#!/usr/bin/env python # # Copyright 2004,2005 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gru from gnuradio import usrp from usrpm import usrp_dbid from gnuradio import eng_notation from gnuradio.eng_option import eng_option from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, ra_waterfallsink, form, slider from optparse import OptionParser import wx import sys import Numeric import time import FFT import ephem class continuum_calibration(gr.feval_dd): def eval(self, x): str = globals()["calibration_codelet"] exec(str) return(x) class app_flow_graph(stdgui.gui_flow_graph): def __init__(self, frame, panel, vbox, argv): stdgui.gui_flow_graph.__init__(self) self.frame = frame self.panel = panel parser = OptionParser(option_class=eng_option) parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0), help="select USRP Rx side A or B (default=A)") parser.add_option("-d", "--decim", type="int", default=16, help="set fgpa decimation rate to DECIM [default=%default]") parser.add_option("-f", "--freq", type="eng_float", default=None, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-a", "--avg", type="eng_float", default=1.0, help="set spectral averaging alpha") parser.add_option("-i", "--integ", type="eng_float", default=1.0, help="set integration time") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("-l", "--reflevel", type="eng_float", default=30.0, help="Set Total power reference level") parser.add_option("-y", "--division", type="eng_float", default=0.5, help="Set Total power Y division size") parser.add_option("-e", "--longitude", type="eng_float", default=-76.02, help="Set Observer Longitude") parser.add_option("-c", "--latitude", type="eng_float", default=44.85, help="Set Observer Latitude") parser.add_option("-o", "--observing", type="eng_float", default=0.0, help="Set observing frequency") parser.add_option("-x", "--ylabel", default="dB", help="Y axis label") parser.add_option("-z", "--divbase", type="eng_float", default=0.025, help="Y Division increment base") parser.add_option("-v", "--stripsize", type="eng_float", default=2400, help="Size of stripchart, in 2Hz samples") parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT") parser.add_option("-N", "--decln", type="eng_float", default=999.99, help="Observing declination") parser.add_option("-X", "--prefix", default="./") parser.add_option("-M", "--fft_rate", type="eng_float", default=8.0, help="FFT Rate") parser.add_option("-A", "--calib_coeff", type="eng_float", default=1.0, help="Calibration coefficient") parser.add_option("-B", "--calib_offset", type="eng_float", default=0.0, help="Calibration coefficient") parser.add_option("-W", "--waterfall", action="store_true", default=False, help="Use Waterfall FFT display") parser.add_option("-S", "--setimode", action="store_true", default=False, help="Enable SETI processing of spectral data") parser.add_option("-K", "--setik", type="eng_float", default=1.5, help="K value for SETI analysis") parser.add_option("-T", "--setibandwidth", type="eng_float", default=12500, help="Instantaneous SETI observing bandwidth--must be divisor of 250Khz") (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) self.show_debug_info = True # Pick up waterfall option self.waterfall = options.waterfall # SETI mode stuff self.setimode = options.setimode self.seticounter = 0 self.setik = options.setik # Because we force the input rate to be 250Khz, 12.5Khz is # exactly 1/20th of this, which makes building decimators # easier. # This also allows larger FFTs to be used without totally-gobbling # CPU. With an FFT size of 16384, for example, this bandwidth # yields a binwidth of 0.762Hz, and plenty of CPU left over # for other things, like the SETI analysis code. # self.seti_fft_bandwidth = int(options.setibandwidth) # Calculate binwidth binwidth = self.seti_fft_bandwidth / options.fft_size # Use binwidth, and knowledge of likely chirp rates to set reasonable # values for SETI analysis code. We assume that SETI signals will # chirp at somewhere between 0.10Hz/sec and 0.25Hz/sec. # # upper_limit is the "worst case"--that is, the case for which we have # wait the longest to actually see any drift, due to the quantizing # on FFT bins. upper_limit = binwidth / 0.10 self.setitimer = int(upper_limit * 2.00) self.scanning = True # Calculate the CHIRP values based on Hz/sec self.CHIRP_LOWER = 0.10 * self.setitimer self.CHIRP_UPPER = 0.25 * self.setitimer # Reset hit counter to 0 self.hitcounter = 0 # We scan through 1Mhz of bandwidth around the chosen center freq self.seti_freq_range = 1.0e6 # Calculate lower edge self.setifreq_lower = options.freq - (self.seti_freq_range/2) self.setifreq_current = options.freq # Calculate upper edge self.setifreq_upper = options.freq + (self.seti_freq_range/2) # We change center frequencies every 10 self.setitimer intervals self.setifreq_timer = self.setitimer * 10 # Create actual timer self.seti_then = time.time() # The hits recording array self.nhits = 10 self.nhitlines = 3 self.hits_array = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64) self.hit_intensities = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64) # Calibration coefficient and offset self.calib_coeff = options.calib_coeff self.calib_offset = options.calib_offset self.integ = options.integ self.avg_alpha = options.avg self.gain = options.gain self.decln = options.decln # Set initial values for datalogging timed-output self.continuum_then = time.time() self.spectral_then = time.time() # build the graph # # If SETI mode, we always run at maximum USRP decimation # if (self.setimode): options.decim = 256 self.u = usrp.source_c(decim_rate=options.decim) self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) self.cardtype = self.u.daughterboard_id(0) # Set initial declination self.decln = options.decln # determine the daughterboard subdevice we're using self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) input_rate = self.u.adc_freq() / self.u.decim_rate() # # Set prefix for data files # self.prefix = options.prefix # # The lower this number, the fewer sample frames are dropped # in computing the FFT. A sampled approach is taken to # computing the FFT of the incoming data, which reduces # sensitivity. Increasing sensitivity inreases CPU loading. # self.fft_rate = options.fft_rate self.fft_size = int(options.fft_size) # This buffer is used to remember the most-recent FFT display # values. Used later by self.write_spectral_data() to write # spectral data to datalogging files, and by the SETI analysis # function. # self.fft_outbuf = Numeric.zeros(self.fft_size, Numeric.Float64) # # If SETI mode, only look at seti_fft_bandwidth (currently 12.5Khz) # at a time. # if (self.setimode): self.fft_input_rate = self.seti_fft_bandwidth # # Build a decimating bandpass filter # self.fft_input_taps = gr.firdes.complex_band_pass (1.0, input_rate, -(int(self.fft_input_rate/2)), int(self.fft_input_rate/2), 200, gr.firdes.WIN_HAMMING, 0) # # Compute required decimation factor # decimation = int(input_rate/self.fft_input_rate) self.fft_bandpass = gr.fir_filter_ccc (decimation, self.fft_input_taps) else: self.fft_input_rate = input_rate # Set up FFT display if self.waterfall == False: self.scope = ra_fftsink.ra_fft_sink_c (self, panel, fft_size=int(self.fft_size), sample_rate=self.fft_input_rate, fft_rate=int(self.fft_rate), title="Spectral", ofunc=self.fft_outfunc, xydfunc=self.xydfunc) else: self.scope = ra_waterfallsink.ra_waterfallsink_c (self, panel, fft_size=int(self.fft_size), sample_rate=self.fft_input_rate, fft_rate=int(self.fft_rate), title="Spectral", ofunc=self.fft_outfunc, xydfunc=self.xydfunc_waterfall) # Set up ephemeris data self.locality = ephem.Observer() self.locality.long = str(options.longitude) self.locality.lat = str(options.latitude) # We make notes about Sunset/Sunrise in Continuum log files self.sun = ephem.Sun() self.sunstate = "??" # Set up stripchart display self.stripsize = int(options.stripsize) if self.setimode == False: self.chart = ra_stripchartsink.stripchart_sink_f (self, panel, stripsize=self.stripsize, title="Continuum", xlabel="LMST Offset (Seconds)", scaling=1.0, ylabel=options.ylabel, divbase=options.divbase) # Set center frequency self.centerfreq = options.freq # Set observing frequency (might be different from actual programmed # RF frequency) if options.observing == 0.0: self.observing = options.freq else: self.observing = options.observing self.bw = input_rate # We setup the first two integrators to produce a fixed integration # Down to 1Hz, with output at 1 samples/sec N = input_rate/5000 # Second stage runs on decimated output of first M = (input_rate/N) # Create taps for first integrator t = range(0,N-1) tapsN = [] for i in t: tapsN.append(1.0/N) # Create taps for second integrator t = range(0,M-1) tapsM = [] for i in t: tapsM.append(1.0/M) # # The 3rd integrator is variable, and user selectable at runtime # This integrator doesn't decimate, but is used to set the # final integration time based on the constant 1Hz input samples # The strip chart is fed at a constant 1Hz rate as a result # # # Call constructors for receive chains # if self.setimode == False: # The three integrators--two FIR filters, and an IIR final filter self.integrator1 = gr.fir_filter_fff (N, tapsN) self.integrator2 = gr.fir_filter_fff (M, tapsM) self.integrator3 = gr.single_pole_iir_filter_ff(1.0) # The detector self.detector = gr.complex_to_mag_squared() # Split complex USRP stream into a pair of floats #self.splitter = gr.complex_to_float (1); # # I squarer (detector) # self.multI = gr.multiply_ff(); # # # Q squarer (detector) # self.multQ = gr.multiply_ff(); # # # Adding squared I and Q to produce instantaneous signal power # self.adder = gr.add_ff(); # Signal probe self.probe = gr.probe_signal_f(); # # Continuum calibration stuff # self.cal_mult = gr.multiply_const_ff(self.calib_coeff); self.cal_offs = gr.add_const_ff(self.calib_offset); # # Start connecting configured modules in the receive chain # # The scope--handle SETI mode if (self.setimode == False): self.connect(self.u, self.scope) else: self.connect(self.u, self.fft_bandpass, self.scope) if self.setimode == False: # # # # The head of the continuum chain # # # self.connect(self.u, self.splitter) # # # Connect splitter outputs to multipliers # # First do I^2 # self.connect((self.splitter, 0), (self.multI,0)) # self.connect((self.splitter, 0), (self.multI,1)) # # # Then do Q^2 # self.connect((self.splitter, 1), (self.multQ,0)) # self.connect((self.splitter, 1), (self.multQ,1)) # # # Then sum the squares # self.connect(self.multI, (self.adder,0)) # self.connect(self.multQ, (self.adder,1)) # # # Connect adder output to two-stages of FIR integrator # # followed by a single stage IIR integrator, and # # the calibrator # self.connect(self.adder, self.integrator1, # self.integrator2, self.integrator3, self.cal_mult, # self.cal_offs, self.chart) self.connect(self.u, self.detector, self.integrator1, self.integrator2, self.integrator3, self.cal_mult, self.cal_offs, self.chart) # Connect calibrator to probe # SPECIAL NOTE: I'm setting the ground work here # for completely changing the way local_calibrator # works, including removing some horrible kludges for # recording data. # But for now, self.probe() will be used to display the # current instantaneous integrated detector value self.connect(self.cal_offs, self.probe) self._build_gui(vbox) # Make GUI agree with command-line self.integ = options.integ if self.setimode == False: self.myform['integration'].set_value(int(options.integ)) self.myform['average'].set_value(int(options.avg)) if self.setimode == False: # Make integrator agree with command line self.set_integration(int(options.integ)) self.avg_alpha = options.avg # Make spectral averager agree with command line if options.avg != 1.0: self.scope.set_avg_alpha(float(1.0/options.avg)) self.scope.set_average(True) if self.setimode == False: # Set division size self.chart.set_y_per_div(options.division) # Set reference(MAX) level self.chart.set_ref_level(options.reflevel) # set initial values if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.subdev.gain_range() options.gain = float(g[0]+g[1])/2 if options.freq is None: # if no freq was specified, use the mid-point r = self.subdev.freq_range() options.freq = float(r[0]+r[1])/2 # Set the initial gain control self.set_gain(options.gain) if not(self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency") # Set declination self.set_decln (self.decln) # RF hardware information self.myform['decim'].set_value(self.u.decim_rate()) self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) self.myform['dbname'].set_value(self.subdev.name()) # Set analog baseband filtering, if DBS_RX if self.cardtype == usrp_dbid.DBS_RX: lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2 if lbw < 1.0e6: lbw = 1.0e6 self.subdev.set_bw(lbw) # Start the timer for the LMST display and datalogging self.lmst_timer.Start(1000) def _set_status_msg(self, msg): self.frame.GetStatusBar().SetStatusText(msg, 0) def _build_gui(self, vbox): def _form_set_freq(kv): # Adjust current SETI frequency, and limits self.setifreq_lower = kv['freq'] - (self.seti_freq_range/2) self.setifreq_current = kv['freq'] self.setifreq_upper = kv['freq'] + (self.seti_freq_range/2) # Reset SETI analysis timer self.seti_then = time.time() # Zero-out hits array when changing frequency self.hits_array[:,:] = 0.0 self.hit_intensities[:,:] = -60.0 return self.set_freq(kv['freq']) def _form_set_decln(kv): return self.set_decln(kv['decln']) # Position the FFT display vbox.Add(self.scope.win, 15, wx.EXPAND) if self.setimode == False: # Position the Total-power stripchart vbox.Add(self.chart.win, 15, wx.EXPAND) # add control area at the bottom self.myform = myform = form.form() hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((7,0), 0, wx.EXPAND) vbox1 = wx.BoxSizer(wx.VERTICAL) myform['freq'] = form.float_field( parent=self.panel, sizer=vbox1, label="Center freq", weight=1, callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg)) vbox1.Add((4,0), 0, 0) myform['lmst_high'] = form.static_text_field( parent=self.panel, sizer=vbox1, label="Current LMST", weight=1) vbox1.Add((4,0), 0, 0) myform['spec_data'] = form.static_text_field( parent=self.panel, sizer=vbox1, label="Spectral Cursor", weight=1) vbox1.Add((4,0), 0, 0) vbox2 = wx.BoxSizer(wx.VERTICAL) g = self.subdev.gain_range() myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain", weight=1, min=int(g[0]), max=int(g[1]), callback=self.set_gain) vbox2.Add((4,0), 0, 0) myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2, label="Spectral Averaging (FFT frames)", weight=1, min=1, max=3000, callback=self.set_averaging) # Set up scan control button when in SETI mode if (self.setimode == True): # SETI scanning control buttonbox = wx.BoxSizer(wx.HORIZONTAL) self.scan_control = form.button_with_callback(self.panel, label="Scan: On ", callback=self.toggle_scanning) buttonbox.Add(self.scan_control, 0, wx.CENTER) vbox2.Add(buttonbox, 0, wx.CENTER) vbox2.Add((4,0), 0, 0) if self.setimode == False: myform['integration'] = form.slider_field(parent=self.panel, sizer=vbox2, label="Continuum Integration Time (sec)", weight=1, min=1, max=180, callback=self.set_integration) vbox2.Add((4,0), 0, 0) myform['decln'] = form.float_field( parent=self.panel, sizer=vbox2, label="Current Declination", weight=1, callback=myform.check_input_and_call(_form_set_decln)) vbox2.Add((4,0), 0, 0) buttonbox = wx.BoxSizer(wx.HORIZONTAL) vbox.Add(buttonbox, 0, wx.CENTER) hbox.Add(vbox1, 0, 0) hbox.Add(vbox2, wx.ALIGN_RIGHT, 0) vbox.Add(hbox, 0, wx.EXPAND) self._build_subpanel(vbox) self.lmst_timer = wx.PyTimer(self.lmst_timeout) #self.lmst_timeout() def _build_subpanel(self, vbox_arg): # build a secondary information panel (sometimes hidden) # FIXME figure out how to have this be a subpanel that is always # created, but has its visibility controlled by foo.Show(True/False) if not(self.show_debug_info): return panel = self.panel vbox = vbox_arg myform = self.myform #panel = wx.Panel(self.panel, -1) #vbox = wx.BoxSizer(wx.VERTICAL) hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((5,0), 0) myform['decim'] = form.static_float_field( parent=panel, sizer=hbox, label="Decim") hbox.Add((5,0), 1) myform['fs@usb'] = form.static_float_field( parent=panel, sizer=hbox, label="Fs@USB") hbox.Add((5,0), 1) myform['dbname'] = form.static_text_field( parent=panel, sizer=hbox) hbox.Add((5,0), 1) myform['baseband'] = form.static_float_field( parent=panel, sizer=hbox, label="Analog BB") hbox.Add((5,0), 1) myform['ddc'] = form.static_float_field( parent=panel, sizer=hbox, label="DDC") hbox.Add((5,0), 0) vbox.Add(hbox, 0, wx.EXPAND) def set_freq(self, target_freq): """ Set the center frequency we're interested in. @param target_freq: frequency in Hz @rypte: bool Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital down converter. """ # # Everything except BASIC_RX should support usrp.tune() # if not (self.cardtype == usrp_dbid.BASIC_RX): r = usrp.tune(self.u, 0, self.subdev, target_freq) else: r = self.u.set_rx_freq(0, target_freq) f = self.u.rx_freq(0) if abs(f-target_freq) > 2.0e3: r = 0 if r: self.myform['freq'].set_value(target_freq) # update displayed value # # Make sure calibrator knows our target freq # # Remember centerfreq---used for doppler calcs delta = self.centerfreq - target_freq self.centerfreq = target_freq self.observing -= delta self.scope.set_baseband_freq (self.observing) self.myform['baseband'].set_value(r.baseband_freq) self.myform['ddc'].set_value(r.dxc_freq) return True return False def set_decln(self, dec): self.decln = dec self.myform['decln'].set_value(dec) # update displayed value def set_gain(self, gain): self.myform['gain'].set_value(gain) # update displayed value self.subdev.set_gain(gain) self.gain = gain def set_averaging(self, avval): self.myform['average'].set_value(avval) self.scope.set_avg_alpha(1.0/(avval)) self.scope.set_average(True) self.avg_alpha = avval def set_integration(self, integval): if self.setimode == False: self.integrator3.set_taps(1.0/integval) self.myform['integration'].set_value(integval) self.integ = integval # # Timeout function # Used to update LMST display, as well as current # continuum value # # We also write external data-logging files here # def lmst_timeout(self): self.locality.date = ephem.now() if self.setimode == False: x = self.probe.level() sidtime = self.locality.sidereal_time() # LMST s = str(ephem.hours(sidtime)) + " " + self.sunstate # Continuum detector value if self.setimode == False: sx = "%7.4f" % x s = s + "\nDet: " + str(sx) else: sx = "%2d" % self.hitcounter sy = "%3.1f-%3.1f" % (self.CHIRP_LOWER, self.CHIRP_UPPER) s = s + "\nHits: " + str(sx) + "\nCh lim: " + str(sy) self.myform['lmst_high'].set_value(s) # # Write data out to recording files # if self.setimode == False: self.write_continuum_data(x,sidtime) self.write_spectral_data(self.fft_outbuf,sidtime) else: self.seti_analysis(self.fft_outbuf,sidtime) now = time.time() if ((self.scanning == True) and ((now - self.seti_then) > self.setifreq_timer)): self.seti_then = now self.setifreq_current = self.setifreq_current + self.fft_input_rate if (self.setifreq_current > self.setifreq_upper): self.setifreq_current = self.setifreq_lower self.set_freq(self.setifreq_current) # Make sure we zero-out the hits array when changing # frequency. self.hits_array[:,:] = 0.0 self.hit_intensities[:,:] = 0.0 def fft_outfunc(self,data,l): self.fft_outbuf=data def write_continuum_data(self,data,sidtime): # Create localtime structure for producing filename foo = time.localtime() pfx = self.prefix filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, foo.tm_mon, foo.tm_mday, foo.tm_hour) # Open the data file, appending continuum_file = open (filenamestr+".tpdat","a") flt = "%6.3f" % data inter = self.decln integ = self.integ fc = self.observing fc = fc / 1000000 bw = self.bw bw = bw / 1000000 ga = self.gain now = time.time() # # If time to write full header info (saves storage this way) # if (now - self.continuum_then > 20): self.sun.compute(self.locality) enow = ephem.now() sun_insky = "Down" self.sunstate = "Dn" if ((self.sun.rise_time < enow) and (enow < self.sun.set_time)): sun_insky = "Up" self.sunstate = "Up" self.continuum_then = now continuum_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",") continuum_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw)) continuum_file.write(",Ga="+str(ga)+",Sun="+str(sun_insky)+"\n") else: continuum_file.write(str(ephem.hours(sidtime))+" "+flt+"\n") continuum_file.close() return(data) def write_spectral_data(self,data,sidtime): now = time.time() delta = 10 # If time to write out spectral data # We don't write this out every time, in order to # save disk space. Since the spectral data are # typically heavily averaged, writing this data # "once in a while" is OK. # if (now - self.spectral_then >= delta): self.spectral_then = now # Get localtime structure to make filename from foo = time.localtime() pfx = self.prefix filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, foo.tm_mon, foo.tm_mday, foo.tm_hour) # Open the file spectral_file = open (filenamestr+".sdat","a") # Setup data fields to be written r = data inter = self.decln fc = self.observing fc = fc / 1000000 bw = self.bw bw = bw / 1000000 av = self.avg_alpha # Write those fields spectral_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av)) spectral_file.write(" "+str(r)+"\n") spectral_file.close() return(data) return(data) def seti_analysis(self,fftbuf,sidtime): l = len(fftbuf) x = 0 hits = [] hit_intensities = [] if self.seticounter < self.setitimer: self.seticounter = self.seticounter + 1 return else: self.seticounter = 0 # Run through FFT output buffer, computing standard deviation (Sigma) avg = 0 # First compute average for i in range(0,l): avg = avg + fftbuf[i] avg = avg / l sigma = 0.0 # Then compute standard deviation (Sigma) for i in range(0,l): d = fftbuf[i] - avg sigma = sigma + (d*d) sigma = Numeric.sqrt(sigma/l) # # Snarfle through the FFT output buffer again, looking for # outlying data points start_f = self.observing - (self.fft_input_rate/2) current_f = start_f f_incr = self.fft_input_rate / l l = len(fftbuf) hit = -1 # -nyquist to DC for i in range(l/2,l): # # If current FFT buffer has an item that exceeds the specified # sigma # if ((fftbuf[i] - avg) > (self.setik * sigma)): hits.append(current_f) hit_intensities.append(fftbuf[i]) current_f = current_f + f_incr # DC to nyquist for i in range(0,l/2): # # If current FFT buffer has an item that exceeds the specified # sigma # if ((fftbuf[i] - avg) > (self.setik * sigma)): hits.append(current_f) hit_intensities.append(fftbuf[i]) current_f = current_f + f_incr # No hits if (len(hits) <= 0): return # # OK, so we have some hits in the FFT buffer # They'll have a rather substantial gauntlet to run before # being declared a real "hit" # # Weed out buffers with an excessive number of strong signals if (len(hits) > self.nhits): return # Weed out FFT buffers with apparent multiple narrowband signals # separated significantly in frequency. This means that a # single signal spanning multiple bins is OK, but a buffer that # has multiple, apparently-separate, signals isn't OK. # last = hits[0] for i in range(1,len(hits)): if ((hits[i] - last) > (f_incr*2.0)): return last = hits[i] # # Run through all three hit buffers, computing difference between # frequencies found there, if they're all within the chirp limits # declare a good hit # good_hit = 0 good_hit = False for i in range(0,min(len(hits),len(self.hits_array[:,0]))): f_d1 = abs(self.hits_array[i,0] - hits[i]) f_d2 = abs(self.hits_array[i,1] - self.hits_array[i,0]) f_d3 = abs(self.hits_array[i,2] - self.hits_array[i,1]) if (self.seti_isahit ([f_d1, f_d2, f_d3])): good_hit = True self.hitcounter = self.hitcounter + 1 break # Save 'n shuffle hits for i in range(self.nhitlines,1): self.hits_array[:,i] = self.hits_array[:,i-1] self.hit_intensities[:,i] = self.hit_intensities[:,i-1] for i in range(0,len(hits)): self.hits_array[i,0] = hits[i] self.hit_intensities[i,0] = hit_intensities[i] # Finally, write the hits/intensities buffer if (good_hit): self.write_hits(sidtime) return def seti_isahit(self,fdiffs): truecount = 0 for i in range(0,len(fdiffs)): if (fdiffs[i] >= self.CHIRP_LOWER and fdiffs[i] <= self.CHIRP_UPPER): truecount = truecount + 1 if truecount == len(fdiffs): return (True) else: return (False) def write_hits(self,sidtime): # Create localtime structure for producing filename foo = time.localtime() pfx = self.prefix filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, foo.tm_mon, foo.tm_mday, foo.tm_hour) # Open the data file, appending hits_file = open (filenamestr+".seti","a") # Write sidtime first hits_file.write(str(ephem.hours(sidtime))+" "+str(self.decln)+" ") # # Then write the hits/hit intensities buffers with enough # "syntax" to allow parsing by external (not yet written!) # "stuff". # for i in range(0,self.nhitlines): hits_file.write(" ") for j in range(0,self.nhits): hits_file.write(str(self.hits_array[j,i])+":") hits_file.write(str(self.hit_intensities[j,i])+",") hits_file.write("\n") hits_file.close() return def xydfunc(self,xyv): magn = int(Numeric.log10(self.observing)) if (magn == 6 or magn == 7 or magn == 8): magn = 6 dfreq = xyv[0] * pow(10.0,magn) ratio = self.observing / dfreq vs = 1.0 - ratio vs *= 299792.0 if magn >= 9: xhz = "Ghz" elif magn >= 6: xhz = "Mhz" elif magn <= 5: xhz = "Khz" s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1]) s2 = "\n%.3fkm/s" % vs self.myform['spec_data'].set_value(s+s2) def xydfunc_waterfall(self,pos): lower = self.observing - (self.seti_fft_bandwidth / 2) upper = self.observing + (self.seti_fft_bandwidth / 2) binwidth = self.seti_fft_bandwidth / 1024 s = "%.6fMHz" % ((lower + (pos.x*binwidth)) / 1.0e6) self.myform['spec_data'].set_value(s) def toggle_cal(self): if (self.calstate == True): self.calstate = False self.u.write_io(0,0,(1<<15)) self.calibrator.SetLabel("Calibration Source: Off") else: self.calstate = True self.u.write_io(0,(1<<15),(1<<15)) self.calibrator.SetLabel("Calibration Source: On") def toggle_annotation(self): if (self.annotate_state == True): self.annotate_state = False self.annotation.SetLabel("Annotation: Off") else: self.annotate_state = True self.annotation.SetLabel("Annotation: On") # # Turn scanning on/off # Called-back by "Recording" button # def toggle_scanning(self): # Current scanning? Flip state if (self.scanning == True): self.scanning = False self.scan_control.SetLabel("Scan: Off") # Not scanning else: self.scanning = True self.scan_control.SetLabel("Scan: On ") def main (): app = stdgui.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision$", nstatus=1) app.MainLoop() if __name__ == '__main__': main ()