/* -*- c++ -*- */ /* * Copyright 2004 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include static const float INF = 1.0e9; trellis_siso_combined_f_sptr trellis_make_siso_combined_f ( const fsm &FSM, int K, int S0, int SK, bool POSTI, bool POSTO, trellis_siso_type_t SISO_TYPE, int D, const std::vector &TABLE, trellis_metric_type_t TYPE) { return trellis_siso_combined_f_sptr (new trellis_siso_combined_f (FSM,K,S0,SK,POSTI,POSTO,SISO_TYPE,D,TABLE,TYPE)); } trellis_siso_combined_f::trellis_siso_combined_f ( const fsm &FSM, int K, int S0, int SK, bool POSTI, bool POSTO, trellis_siso_type_t SISO_TYPE, int D, const std::vector &TABLE, trellis_metric_type_t TYPE) : gr_block ("siso_combined_f", gr_make_io_signature (1, -1, sizeof (float)), gr_make_io_signature (1, -1, sizeof (float))), d_FSM (FSM), d_K (K), d_S0 (S0), d_SK (SK), d_POSTI (POSTI), d_POSTO (POSTO), d_SISO_TYPE (SISO_TYPE), d_D (D), d_TABLE (TABLE), d_TYPE (TYPE)//, //d_alpha(FSM.S()*(K+1)), //d_beta(FSM.S()*(K+1)) { int multiple; if (d_POSTI && d_POSTO) multiple = d_FSM.I()+d_FSM.O(); else if(d_POSTI) multiple = d_FSM.I(); else if(d_POSTO) multiple = d_FSM.O(); else throw std::runtime_error ("Not both POSTI and POSTO can be false."); //printf("constructor: Multiple = %d\n",multiple); set_output_multiple (d_K*multiple); //what is the meaning of relative rate for a block with 2 inputs? //set_relative_rate ( multiple / ((double) d_FSM.I()) ); // it turns out that the above gives problems in the scheduler, so // let's try (assumption O>I) //set_relative_rate ( multiple / ((double) d_FSM.O()) ); // I am tempted to automate like this if(d_FSM.I() <= d_D) set_relative_rate ( multiple / ((double) d_D) ); else set_relative_rate ( multiple / ((double) d_FSM.I()) ); } void trellis_siso_combined_f::forecast (int noutput_items, gr_vector_int &ninput_items_required) { int multiple; if (d_POSTI && d_POSTO) multiple = d_FSM.I()+d_FSM.O(); else if(d_POSTI) multiple = d_FSM.I(); else if(d_POSTO) multiple = d_FSM.O(); else throw std::runtime_error ("Not both POSTI and POSTO can be false."); //printf("forecast: Multiple = %d\n",multiple); assert (noutput_items % (d_K*multiple) == 0); int input_required1 = d_FSM.I() * (noutput_items/multiple) ; int input_required2 = d_D * (noutput_items/multiple) ; //printf("forecast: Output requirements: %d\n",noutput_items); //printf("forecast: Input requirements: %d %d\n",input_required1,input_required2); unsigned ninputs = ninput_items_required.size(); assert(ninputs % 2 == 0); for (unsigned int i = 0; i < ninputs/2; i++) { ninput_items_required[2*i] = input_required1; ninput_items_required[2*i+1] = input_required2; } } inline float min(float a, float b) { return a <= b ? a : b; } inline float min_star(float a, float b) { return (a <= b ? a : b)-log(1+exp(a <= b ? a-b : b-a)); } void siso_algorithm_combined(int I, int S, int O, const std::vector &NS, const std::vector &OS, const std::vector &PS, const std::vector &PI, int K, int S0,int SK, bool POSTI, bool POSTO, float (*p2mymin)(float,float), int D, const std::vector &TABLE, trellis_metric_type_t TYPE, const float *priori, const float *observations, float *post//, //std::vector &alpha, //std::vector &beta ) { float norm,mm,minm; std::vector alpha(S*(K+1)); std::vector beta(S*(K+1)); float *prioro = new float[O*K]; if(S0<0) { // initial state not specified for(int i=0;i=0;k--) { // backward recursion norm=INF; for(int j=0;j