<?xml version="1.0" encoding="ISO-8859-1"?>
<programlisting>
  1  #!/usr/bin/env python
  2  
  3  from gnuradio import gr
  4  from gnuradio import audio
  5  from gnuradio import trellis
  6  from gnuradio import eng_notation
  7  import math
  8  import sys
  9  import random
 10  import fsm_utils
 11  
 12  def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
 13      tb = gr.top_block ()
 14  
 15      # TX
 16      src = gr.lfsr_32k_source_s()
 17      src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
 18      s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
 19      enc = trellis.encoder_ss(f,0) # initial state = 0
 20      mod = gr.chunks_to_symbols_sf(constellation,dimensionality)
 21  
 22      # CHANNEL
 23      add = gr.add_ff()
 24      noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
 25  
 26      # RX
 27      metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
 28      va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
 29      fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
 30      dst = gr.check_lfsr_32k_s(); 
 31  
 32      tb.connect (src,src_head,s2fsmi,enc,mod)
 33      tb.connect (mod,(add,0))
 34      tb.connect (noise,(add,1))
 35      tb.connect (add,metrics)
 36      tb.connect (metrics,va,fsmi2s,dst)
 37      
 38      tb.run()
 39      
 40      # A bit of cheating: run the program once and print the 
 41      # final encoder state.
 42      # Then put it as the last argument in the viterbi block
 43      #print &quot;final state = &quot; , enc.ST()
 44  
 45      ntotal = dst.ntotal ()
 46      nright = dst.nright ()
 47      runlength = dst.runlength ()
 48      return (ntotal,ntotal-nright)
 49  
 50  
 51  def main(args):
 52      nargs = len (args)
 53      if nargs == 3:
 54          fname=args[0]
 55          esn0_db=float(args[1]) # Es/No in dB
 56          rep=int(args[2]) # number of times the experiment is run to collect enough errors
 57      else:
 58          sys.stderr.write (&apos;usage: test_tcm.py fsm_fname Es/No_db  repetitions\n&apos;)
 59          sys.exit (1)
 60  
 61      # system parameters
 62      f=trellis.fsm(fname) # get the FSM specification from a file
 63      Kb=1024*16  # packet size in bits (make it multiple of 16 so it can be packed in a short)
 64      bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
 65      K=Kb/bitspersymbol # packet size in trellis steps
 66      modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations
 67      dimensionality = modulation[0]
 68      constellation = modulation[1] 
 69      if len(constellation)/dimensionality != f.O():
 70          sys.stderr.write (&apos;Incompatible FSM output cardinality and modulation size.\n&apos;)
 71          sys.exit (1)
 72      # calculate average symbol energy
 73      Es = 0
 74      for i in range(len(constellation)):
 75          Es = Es + constellation[i]**2
 76      Es = Es / (len(constellation)/dimensionality)
 77      N0=Es/pow(10.0,esn0_db/10.0); # noise variance
 78      
 79      tot_s=0
 80      terr_s=0
 81      for i in range(rep):
 82          (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
 83          tot_s=tot_s+s
 84          terr_s=terr_s+e
 85          if (i%100==0):
 86              print i,s,e,tot_s,terr_s, &apos;%e&apos; % ((1.0*terr_s)/tot_s)
 87      # estimate of the (short) error rate
 88      print tot_s,terr_s, &apos;%e&apos; % ((1.0*terr_s)/tot_s)
 89  
 90  
 91  if __name__ == &apos;__main__&apos;:
 92      main (sys.argv[1:])
</programlisting>