#!/usr/bin/env python # # Copyright 2003,2004,2005,2007 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gru, window from gnuradio.wxgui import stdgui2 import wx import gnuradio.wxgui.plot as plot import numpy import os import threading import math default_fftsink_size = (640,240) default_fft_rate = gr.prefs().get_long('wxgui', 'fft_rate', 15) def axis_design( x1, x2, nx ): # Given start, end, and number of labels, return value of first label, # increment between labels, number of unlabeled division between labels, # and scale factor. dx = abs( x2 - x1 )/float(nx+1) # allow for space at each end ldx = math.log10(dx) l2 = math.log10(2.) l5 = math.log10(5.) le = math.floor(ldx) lf = ldx - le if lf < l2/2: c = 1 dt = 10 elif lf < (l2+l5)/2: c = 2 dt = 4 elif lf < (l5+1)/2: c = 5 dt = 5 else: c = 1 dt = 10 le += 1 inc = c*pow( 10., le ) first = math.ceil( x1/inc )*inc scale = 1. while ( abs(x1*scale) >= 1e5 ) or ( abs(x2*scale) >= 1e5 ): scale *= 1e-3 return ( first, inc, dt, scale ) class waterfall_sink_base(object): def __init__(self, input_is_real=False, baseband_freq=0, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', ofunc=None, xydfunc=None): # initialize common attributes self.baseband_freq = baseband_freq self.sample_rate = sample_rate self.fft_size = fft_size self.fft_rate = fft_rate self.average = average self.ofunc = ofunc self.xydfunc = xydfunc if avg_alpha is None: self.avg_alpha = 2.0 / fft_rate else: self.avg_alpha = avg_alpha self.title = title self.input_is_real = input_is_real self.msgq = gr.msg_queue(2) # queue up to 2 messages def set_average(self, average): self.average = average if average: self.avg.set_taps(self.avg_alpha) else: self.avg.set_taps(1.0) def set_avg_alpha(self, avg_alpha): self.avg_alpha = avg_alpha def set_baseband_freq(self, baseband_freq): self.baseband_freq = baseband_freq def set_sample_rate(self, sample_rate): self.sample_rate = sample_rate self._set_n() def _set_n(self): self.one_in_n.set_n(max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) class waterfall_sink_f(gr.hier_block2, waterfall_sink_base): def __init__(self, parent, baseband_freq=0, ref_level=0, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', size=default_fftsink_size, report=None, span=40, ofunc=None, xydfunc=None): gr.hier_block2.__init__(self, "waterfall_sink_f", gr.io_signature(1, 1, gr.sizeof_float), gr.io_signature(0, 0, 0)) waterfall_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) s2p = gr.serial_to_parallel(gr.sizeof_float, self.fft_size) self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size, max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vfc(self.fft_size, True, mywindow) c2mag = gr.complex_to_mag(self.fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size) log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)) sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True) self.connect(self, s2p, self.one_in_n, fft, c2mag, self.avg, log, sink) self.win = waterfall_window(self, parent, size=size, report=report, ref_level=ref_level, span=span, ofunc=ofunc, xydfunc=xydfunc) self.set_average(self.average) class waterfall_sink_c(gr.hier_block2, waterfall_sink_base): def __init__(self, parent, baseband_freq=0, ref_level=0, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', size=default_fftsink_size, report=None, span=40, ofunc=None, xydfunc=None): gr.hier_block2.__init__(self, "waterfall_sink_c", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(0, 0, 0)) waterfall_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size) self.one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size, max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) c2mag = gr.complex_to_mag(self.fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size) log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)) sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True) self.connect(self, s2p, self.one_in_n, fft, c2mag, self.avg, log, sink) self.win = waterfall_window(self, parent, size=size, report=report, ref_level=ref_level, span=span, ofunc=ofunc, xydfunc=xydfunc) self.set_average(self.average) # ------------------------------------------------------------------------ myDATA_EVENT = wx.NewEventType() EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0) class DataEvent(wx.PyEvent): def __init__(self, data): wx.PyEvent.__init__(self) self.SetEventType (myDATA_EVENT) self.data = data def Clone (self): self.__class__ (self.GetId()) class input_watcher (threading.Thread): def __init__ (self, msgq, fft_size, event_receiver, **kwds): threading.Thread.__init__ (self, **kwds) self.setDaemon (1) self.msgq = msgq self.fft_size = fft_size self.event_receiver = event_receiver self.keep_running = True self.start () def run (self): while (self.keep_running): msg = self.msgq.delete_head() # blocking read of message queue itemsize = int(msg.arg1()) nitems = int(msg.arg2()) s = msg.to_string() # get the body of the msg as a string # There may be more than one FFT frame in the message. # If so, we take only the last one if nitems > 1: start = itemsize * (nitems - 1) s = s[start:start+itemsize] complex_data = numpy.fromstring (s, numpy.float32) de = DataEvent (complex_data) wx.PostEvent (self.event_receiver, de) del de class waterfall_window (wx.ScrolledWindow): def __init__ (self, fftsink, parent, id = -1, pos = wx.DefaultPosition, size = wx.DefaultSize, style = wx.DEFAULT_FRAME_STYLE, name = "", report=None, ref_level = 0, span = 50, ofunc=None, xydfunc=None): wx.ScrolledWindow.__init__(self, parent, id, pos, size, style|wx.HSCROLL, name) self.parent = parent self.SetCursor(wx.StockCursor(wx.CURSOR_IBEAM)) self.ref_level = ref_level self.scale_factor = 256./span self.ppsh = 128 # pixels per scroll, horizontal self.SetScrollbars( self.ppsh, 0, fftsink.fft_size/self.ppsh, 0 ) self.fftsink = fftsink self.size = size self.report = report self.ofunc = ofunc self.xydfunc = xydfunc dc1 = wx.MemoryDC() dc1.SetFont( wx.SMALL_FONT ) self.h_scale = dc1.GetCharHeight() + 3 #self.bm_size = ( self.fftsink.fft_size, self.size[1] - self.h_scale ) self.im_size = ( self.fftsink.fft_size, self.size[1] - self.h_scale ) #self.bm = wx.EmptyBitmap( self.bm_size[0], self.bm_size[1], -1) self.im = wx.EmptyImage( self.im_size[0], self.im_size[1], True ) self.im_cur = 0 self.baseband_freq = None self.make_pens() wx.EVT_PAINT( self, self.OnPaint ) wx.EVT_CLOSE (self, self.on_close_window) #wx.EVT_LEFT_UP(self, self.on_left_up) #wx.EVT_LEFT_DOWN(self, self.on_left_down) EVT_DATA_EVENT (self, self.set_data) self.build_popup_menu() wx.EVT_CLOSE (self, self.on_close_window) self.Bind(wx.EVT_RIGHT_UP, self.on_right_click) self.Bind(wx.EVT_MOTION, self.on_motion) self.down_pos = None self.input_watcher = input_watcher(fftsink.msgq, fftsink.fft_size, self) def on_close_window (self, event): self.keep_running = False def on_left_down( self, evt ): self.down_pos = evt.GetPosition() self.down_time = evt.GetTimestamp() def on_left_up( self, evt ): if self.down_pos: dt = ( evt.GetTimestamp() - self.down_time )/1000. pph = self.fftsink.fft_size/float(self.fftsink.sample_rate) dx = evt.GetPosition()[0] - self.down_pos[0] if dx != 0: rt = pph/dx else: rt = 0 t = 'Down time: %f Delta f: %f Period: %f' % ( dt, dx/pph, rt ) print t if self.report: self.report(t) def on_motion(self, event): if self.xydfunc: pos = event.GetPosition() self.xydfunc(pos) def const_list(self,const,len): return [const] * len def make_colormap(self): r = [] r.extend(self.const_list(0,96)) r.extend(range(0,255,4)) r.extend(self.const_list(255,64)) r.extend(range(255,128,-4)) g = [] g.extend(self.const_list(0,32)) g.extend(range(0,255,4)) g.extend(self.const_list(255,64)) g.extend(range(255,0,-4)) g.extend(self.const_list(0,32)) b = range(128,255,4) b.extend(self.const_list(255,64)) b.extend(range(255,0,-4)) b.extend(self.const_list(0,96)) return (r,g,b) def make_pens(self): (r,g,b) = self.make_colormap() self.rgb = numpy.transpose( numpy.array( (r,g,b) ).astype(numpy.int8) ) def OnPaint(self, event): dc = wx.BufferedPaintDC(self) self.DoDrawing( dc ) def DoDrawing(self,dc): w, h = self.GetClientSizeTuple() w = min( w, self.fftsink.fft_size ) if w <= 0: return if dc is None: dc = wx.BufferedDC( wx.ClientDC(self), (w,h) ) dc.SetBackground( wx.Brush( self.GetBackgroundColour(), wx.SOLID ) ) dc.Clear() x, y = self.GetViewStart() x *= self.ppsh ih = min( h - self.h_scale, self.im_size[1] - self.im_cur ) r = wx.Rect( x, self.im_cur, w, ih ) bm = wx.BitmapFromImage( self.im.GetSubImage(r) ) dc.DrawBitmap( bm, 0, self.h_scale ) rem = min( self.im_size[1] - ih, h - ih - self.h_scale ) if( rem > 0 ): r = wx.Rect( x, 0, w, rem ) bm = wx.BitmapFromImage( self.im.GetSubImage(r) ) dc.DrawBitmap( bm, 0, ih + self.h_scale ) # Draw axis if self.baseband_freq != self.fftsink.baseband_freq: self.baseband_freq = self.fftsink.baseband_freq t = self.fftsink.sample_rate*w/float(self.fftsink.fft_size) self.ax_spec = axis_design( self.baseband_freq - t/2, self.baseband_freq + t/2, 7 ) dc.SetFont( wx.SMALL_FONT ) fo = self.baseband_freq po = self.fftsink.fft_size/2 pph = self.fftsink.fft_size/float(self.fftsink.sample_rate) f = math.floor((fo-po/pph)/self.ax_spec[1])*self.ax_spec[1] while True: t = po + ( f - fo )*pph s = str( f*self.ax_spec[3] ) e = dc.GetTextExtent( s ) if t - e[1]/2 >= x + w: break dc.DrawText( s, t - x - e[0]/2, 0 ) dc.DrawLine( t - x, e[1] - 1, t - x, self.h_scale ) dt = self.ax_spec[1]/self.ax_spec[2]*pph for i in range(self.ax_spec[2]-1): t += dt if t >= x + w: break dc.DrawLine( t - x, e[1] + 1, t - x, self.h_scale ) f += self.ax_spec[1] def const_list(self,const,len): a = [const] for i in range(1,len): a.append(const) return a def make_colormap(self): r = [] r.extend(self.const_list(0,96)) r.extend(range(0,255,4)) r.extend(self.const_list(255,64)) r.extend(range(255,128,-4)) g = [] g.extend(self.const_list(0,32)) g.extend(range(0,255,4)) g.extend(self.const_list(255,64)) g.extend(range(255,0,-4)) g.extend(self.const_list(0,32)) b = range(128,255,4) b.extend(self.const_list(255,64)) b.extend(range(255,0,-4)) b.extend(self.const_list(0,96)) return (r,g,b) def set_data (self, evt): dB = evt.data L = len (dB) if self.ofunc != None: self.ofunc(evt.data, L) #dc1 = wx.MemoryDC() #dc1.SelectObject(self.bm) # Scroll existing bitmap if 1: #dc1.Blit(0,1,self.bm_size[0],self.bm_size[1]-1,dc1,0,0, # wx.COPY,False,-1,-1) pass else: for i in range( self.bm_size[1]-1, 0, -1 ): dc1.Blit( 0, i, self.bm_size[0], 1, dc1, 0, i-1 ) x = max(abs(self.fftsink.sample_rate), abs(self.fftsink.baseband_freq)) if x >= 1e9: sf = 1e-9 units = "GHz" elif x >= 1e6: sf = 1e-6 units = "MHz" else: sf = 1e-3 units = "kHz" if self.fftsink.input_is_real: # only plot 1/2 the points d_max = L/2 p_width = 2 else: d_max = L/2 p_width = 1 scale_factor = self.scale_factor dB -= self.ref_level dB *= scale_factor dB = dB.astype(numpy.int_).clip( min=0, max=255 ) if self.fftsink.input_is_real: # real fft dB = numpy.array( ( dB[0:d_max][::-1], dB[0:d_max] ) ) else: # complex fft dB = numpy.concatenate( ( dB[d_max:L], dB[0:d_max] ) ) dB = self.rgb[dB] img = wx.ImageFromData( L, 1, dB.ravel().tostring() ) #bm = wx.BitmapFromImage( img ) #dc1.DrawBitmap( bm, 0, 0 ) ibuf = self.im.GetDataBuffer() self.im_cur -= 1 if self.im_cur < 0: self.im_cur = self.im_size[1] - 1 start = 3*self.im_cur*self.im_size[0] ibuf[start:start+3*self.im_size[0]] = img.GetData() #del dc1 self.DoDrawing(None) def on_average(self, evt): # print "on_average" self.fftsink.set_average(evt.IsChecked()) def on_right_click(self, event): menu = self.popup_menu self.PopupMenu(menu, event.GetPosition()) def build_popup_menu(self): id_ref_gain = wx.NewId() self.Bind( wx.EVT_MENU, self.on_ref_gain, id=id_ref_gain ) # make a menu menu = wx.Menu() self.popup_menu = menu menu.Append( id_ref_gain, "Ref Level and Gain" ) self.rg_dialog = None self.checkmarks = { #self.id_average : lambda : self.fftsink.average } def on_ref_gain( self, evt ): if self.rg_dialog == None: self.rg_dialog = rg_dialog( self.parent, self.set_ref_gain, ref=self.ref_level, span=256./self.scale_factor ) self.rg_dialog.Show( True ) def set_ref_gain( self, ref, span ): self.ref_level = ref self.scale_factor = 256/span class rg_dialog( wx.Dialog ): def __init__( self, parent, set_function, ref=0, span=256./5. ): wx.Dialog.__init__( self, parent, -1, "Waterfall Settings" ) self.set_function = set_function #status_bar = wx.StatusBar( self, -1 ) d_sizer = wx.BoxSizer( wx.VERTICAL ) # dialog sizer f_sizer = wx.BoxSizer( wx.VERTICAL ) # form sizer vs = 10 #f_sizer.Add( fn_sizer, 0, flag=wx.TOP, border=10 ) h_sizer = wx.BoxSizer( wx.HORIZONTAL ) self.ref = tab_item( self, "Ref Level:", 4, "dB" ) self.ref.ctrl.SetValue( "%d" % ref ) h_sizer.Add((0,0),1) h_sizer.Add( self.ref, 0 ) h_sizer.Add((0,0),1) self.span = tab_item( self, "Range:", 4, "dB" ) self.span.ctrl.SetValue( "%d" % span ) h_sizer.Add( self.span, 0 ) h_sizer.Add((0,0),1) f_sizer.Add( h_sizer, 0, flag=wx.TOP|wx.EXPAND, border=vs ) d_sizer.Add((0,0),1) d_sizer.Add( f_sizer, 0, flag=wx.ALIGN_CENTER_HORIZONTAL|wx.EXPAND ) d_sizer.Add((0,0),1) d_sizer.Add((0,0),1) button_sizer = wx.BoxSizer( wx.HORIZONTAL ) apply_button = wx.Button( self, -1, "Apply" ) apply_button.Bind( wx.EVT_BUTTON, self.apply_evt ) cancel_button = wx.Button( self, -1, "Cancel" ) cancel_button.Bind( wx.EVT_BUTTON, self.cancel_evt ) ok_button = wx.Button( self, -1, "OK" ) ok_button.Bind( wx.EVT_BUTTON, self.ok_evt ) button_sizer.Add((0,0),1) button_sizer.Add( apply_button, 0, flag=wx.ALIGN_CENTER_HORIZONTAL ) button_sizer.Add((0,0),1) button_sizer.Add( cancel_button, 0, flag=wx.ALIGN_CENTER_HORIZONTAL ) button_sizer.Add((0,0),1) button_sizer.Add( ok_button, 0, flag=wx.ALIGN_CENTER_HORIZONTAL ) button_sizer.Add((0,0),1) d_sizer.Add( button_sizer, 0, flag=wx.EXPAND|wx.ALIGN_CENTER|wx.BOTTOM, border=30 ) self.SetSizer( d_sizer ) def apply_evt( self, evt ): self.do_apply() def cancel_evt( self, evt ): self.Show( False ) def ok_evt( self, evt ): self.do_apply() self.Show( False ) def do_apply( self ): r = float( self.ref.ctrl.GetValue() ) g = float( self.span.ctrl.GetValue() ) self.set_function( r, g ) def next_up(v, seq): """ Return the first item in seq that is > v. """ for s in seq: if s > v: return s return v def next_down(v, seq): """ Return the last item in seq that is < v. """ rseq = list(seq[:]) rseq.reverse() for s in rseq: if s < v: return s return v # One of many copies that should be consolidated . . . def tab_item( parent, label, chars, units, style=wx.TE_RIGHT, value="" ): s = wx.BoxSizer( wx.HORIZONTAL ) s.Add( wx.StaticText( parent, -1, label ), 0, flag=wx.ALIGN_CENTER_VERTICAL ) s.ctrl = wx.TextCtrl( parent, -1, style=style, value=value ) s.ctrl.SetMinSize( ( (1.00+chars)*s.ctrl.GetCharWidth(), 1.25*s.ctrl.GetCharHeight() ) ) s.Add( s.ctrl, -1, flag=wx.LEFT, border=3 ) s.Add( wx.StaticText( parent, -1, units ), 0, flag=wx.ALIGN_CENTER_VERTICAL|wx.LEFT, border=1 ) return s # ---------------------------------------------------------------- # Standalone test app # ---------------------------------------------------------------- class test_app_flow_graph (stdgui2.std_top_block): def __init__(self, frame, panel, vbox, argv): stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv) fft_size = 512 # build our flow graph input_rate = 20.000e3 # Generate a complex sinusoid src1 = gr.sig_source_c (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000) #src1 = gr.sig_source_c (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000) # We add these throttle blocks so that this demo doesn't # suck down all the CPU available. Normally you wouldn't use these. thr1 = gr.throttle(gr.sizeof_gr_complex, input_rate) sink1 = waterfall_sink_c (panel, title="Complex Data", fft_size=fft_size, sample_rate=input_rate, baseband_freq=0, size=(600,144) ) vbox.Add (sink1.win, 1, wx.EXPAND) self.connect (src1, thr1, sink1) # generate a real sinusoid src2 = gr.sig_source_f (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000) #src2 = gr.sig_source_f (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000) thr2 = gr.throttle(gr.sizeof_float, input_rate) sink2 = waterfall_sink_f (panel, title="Real Data", fft_size=fft_size, sample_rate=input_rate, baseband_freq=0) vbox.Add (sink2.win, 1, wx.EXPAND) self.connect (src2, thr2, sink2) def main (): app = stdgui2.stdapp (test_app_flow_graph, "Waterfall Sink Test App") app.MainLoop () if __name__ == '__main__': main ()