#!/usr/bin/env python from gnuradio import gr from gnuradio import audio from gnuradio import trellis from gnuradio import eng_notation import math import sys import random import fsm_utils def run_test (f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,seed): fg = gr.flow_graph () L = len(channel) # TX # this for loop is TOO slow in python!!! packet = [0]*(K+2*L) random.seed(seed) for i in range(len(packet)): packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols for i in range(L): # first/last L symbols set to 0 packet[i] = 0 packet[len(packet)-i-1] = 0 src = gr.vector_source_s(packet,False) mod = gr.chunks_to_symbols_sf(modulation[1],modulation[0]) # CHANNEL isi = gr.fir_filter_fff(1,channel) add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX skip = gr.skiphead(gr.sizeof_float, L) # skip the first L samples since you know they are coming from the L zero symbols #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi #va = trellis.viterbi_s(f,K+L,0,0) # Put -1 if the Initial/Final states are not set. va = trellis.viterbi_combined_s(f,K+L,0,0,dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # using viterbi_combined_s instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application... dst = gr.vector_sink_s() fg.connect (src,mod) fg.connect (mod,isi,(add,0)) fg.connect (noise,(add,1)) #fg.connect (add,metrics) #fg.connect (metrics,va,dst) fg.connect (add,skip,va,dst) fg.run() data = dst.data() ntotal = len(data) - L nright=0 for i in range(ntotal): if packet[i+L]==data[i]: nright=nright+1 #else: #print "Error in ", i return (ntotal,ntotal-nright) def main(args): nargs = len (args) if nargs == 2: esn0_db=float(args[0]) rep=int(args[1]) else: sys.stderr.write ('usage: test_viterbi_equalization1.py Es/No_db repetitions\n') sys.exit (1) # system parameters Kb=2048 # packet size in bits modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels f=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol K=Kb/bitspersymbol # packet size in trellis steps tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1) dimensionality = tot_channel[0] tot_constellation = tot_channel[1] N0=pow(10.0,-esn0_db/10.0); # noise variance if len(tot_constellation)/dimensionality != f.O(): sys.stderr.write ('Incompatible FSM output cardinality and lookup table size.\n') sys.exit (1) tot_s=0 # total number of transmitted shorts terr_s=0 # total number of shorts in error terr_p=0 # total number of packets in error for i in range(rep): (s,e)=run_test(f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,-long(666+i)) # run experiment with different seed to get different data and noise realizations tot_s=tot_s+s terr_s=terr_s+e terr_p=terr_p+(terr_s!=0) if ((i+1)%100==0) : # display progress print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s) # estimate of the (short or symbol) error rate print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s) if __name__ == '__main__': main (sys.argv[1:])