRP source block object */ GR_UHD_API boost::shared_ptr uhd_make_usrp_source( const uhd::device_addr_t &device_addr, const uhd::io_type_t &io_type, size_t num_channels ); /*! * \brief Make a new USRP source block. * * The USRP source block receives samples and writes to a stream. * The source block also provides API calls for receiver settings. * * RX Stream tagging: * * The following tag keys will be produced by the work function: * - pmt::pmt_string_to_symbol("rx_time") * * The timstamp tag value is a pmt tuple of the following: * (uint64 seconds, and double fractional seconds). * A timestamp tag is produced at start() and after overflows. * * See the UHD manual for more detailed documentation: * http://code.ettus.com/redmine/ettus/projects/uhd/wiki * * \param device_addr the address to identify the hardware * \param stream_args the IO format and channel specification * \return a new USRP source block object */ GR_UHD_API boost::shared_ptr uhd_make_usrp_source( const uhd::device_addr_t &device_addr, const uhd::stream_args_t &stream_args ); class GR_UHD_API uhd_usrp_source : virtual public gr_sync_block{ public: /*! * Set the start time for incoming samples. * To control when samples are received, * set this value before starting the flow graph. * The value is cleared after each run. * When not specified, the start time will be: * - Immediately for the one channel case * - in the near future for multi-channel * * \param time the absolute time for reception to begin */ virtual void set_start_time(const uhd::time_spec_t &time) = 0; /*! * *Advanced use only:* * Issue a stream command to all channels in this source block. * * This method is intended to override the default "always on" behavior. * After starting the flow graph, the user should call stop() on this block, * then issue any desired arbitrary stream_cmd_t structs to the device. * The USRP will be able to enqueue several stream commands in the FPGA. * * \param cmd the stream command to issue to all source channels */ virtual void issue_stream_cmd(const uhd::stream_cmd_t &cmd) = 0; /*! * Returns identifying information about this USRP's configuration. * Returns motherboard ID, name, and serial. * Returns daughterboard RX ID, subdev name and spec, serial, and antenna. * \param chan channel index 0 to N-1 * \return RX info */ virtual uhd::dict get_usrp_info(size_t chan = 0) = 0; /*! * Set the frontend specification. * \param spec the subdev spec markup string * \param mboard the motherboard index 0 to M-1 */ virtual void set_subdev_spec(const std::string &spec, size_t mboard = 0) = 0; /*! * Get the RX frontend specification. * \param mboard the motherboard index 0 to M-1 * \return the frontend specification in use */ virtual std::string get_subdev_spec(size_t mboard = 0) = 0; /*! * Set the sample rate for the usrp device. * \param rate a new rate in Sps */ virtual void set_samp_rate(double rate) = 0; /*! * Get the sample rate for the usrp device. * This is the actual sample rate and may differ from the rate set. * \return the actual rate in Sps */ virtual double get_samp_rate(void) = 0; /*! * Get the possible sample rates for the usrp device. * \return a range of rates in Sps */ virtual uhd::meta_range_t get_samp_rates(void) = 0; /*! * Tune the usrp device to the desired center frequency. * \param tune_request the tune request instructions * \param chan the channel index 0 to N-1 * \return a tune result with the actual frequencies */ virtual uhd::tune_result_t set_center_freq( const uhd::tune_request_t tune_request, size_t chan = 0 ) = 0; /*! * Tune the usrp device to the desired center frequency. * This is a wrapper around set center freq so that in this case, * the user can pass a single frequency in the call through swig. * \param freq the desired frequency in Hz * \param chan the channel index 0 to N-1 * \return a tune result with the actual frequencies */ uhd::tune_result_t set_center_freq(double freq, size_t chan = 0){ return set_center_freq(uhd::tune_request_t(freq), chan); } /*! * Get the center frequency. * \param chan the channel index 0 to N-1 * \return the frequency in Hz */ virtual double get_center_freq(size_t chan = 0) = 0; /*! * Get the tunable frequency range. * \param chan the channel index 0 to N-1 * \return the frequency range in Hz */ virtual uhd::freq_range_t get_freq_range(size_t chan = 0) = 0; /*! * Set the gain for the dboard. * \param gain the gain in dB * \param chan the channel index 0 to N-1 */ virtual void set_gain(double gain, size_t chan = 0) = 0; /*! * Set the named gain on the dboard. * \param gain the gain in dB * \param name the name of the gain stage * \param chan the channel index 0 to N-1 */ virtual void set_gain(double gain, const std::string &name, size_t chan = 0) = 0; /*! * Get the actual dboard gain setting. * \param chan the channel index 0 to N-1 * \return the actual gain in dB */ virtual double get_gain(size_t chan = 0) = 0; /*! * Get the actual dboard gain setting of named stage. * \param name the name of the gain stage * \param chan the channel index 0 to N-1 * \return the actual gain in dB */ virtual double get_gain(const std::string &name, size_t chan = 0) = 0; /*! * Get the actual dboard gain setting of named stage. * \param chan the channel index 0 to N-1 * \return the actual gain in dB */ virtual std::vector get_gain_names(size_t chan = 0) = 0; /*! * Get the settable gain range. * \param chan the channel index 0 to N-1 * \return the gain range in dB */ virtual uhd::gain_range_t get_gain_range(size_t chan = 0) = 0; /*! * Get the settable gain range. * \param name the name of the gain stage * \param chan the channel index 0 to N-1 * \return the gain range in dB */ virtual uhd::gain_range_t get_gain_range(const std::string &name, size_t chan = 0) = 0; /*! * Set the antenna to use. * \param ant the antenna string * \param chan the channel index 0 to N-1 */ virtual void set_antenna(const std::string &ant, size_t chan = 0) = 0; /*! * Get the antenna in use. * \param chan the channel index 0 to N-1 * \return the antenna string */ virtual std::string get_antenna(size_t chan = 0) = 0; /*! * Get a list of possible antennas. * \param chan the channel index 0 to N-1 * \return a vector of antenna strings */ virtual std::vector get_antennas(size_t chan = 0) = 0; /*! * Set the bandpass filter on the RF frontend. * \param bandwidth the filter bandwidth in Hz * \param chan the channel index 0 to N-1 */ virtual void set_bandwidth(double bandwidth, size_t chan = 0) = 0; /*! * Get the bandpass filter setting on the RF frontend. * \param chan the channel index 0 to N-1 * \return bandwidth of the filter in Hz */ virtual double get_bandwidth(size_t chan = 0) = 0; /*! * Get the bandpass filter range of the RF frontend. * \param chan the channel index 0 to N-1 * \return the range of the filter bandwidth in Hz */ virtual uhd::freq_range_t get_bandwidth_range(size_t chan = 0) = 0; /*! * Enable/disable the automatic DC offset correction. * The automatic correction subtracts out the long-run average. * * When disabled, the averaging option operation is halted. * Once halted, the average value will be held constant * until the user re-enables the automatic correction * or overrides the value by manually setting the offset. * * \param enb true to enable automatic DC offset correction * \param chan the channel index 0 to N-1 */ virtual void set_auto_dc_offset(const bool enb, size_t chan = 0) = 0; /*! * Set a constant DC offset value. * The value is complex to control both I and Q. * Only set this when automatic correction is disabled. * \param offset the dc offset (1.0 is full-scale) * \param chan the channel index 0 to N-1 */ virtual void set_dc_offset(const std::complex &offset, size_t chan = 0) = 0; /*! * Set the RX frontend IQ imbalance correction. * Use this to adjust the magnitude and phase of I and Q. * * \param correction the complex correction value * \param chan the channel index 0 to N-1 */ virtual void set_iq_balance(const std::complex &correction, size_t chan = 0) = 0; /*! * Get a RF frontend sensor value. * \param name the name of the sensor * \param chan the channel index 0 to N-1 * \return a sensor value object */ virtual uhd::sensor_value_t get_sensor(const std::string &name, size_t chan = 0) = 0; /*! * Get a list of possible RF frontend sensor names. * \param chan the channel index 0 to N-1 * \return a vector of sensor names */ virtual std::vector get_sensor_names(size_t chan = 0) = 0; //! DEPRECATED use get_sensor uhd::sensor_value_t get_dboard_sensor(const std::string &name, size_t chan = 0){ return this->get_sensor(name, chan); } //! DEPRECATED use get_sensor_names std::vector get_dboard_sensor_names(size_t chan = 0){ return this->get_sensor_names(chan); } /*! * Get a motherboard sensor value. * \param name the name of the sensor * \param mboard the motherboard index 0 to M-1 * \return a sensor value object */ virtual uhd::sensor_value_t get_mboard_sensor(const std::string &name, size_t mboard = 0) = 0; /*! * Get a list of possible motherboard sensor names. * \param mboard the motherboard index 0 to M-1 * \return a vector of sensor names */ virtual std::vector get_mboard_sensor_names(size_t mboard = 0) = 0; /*! * Set the clock configuration. * DEPRECATED for set_time/clock_source. * \param clock_config the new configuration * \param mboard the motherboard index 0 to M-1 */ virtual void set_clock_config(const uhd::clock_config_t &clock_config, size_t mboard = 0) = 0; /*! * Set the time source for the usrp device. * This sets the method of time synchronization, * typically a pulse per second or an encoded time. * Typical options for source: external, MIMO. * \param source a string representing the time source * \param mboard which motherboard to set the config */ virtual void set_time_source(const std::string &source, const size_t mboard = 0) = 0; /*! * Get the currently set time source. * \param mboard which motherboard to get the config * \return the string representing the time source */ virtual std::string get_time_source(const size_t mboard) = 0; /*! * Get a list of possible time sources. * \param mboard which motherboard to get the list * \return a vector of strings for possible settings */ virtual std::vector get_time_sources(const size_t mboard) = 0; /*! * Set the clock source for the usrp device. * This sets the source for a 10 Mhz reference clock. * Typical options for source: internal, external, MIMO. * \param source a string representing the clock source * \param mboard which motherboard to set the config */ virtual void set_clock_source(const std::string &source, const size_t mboard = 0) = 0; /*! * Get the currently set clock source. * \param mboard which motherboard to get the config * \return the string representing the clock source */ virtual std::string get_clock_source(const size_t mboard) = 0; /*! * Get a list of possible clock sources. * \param mboard which motherboard to get the list * \return a vector of strings for possible settings */ virtual std::vector get_clock_sources(const size_t mboard) = 0; /*! * Get the master clock rate. * \param mboard the motherboard index 0 to M-1 * \return the clock rate in Hz */ virtual double get_clock_rate(size_t mboard = 0) = 0; /*! * Set the master clock rate. * \param rate the new rate in Hz * \param mboard the motherboard index 0 to M-1 */ virtual void set_clock_rate(double rate, size_t mboard = 0) = 0; /*! * Get the current time registers. * \param mboard the motherboard index 0 to M-1 * \return the current usrp time */ virtual uhd::time_spec_t get_time_now(size_t mboard = 0) = 0; /*! * Get the time when the last pps pulse occured. * \param mboard the motherboard index 0 to M-1 * \return the current usrp time */ virtual uhd::time_spec_t get_time_last_pps(size_t mboard = 0) = 0; /*! * Sets the time registers immediately. * \param time_spec the new time * \param mboard the motherboard index 0 to M-1 */ virtual void set_time_now(const uhd::time_spec_t &time_spec, size_t mboard = 0) = 0; /*! * Set the time registers at the next pps. * \param time_spec the new time */ virtual void set_time_next_pps(const uhd::time_spec_t &time_spec) = 0; /*! * Sync the time registers with an unknown pps edge. * \param time_spec the new time */ virtual void set_time_unknown_pps(const uhd::time_spec_t &time_spec) = 0; /*! * Set the time at which the control commands will take effect. * * A timed command will back-pressure all subsequent timed commands, * assuming that the subsequent commands occur within the time-window. * If the time spec is late, the command will be activated upon arrival. * * \param time_spec the time at which the next command will activate * \param mboard which motherboard to set the config */ virtual void set_command_time(const uhd::time_spec_t &time_spec, size_t mboard = 0) = 0; /*! * Clear the command time so future commands are sent ASAP. * * \param mboard which motherboard to set the config */ virtual void clear_command_time(size_t mboard = 0) = 0; /*! * Get access to the underlying uhd dboard iface object. * \return the dboard_iface object */ virtual uhd::usrp::dboard_iface::sptr get_dboard_iface(size_t chan = 0) = 0; /*! * Get access to the underlying uhd device object. * \return the multi usrp device object */ virtual uhd::usrp::multi_usrp::sptr get_device(void) = 0; /*! * Perform write on the user configuration register bus. These only exist if * the user has implemented custom setting registers in the device FPGA. * \param addr 8-bit register address * \param data 32-bit register value * \param mboard which motherboard to set the user register */ virtual void set_user_register(const uint8_t addr, const uint32_t data, size_t mboard = 0) = 0; /*! * Convenience function for finite data acquisition. * This is not to be used with the scheduler; rather, * one can request samples from the USRP in python. * //TODO assumes fc32 * \param nsamps the number of samples * \return a vector of complex float samples */ virtual std::vector > finite_acquisition(const size_t nsamps) = 0; /*! * Convenience function for finite data acquisition. * This is the multi-channel version of finite_acquisition; * This is not to be used with the scheduler; rather, * one can request samples from the USRP in python. * //TODO assumes fc32 * \param nsamps the number of samples per channel * \return a vector of buffers, where each buffer represents a channel */ virtual std::vector > > finite_acquisition_v(const size_t nsamps) = 0; }; #endif /* INCLUDED_GR_UHD_USRP_SOURCE_H */