#!/usr/bin/env python # # Copyright 2003,2004,2005,2007 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gru, window from gnuradio.wxgui import stdgui2 import wx import gnuradio.wxgui.plot as plot import numpy import threading import math import random default_ra_fftsink_size = (640,140) class ra_fft_sink_base(object): def __init__(self, input_is_real=False, baseband_freq=0, y_per_div=10, sc_y_per_div=0.5, ref_level=50, sc_ref_level=20, sample_rate=1, fft_size=512, fft_rate=15, average=False, avg_alpha=None, title='', peak_hold=False, ofunc=None, xydfunc=None): # initialize common attributes self.baseband_freq = baseband_freq self.y_divs = 8 self.y_per_div=y_per_div self.sc_y_per_div=sc_y_per_div self.ref_level = ref_level self.autoscale = False self.sc_ref_level = sc_ref_level self.sample_rate = sample_rate self.fft_size = fft_size self.fft_rate = fft_rate self.binwidth = float(sample_rate/fft_size) self.average = average self.ofunc = ofunc self.xydfunc = xydfunc self.ofunc = ofunc if avg_alpha is None: self.avg_alpha = 2.0 / fft_rate else: self.avg_alpha = avg_alpha self.title = title self.peak_hold = peak_hold self.input_is_real = input_is_real self.msgq = gr.msg_queue(2) # queue that holds a maximum of 2 messages def set_y_per_div(self, y_per_div): self.y_per_div = y_per_div def set_ref_level(self, ref_level): self.ref_level = ref_level def set_average(self, average): self.average = average if average: self.avg.set_taps(self.avg_alpha) self.set_peak_hold(False) else: self.avg.set_taps(1.0) def set_peak_hold(self, enable): self.peak_hold = enable if enable: self.set_average(False) self.win.set_peak_hold(enable) def set_autoscale(self, auto): self.autoscale = auto def set_avg_alpha(self, avg_alpha): self.avg_alpha = avg_alpha def set_baseband_freq(self, baseband_freq): self.baseband_freq = baseband_freq class ra_fft_sink_f(gr.hier_block2, ra_fft_sink_base): def __init__(self, parent, baseband_freq=0, y_per_div=10, sc_y_per_div=0.5, sc_ref_level=40, ref_level=50, sample_rate=1, fft_size=512, fft_rate=15, average=False, avg_alpha=None, title='', size=default_ra_fftsink_size, peak_hold=False, ofunc=None, xydfunc=None): gr.hier_block2.__init__(self, "ra_fft_sink_f", gr.io_signature(1, 1, gr.sizeof_float), gr.io_signature(0, 0, 0)) ra_fft_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq, y_per_div=y_per_div, sc_y_per_div=sc_y_per_div, sc_ref_level=sc_ref_level, ref_level=ref_level, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title, peak_hold=peak_hold, ofunc=ofunc, xydfunc=xydfunc) self.binwidth = float(sample_rate/2.0)/float(fft_size) s2p = gr.serial_to_parallel(gr.sizeof_float, fft_size) one_in_n = gr.keep_one_in_n(gr.sizeof_float * fft_size, max(1, int(sample_rate/fft_size/fft_rate))) mywindow = window.blackmanharris(fft_size) fft = gr.fft_vfc(fft_size, True, mywindow) c2mag = gr.complex_to_mag(fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, fft_size) log = gr.nlog10_ff(20, fft_size, -20*math.log10(fft_size)) sink = gr.message_sink(gr.sizeof_float * fft_size, self.msgq, True) self.connect (self, s2p, one_in_n, fft, c2mag, self.avg, log, sink) self.win = fft_window(self, parent, size=size) self.set_average(self.average) class ra_fft_sink_c(gr.hier_block2, ra_fft_sink_base): def __init__(self, parent, baseband_freq=0, y_per_div=10, sc_y_per_div=0.5, sc_ref_level=40, ref_level=50, sample_rate=1, fft_size=512, fft_rate=15, average=False, avg_alpha=None, title='', size=default_ra_fftsink_size, peak_hold=False, ofunc=None, xydfunc=None): gr.hier_block2.__init__(self, "ra_fft_sink_c", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(0, 0, 0)) ra_fft_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq, y_per_div=y_per_div, sc_y_per_div=sc_y_per_div, sc_ref_level=sc_ref_level, ref_level=ref_level, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title, peak_hold=peak_hold, ofunc=ofunc, xydfunc=xydfunc) s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, fft_size) one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * fft_size, max(1, int(sample_rate/fft_size/fft_rate))) mywindow = window.blackmanharris(fft_size) fft = gr.fft_vcc(fft_size, True, mywindow) c2mag = gr.complex_to_mag(fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, fft_size) log = gr.nlog10_ff(20, fft_size, -20*math.log10(fft_size)) sink = gr.message_sink(gr.sizeof_float * fft_size, self.msgq, True) self.connect(self, s2p, one_in_n, fft, c2mag, self.avg, log, sink) self.win = fft_window(self, parent, size=size) self.set_average(self.average) # ------------------------------------------------------------------------ myDATA_EVENT = wx.NewEventType() EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0) class DataEvent(wx.PyEvent): def __init__(self, data): wx.PyEvent.__init__(self) self.SetEventType (myDATA_EVENT) self.data = data def Clone (self): self.__class__ (self.GetId()) class input_watcher (threading.Thread): def __init__ (self, msgq, fft_size, event_receiver, **kwds): threading.Thread.__init__ (self, **kwds) self.setDaemon (1) self.msgq = msgq self.fft_size = fft_size self.event_receiver = event_receiver self.keep_running = True self.start () def run (self): while (self.keep_running): msg = self.msgq.delete_head() # blocking read of message queue itemsize = int(msg.arg1()) nitems = int(msg.arg2()) s = msg.to_string() # get the body of the msg as a string # There may be more than one FFT frame in the message. # If so, we take only the last one if nitems > 1: start = itemsize * (nitems - 1) s = s[start:start+itemsize] complex_data = numpy.fromstring (s, numpy.float32) de = DataEvent (complex_data) wx.PostEvent (self.event_receiver, de) del de class fft_window (plot.PlotCanvas): def __init__ (self, ra_fftsink, parent, id = -1, pos = wx.DefaultPosition, size = wx.DefaultSize, style = wx.DEFAULT_FRAME_STYLE, name = ""): plot.PlotCanvas.__init__ (self, parent, id, pos, size, style, name) self.y_range = None self.ra_fftsink = ra_fftsink self.peak_hold = False self.peak_vals = None self.SetEnableGrid (True) # self.SetEnableZoom (True) # self.SetBackgroundColour ('black') self.build_popup_menu() EVT_DATA_EVENT (self, self.set_data) wx.EVT_CLOSE (self, self.on_close_window) self.Bind(wx.EVT_RIGHT_UP, self.on_right_click) self.Bind(wx.EVT_LEFT_UP, self.on_left_click) self.Bind(wx.EVT_MOTION, self.on_motion) self.input_watcher = input_watcher(ra_fftsink.msgq, ra_fftsink.fft_size, self) def on_close_window (self, event): print "fft_window:on_close_window" self.keep_running = False def set_data (self, evt): calc_min = 99e10 calc_max = -99e10 dB = evt.data L = len (dB) calc_min = min(dB) calc_max = max(dB) if (self.ra_fftsink.ofunc != None): self.ra_fftsink.ofunc(evt.data,L) if self.peak_hold: if self.peak_vals is None: self.peak_vals = dB else: self.peak_vals = numpy.maximum(dB, self.peak_vals) dB = self.peak_vals x = max(abs(self.ra_fftsink.sample_rate), abs(self.ra_fftsink.baseband_freq)) if x >= 1e9: sf = 1e-9 units = "GHz" elif x >= 1e6: sf = 1e-6 units = "MHz" elif x >= 1e3: sf = 1e-3 units = "kHz" else: sf = 1.0 units = "Hz" if self.ra_fftsink.input_is_real: # only plot 1/2 the points x_vals = ((numpy.arange (L/2) * (self.ra_fftsink.sample_rate * sf / L)) + self.ra_fftsink.baseband_freq * sf) points = numpy.zeros((len(x_vals), 2), numpy.float64) points[:,0] = x_vals points[:,1] = dB[0:L/2] else: # the "negative freqs" are in the second half of the array x_vals = ((numpy.arange(-L/2, L/2) * (self.ra_fftsink.sample_rate * sf / L)) + self.ra_fftsink.baseband_freq * sf) points = numpy.zeros((len(x_vals), 2), numpy.float64) points[:,0] = x_vals points[:,1] = numpy.concatenate ((dB[L/2:], dB[0:L/2])) lines = plot.PolyLine (points, colour='BLUE') graphics = plot.PlotGraphics ([lines], title=self.ra_fftsink.title, xLabel = units, yLabel = "dB") self.Draw (graphics, xAxis=None, yAxis=self.y_range) d = calc_max - calc_min d = d * 0.1 if self.ra_fftsink.autoscale == True: self.y_range = self._axisInterval ('min', calc_min-d, calc_max+d) else: self.update_y_range () def set_peak_hold(self, enable): self.peak_hold = enable self.peak_vals = None def update_y_range (self): ymax = self.ra_fftsink.ref_level ymin = self.ra_fftsink.ref_level - self.ra_fftsink.y_per_div * self.ra_fftsink.y_divs self.y_range = self._axisInterval ('min', ymin, ymax) def on_average(self, evt): # print "on_average" self.ra_fftsink.set_average(evt.IsChecked()) def on_peak_hold(self, evt): # print "on_peak_hold" self.ra_fftsink.set_peak_hold(evt.IsChecked()) def on_autoscale(self, evt): self.ra_fftsink.set_autoscale(evt.IsChecked()) def on_incr_ref_level(self, evt): # print "on_incr_ref_level" self.ra_fftsink.set_ref_level(self.ra_fftsink.ref_level + self.ra_fftsink.y_per_div) def on_decr_ref_level(self, evt): # print "on_decr_ref_level" self.ra_fftsink.set_ref_level(self.ra_fftsink.ref_level - self.ra_fftsink.y_per_div) def on_incr_y_per_div(self, evt): # print "on_incr_y_per_div" self.ra_fftsink.set_y_per_div(next_up(self.ra_fftsink.y_per_div, (0.5,1,2,5,10))) def on_decr_y_per_div(self, evt): # print "on_decr_y_per_div" self.ra_fftsink.set_y_per_div(next_down(self.ra_fftsink.y_per_div, (0.5,1,2,5,10))) def on_y_per_div(self, evt): # print "on_y_per_div" Id = evt.GetId() if Id == self.id_y_per_div_1: self.ra_fftsink.set_y_per_div(0.5) elif Id == self.id_y_per_div_2: self.ra_fftsink.set_y_per_div(1.0) elif Id == self.id_y_per_div_5: self.ra_fftsink.set_y_per_div(2.0) elif Id == self.id_y_per_div_10: self.ra_fftsink.set_y_per_div(5.0) elif Id == self.id_y_per_div_20: self.ra_fftsink.set_y_per_div(10) def on_right_click(self, event): menu = self.popup_menu for id, pred in self.checkmarks.items(): item = menu.FindItemById(id) item.Check(pred()) self.PopupMenu(menu, event.GetPosition()) def on_motion(self, event): if not self.ra_fftsink.xydfunc == None: xy = self.GetXY(event) self.ra_fftsink.xydfunc (0,xy) def on_left_click(self,event): if not self.ra_fftsink.xydfunc == None: xy = self.GetXY(event) self.ra_fftsink.xydfunc (1,xy) def build_popup_menu(self): self.id_incr_ref_level = wx.NewId() self.id_decr_ref_level = wx.NewId() self.id_autoscale = wx.NewId() self.id_incr_y_per_div = wx.NewId() self.id_decr_y_per_div = wx.NewId() self.id_y_per_div_1 = wx.NewId() self.id_y_per_div_2 = wx.NewId() self.id_y_per_div_5 = wx.NewId() self.id_y_per_div_10 = wx.NewId() self.id_y_per_div_20 = wx.NewId() self.id_average = wx.NewId() self.id_peak_hold = wx.NewId() self.Bind(wx.EVT_MENU, self.on_average, id=self.id_average) self.Bind(wx.EVT_MENU, self.on_peak_hold, id=self.id_peak_hold) self.Bind(wx.EVT_MENU, self.on_autoscale, id=self.id_autoscale) self.Bind(wx.EVT_MENU, self.on_incr_ref_level, id=self.id_incr_ref_level) self.Bind(wx.EVT_MENU, self.on_decr_ref_level, id=self.id_decr_ref_level) self.Bind(wx.EVT_MENU, self.on_incr_y_per_div, id=self.id_incr_y_per_div) self.Bind(wx.EVT_MENU, self.on_decr_y_per_div, id=self.id_decr_y_per_div) self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_1) self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_2) self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_5) self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_10) self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_20) # make a menu menu = wx.Menu() self.popup_menu = menu menu.AppendCheckItem(self.id_average, "Average") menu.AppendCheckItem(self.id_peak_hold, "Peak Hold") menu.Append(self.id_incr_ref_level, "Incr Ref Level") menu.Append(self.id_decr_ref_level, "Decr Ref Level") # menu.Append(self.id_incr_y_per_div, "Incr dB/div") # menu.Append(self.id_decr_y_per_div, "Decr dB/div") menu.AppendSeparator() # we'd use RadioItems for these, but they're not supported on Mac menu.AppendCheckItem(self.id_autoscale, "Autoscale") menu.AppendCheckItem(self.id_y_per_div_1, "0.5 dB/div") menu.AppendCheckItem(self.id_y_per_div_2, "1.0 dB/div") menu.AppendCheckItem(self.id_y_per_div_5, "2.0 dB/div") menu.AppendCheckItem(self.id_y_per_div_10, "5.0 dB/div") menu.AppendCheckItem(self.id_y_per_div_20, "10.0 dB/div") self.checkmarks = { self.id_average : lambda : self.ra_fftsink.average, self.id_peak_hold : lambda : self.ra_fftsink.peak_hold, self.id_autoscale : lambda : self.ra_fftsink.autoscale, self.id_y_per_div_1 : lambda : self.ra_fftsink.y_per_div == 0.5, self.id_y_per_div_2 : lambda : self.ra_fftsink.y_per_div == 1.0, self.id_y_per_div_5 : lambda : self.ra_fftsink.y_per_div == 2.0, self.id_y_per_div_10 : lambda : self.ra_fftsink.y_per_div == 5.0, self.id_y_per_div_20 : lambda : self.ra_fftsink.y_per_div == 10.0, } def next_up(v, seq): """ Return the first item in seq that is > v. """ for s in seq: if s > v: return s return v def next_down(v, seq): """ Return the last item in seq that is < v. """ rseq = list(seq[:]) rseq.reverse() for s in rseq: if s < v: return s return v # ---------------------------------------------------------------- # Standalone test app # ---------------------------------------------------------------- class test_app_flow_graph (stdgui2.std_top_block): def __init__(self, frame, panel, vbox, argv): stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv) fft_size = 256 # build our flow graph input_rate = 20.000e3 # Generate a complex sinusoid src1 = gr.sig_source_c (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000) #src1 = gr.sig_source_c (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000) # We add these throttle blocks so that this demo doesn't # suck down all the CPU available. Normally you wouldn't use these. thr1 = gr.throttle(gr.sizeof_gr_complex, input_rate) sink1 = ra_fft_sink_c (panel, title="Complex Data", fft_size=fft_size, sample_rate=input_rate, baseband_freq=100e3, ref_level=60, y_per_div=10) vbox.Add (sink1.win, 1, wx.EXPAND) self.connect (src1, thr1, sink1) src2 = gr.sig_source_f (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000) #src2 = gr.sig_source_f (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000) thr2 = gr.throttle(gr.sizeof_float, input_rate) sink2 = ra_fft_sink_f (panel, title="Real Data", fft_size=fft_size*2, sample_rate=input_rate, baseband_freq=100e3, ref_level=60, y_per_div=10) vbox.Add (sink2.win, 1, wx.EXPAND) self.connect (src2, thr2, sink2) def main (): app = stdgui2.stdapp (test_app_flow_graph, "FFT Sink Test App") app.MainLoop () if __name__ == '__main__': main ()