#!/usr/bin/env python ################################################## # Gnuradio Python Flow Graph # Title: CPM test # Author: Achilleas Anastasopoulos # Description: gnuradio flow graph # Generated: Thu Feb 19 23:16:23 2009 ################################################## from gnuradio import gr from gnuradio import trellis from gnuradio.gr import firdes from grc_gnuradio import blks2 as grc_blks2 import math import numpy import fsm_utils from gnuradio import trellis try: import scipy.stats except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) def run_test(seed,blocksize): tb = gr.top_block() ################################################## # Variables ################################################## M = 2 K = 1 P = 2 h = (1.0*K)/P L = 3 Q = 4 frac = 0.99 f = trellis.fsm(P,M,L) # CPFSK signals #p = numpy.ones(Q)/(2.0) #q = numpy.cumsum(p)/(1.0*Q) # GMSK signals BT=0.3; tt=numpy.arange(0,L*Q)/(1.0*Q)-L/2.0; #print tt p=(0.5*scipy.stats.erfc(2*math.pi*BT*(tt-0.5)/math.sqrt(math.log(2.0))/math.sqrt(2.0))-0.5*scipy.stats.erfc(2*math.pi*BT*(tt+0.5)/math.sqrt(math.log(2.0))/math.sqrt(2.0)))/2.0; p=p/sum(p)*Q/2.0; #print p q=numpy.cumsum(p)/Q; q=q/q[-1]/2.0; #print q (f0T,SS,S,F,Sf,Ff,N) = fsm_utils.make_cpm_signals(K,P,M,L,q,frac) #print N #print Ff Ffa = numpy.insert(Ff,Q,numpy.zeros(N),axis=0) #print Ffa MF = numpy.fliplr(numpy.transpose(Ffa)) #print MF E = numpy.sum(numpy.abs(Sf)**2,axis=0) Es = numpy.sum(E)/f.O() #print Es constellation = numpy.reshape(numpy.transpose(Sf),N*f.O()) #print Ff #print Sf #print constellation #print numpy.max(numpy.abs(SS - numpy.dot(Ff , Sf))) EsN0_db = 10.0 N0 = Es * 10.0**(-(1.0*EsN0_db)/10.0) #N0 = 0.0 #print N0 head = 4 tail = 4 numpy.random.seed(seed*666) data = numpy.random.randint(0, M, head+blocksize+tail+1) #data = numpy.zeros(blocksize+1+head+tail,'int') for i in range(head): data[i]=0 for i in range(tail+1): data[-i]=0 ################################################## # Blocks ################################################## random_source_x_0 = gr.vector_source_b(data.tolist(), False) gr_chunks_to_symbols_xx_0 = gr.chunks_to_symbols_bf((-1, 1), 1) gr_interp_fir_filter_xxx_0 = gr.interp_fir_filter_fff(Q, p) gr_frequency_modulator_fc_0 = gr.frequency_modulator_fc(2*math.pi*h*(1.0/Q)) gr_add_vxx_0 = gr.add_vcc(1) gr_noise_source_x_0 = gr.noise_source_c(gr.GR_GAUSSIAN, (N0/2.0)**0.5, -long(seed)) gr_multiply_vxx_0 = gr.multiply_vcc(1) gr_sig_source_x_0 = gr.sig_source_c(Q, gr.GR_COS_WAVE, -f0T, 1, 0) # only works for N=2, do it manually for N>2... gr_fir_filter_xxx_0_0 = gr.fir_filter_ccc(Q, MF[0].conjugate()) gr_fir_filter_xxx_0_0_0 = gr.fir_filter_ccc(Q, MF[1].conjugate()) gr_streams_to_stream_0 = gr.streams_to_stream(gr.sizeof_gr_complex*1, int(N)) gr_skiphead_0 = gr.skiphead(gr.sizeof_gr_complex*1, int(N*(1+0))) viterbi = trellis.viterbi_combined_cb(f, head+blocksize+tail, 0, -1, int(N), constellation, trellis.TRELLIS_EUCLIDEAN) gr_vector_sink_x_0 = gr.vector_sink_b() ################################################## # Connections ################################################## tb.connect((random_source_x_0, 0), (gr_chunks_to_symbols_xx_0, 0)) tb.connect((gr_chunks_to_symbols_xx_0, 0), (gr_interp_fir_filter_xxx_0, 0)) tb.connect((gr_interp_fir_filter_xxx_0, 0), (gr_frequency_modulator_fc_0, 0)) tb.connect((gr_frequency_modulator_fc_0, 0), (gr_add_vxx_0, 0)) tb.connect((gr_noise_source_x_0, 0), (gr_add_vxx_0, 1)) tb.connect((gr_add_vxx_0, 0), (gr_multiply_vxx_0, 0)) tb.connect((gr_sig_source_x_0, 0), (gr_multiply_vxx_0, 1)) tb.connect((gr_multiply_vxx_0, 0), (gr_fir_filter_xxx_0_0, 0)) tb.connect((gr_multiply_vxx_0, 0), (gr_fir_filter_xxx_0_0_0, 0)) tb.connect((gr_fir_filter_xxx_0_0, 0), (gr_streams_to_stream_0, 0)) tb.connect((gr_fir_filter_xxx_0_0_0, 0), (gr_streams_to_stream_0, 1)) tb.connect((gr_streams_to_stream_0, 0), (gr_skiphead_0, 0)) tb.connect((gr_skiphead_0, 0), (viterbi, 0)) tb.connect((viterbi, 0), (gr_vector_sink_x_0, 0)) tb.run() dataest = gr_vector_sink_x_0.data() #print data #print numpy.array(dataest) perr = 0 err = 0 for i in range(blocksize): if data[head+i] != dataest[head+i]: #print i err += 1 if err != 0 : perr = 1 return (err,perr) if __name__ == '__main__': blocksize = 1000 ss=0 ee=0 for i in range(10000): (s,e) = run_test(i,blocksize) ss += s ee += e if (i+1) % 100 == 0: print i+1,ss,ee,(1.0*ss)/(i+1)/(1.0*blocksize),(1.0*ee)/(i+1) print i+1,ss,ee,(1.0*ss)/(i+1)/(1.0*blocksize),(1.0*ee)/(i+1)