#include #include #include #include int SpectrumDisplayForm::_openGLWaterfall3DFlag = -1; SpectrumDisplayForm::SpectrumDisplayForm(QWidget* parent) : QWidget(parent) { setupUi(this); _systemSpecifiedFlag = false; _intValidator = new QIntValidator(this); _intValidator->setBottom(0); _frequencyDisplayPlot = new FrequencyDisplayPlot(FrequencyPlotDisplayFrame); _waterfallDisplayPlot = new WaterfallDisplayPlot(WaterfallPlotDisplayFrame); _waterfall3DDisplayPlot = new Waterfall3DDisplayPlot(Waterfall3DPlotDisplayFrame); _timeDomainDisplayPlot = new TimeDomainDisplayPlot(TimeDomainDisplayFrame); _constellationDisplayPlot = new ConstellationDisplayPlot(ConstellationDisplayFrame); _numRealDataPoints = 1024; _realFFTDataPoints = new double[_numRealDataPoints]; _averagedValues = new double[_numRealDataPoints]; _historyVector = new std::vector; AvgLineEdit->setValidator(_intValidator); PowerLineEdit->setValidator(_intValidator); MinHoldCheckBox_toggled( false ); MaxHoldCheckBox_toggled( false ); WaterfallMaximumIntensityWheel->setRange(-200, 0); WaterfallMaximumIntensityWheel->setTickCnt(50); WaterfallMinimumIntensityWheel->setRange(-200, 0); WaterfallMinimumIntensityWheel->setTickCnt(50); WaterfallMinimumIntensityWheel->setValue(-200); Waterfall3DMaximumIntensityWheel->setRange(-200, 0); Waterfall3DMaximumIntensityWheel->setTickCnt(50); Waterfall3DMinimumIntensityWheel->setRange(-200, 0); Waterfall3DMinimumIntensityWheel->setTickCnt(50); Waterfall3DMinimumIntensityWheel->setValue(-200); _peakFrequency = 0; _peakAmplitude = -HUGE_VAL; _noiseFloorAmplitude = -HUGE_VAL; connect(_waterfallDisplayPlot, SIGNAL(UpdatedLowerIntensityLevel(const double)), _frequencyDisplayPlot, SLOT(SetLowerIntensityLevel(const double))); connect(_waterfallDisplayPlot, SIGNAL(UpdatedUpperIntensityLevel(const double)), _frequencyDisplayPlot, SLOT(SetUpperIntensityLevel(const double))); _frequencyDisplayPlot->SetLowerIntensityLevel(-200); _frequencyDisplayPlot->SetUpperIntensityLevel(-200); // Load up the acceptable FFT sizes... FFTSizeComboBox->clear(); for(long fftSize = SpectrumGUIClass::MIN_FFT_SIZE; fftSize <= SpectrumGUIClass::MAX_FFT_SIZE; fftSize *= 2){ FFTSizeComboBox->insertItem(FFTSizeComboBox->count(), QString("%1").arg(fftSize)); } Reset(); ToggleTabFrequency(false); ToggleTabWaterfall(false); ToggleTabWaterfall3D(false); ToggleTabTime(false); ToggleTabConstellation(false); } SpectrumDisplayForm::~SpectrumDisplayForm() { // Qt deletes children when parent is deleted // Don't worry about deleting Display Plots - they are deleted when parents are deleted /* delete _intValidator; */ delete[] _realFFTDataPoints; delete[] _averagedValues; for(unsigned int count = 0; count < _historyVector->size(); count++){ delete[] _historyVector->operator[](count); } delete _historyVector; } void SpectrumDisplayForm::setSystem( SpectrumGUIClass * newSystem, const uint64_t numFFTDataPoints, const uint64_t numTimeDomainDataPoints ) { ResizeBuffers(numFFTDataPoints, numTimeDomainDataPoints); if(newSystem != NULL){ _system = newSystem; _systemSpecifiedFlag = true; } else{ _systemSpecifiedFlag = false; } } void SpectrumDisplayForm::newFrequencyData( const SpectrumUpdateEvent* spectrumUpdateEvent) { const std::complex* complexDataPoints = spectrumUpdateEvent->getFFTPoints(); const uint64_t numFFTDataPoints = spectrumUpdateEvent->getNumFFTDataPoints(); const double* realTimeDomainDataPoints = spectrumUpdateEvent->getRealTimeDomainPoints(); const double* imagTimeDomainDataPoints = spectrumUpdateEvent->getImagTimeDomainPoints(); const uint64_t numTimeDomainDataPoints = spectrumUpdateEvent->getNumTimeDomainDataPoints(); const double timePerFFT = spectrumUpdateEvent->getTimePerFFT(); const timespec dataTimestamp = spectrumUpdateEvent->getDataTimestamp();; const bool repeatDataFlag = spectrumUpdateEvent->getRepeatDataFlag(); const bool lastOfMultipleUpdatesFlag = spectrumUpdateEvent->getLastOfMultipleUpdateFlag(); const timespec generatedTimestamp = spectrumUpdateEvent->getEventGeneratedTimestamp(); // REMEMBER: The dataTimestamp is NOT valid when the repeat data flag is true... ResizeBuffers(numFFTDataPoints, numTimeDomainDataPoints); // Calculate the Magnitude of the complex point const std::complex* complexDataPointsPtr = complexDataPoints; double* realFFTDataPointsPtr = _realFFTDataPoints; for(uint64_t point = 0; point < numFFTDataPoints; point++){ // Calculate dBm // 50 ohm load assumption // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10) // 75 ohm load assumption // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15) *realFFTDataPointsPtr = 10.0*log10((((*complexDataPointsPtr).real() * (*complexDataPointsPtr).real()) + ((*complexDataPointsPtr).imag()*(*complexDataPointsPtr).imag())) + 1e-20); complexDataPointsPtr++; realFFTDataPointsPtr++; } int tabindex = SpectrumTypeTab->currentIndex(); // Don't update the averaging history if this is repeated data if(!repeatDataFlag){ _AverageHistory(_realFFTDataPoints); double sumMean; const double fft_bin_size = (_stopFrequency-_startFrequency) / static_cast(numFFTDataPoints); // find the peak, sum (for mean), etc _peakAmplitude = -HUGE_VAL; sumMean = 0.0; for(uint64_t number = 0; number < numFFTDataPoints; number++){ // find peak if(_realFFTDataPoints[number] > _peakAmplitude){ _peakFrequency = (static_cast(number) * fft_bin_size); // Calculate the frequency relative to the local bw, adjust for _startFrequency later _peakAmplitude = _realFFTDataPoints[number]; // _peakBin = number; } // sum (for mean) sumMean += _realFFTDataPoints[number]; } // calculate the spectral mean // +20 because for the comparison below we only want to throw out bins // that are significantly higher (and would, thus, affect the mean more) const double meanAmplitude = (sumMean / numFFTDataPoints) + 20.0; // now throw out any bins higher than the mean sumMean = 0.0; uint64_t newNumDataPoints = numFFTDataPoints; for(uint64_t number = 0; number < numFFTDataPoints; number++){ if (_realFFTDataPoints[number] <= meanAmplitude) sumMean += _realFFTDataPoints[number]; else newNumDataPoints--; } if (newNumDataPoints == 0) // in the odd case that all _noiseFloorAmplitude = meanAmplitude; // amplitudes are equal! else _noiseFloorAmplitude = sumMean / newNumDataPoints; } if(lastOfMultipleUpdatesFlag){ if(tabindex == d_plot_fft) { _frequencyDisplayPlot->PlotNewData(_averagedValues, numFFTDataPoints, _noiseFloorAmplitude, _peakFrequency, _peakAmplitude); } if(tabindex == d_plot_time) { _timeDomainDisplayPlot->PlotNewData(realTimeDomainDataPoints, imagTimeDomainDataPoints, numTimeDomainDataPoints); } if(tabindex == d_plot_constellation) { _constellationDisplayPlot->PlotNewData(realTimeDomainDataPoints, imagTimeDomainDataPoints, numTimeDomainDataPoints); } // Don't update the repeated data for the waterfall if(!repeatDataFlag){ if(tabindex == d_plot_waterfall) { _waterfallDisplayPlot->PlotNewData(_realFFTDataPoints, numFFTDataPoints, timePerFFT, dataTimestamp, spectrumUpdateEvent->getDroppedFFTFrames()); } if( _openGLWaterfall3DFlag == 1 && (tabindex == d_plot_waterfall3d)) { _waterfall3DDisplayPlot->PlotNewData(_realFFTDataPoints, numFFTDataPoints, timePerFFT, dataTimestamp, spectrumUpdateEvent->getDroppedFFTFrames()); } } // Tell the system the GUI has been updated if(_systemSpecifiedFlag){ _system->SetLastGUIUpdateTime(generatedTimestamp); _system->DecrementPendingGUIUpdateEvents(); } } } void SpectrumDisplayForm::resizeEvent( QResizeEvent *e ) { // Let the actual window resize its width, but not its height QSize newSize(e->size().width(), e->oldSize().height()); QResizeEvent et(newSize, e->oldSize()); QWidget::resizeEvent(&et); // Tell the Tab Window to Resize SpectrumTypeTab->resize( e->size().width(), e->size().height()-60); // Tell the TabXFreqDisplay to resize FrequencyPlotDisplayFrame->resize(e->size().width()-4, e->size().height()-140); _frequencyDisplayPlot->resize( FrequencyPlotDisplayFrame->width()-4, e->size().height()-140); // Move the Power Lbl and Line Edit PowerLabel->move(e->size().width()-(415-324) - PowerLabel->width(), e->size().height()-135); PowerLineEdit->move(e->size().width()-(415-318) - PowerLineEdit->width(), e->size().height()-115); // Move the Avg Lbl and Line Edit AvgLabel->move(e->size().width()-(415-406) - AvgLabel->width(), e->size().height()-135); AvgLineEdit->move(e->size().width()-(415-400) - AvgLineEdit->width(), e->size().height()-115); // Move Max and Min check boxes MaxHoldCheckBox->move(MaxHoldCheckBox->x(), e->size().height()-135); MaxHoldResetBtn->move(MaxHoldResetBtn->x(), e->size().height()-135); MinHoldCheckBox->move(MinHoldCheckBox->x(), e->size().height()-115); MinHoldResetBtn->move(MinHoldResetBtn->x(), e->size().height()-115); WaterfallPlotDisplayFrame->resize(e->size().width()-4, e->size().height()-140); _waterfallDisplayPlot->resize( WaterfallPlotDisplayFrame->width()-4, e->size().height()-140); // Move the IntensityWheels and Labels WaterfallMaximumIntensityLabel->move(width() - 5 - WaterfallMaximumIntensityLabel->width(), WaterfallMaximumIntensityLabel->y()); WaterfallMaximumIntensityWheel->resize(WaterfallMaximumIntensityLabel->x() - 5 - WaterfallMaximumIntensityWheel->x(), WaterfallMaximumIntensityWheel->height()); WaterfallMinimumIntensityLabel->move(width() - 5 - WaterfallMinimumIntensityLabel->width(), height() - 115); WaterfallMinimumIntensityWheel->resize(WaterfallMinimumIntensityLabel->x() - 5 - WaterfallMinimumIntensityWheel->x(), WaterfallMaximumIntensityWheel->height()); WaterfallMinimumIntensityWheel->move(WaterfallMinimumIntensityWheel->x(), height() - 115); WaterfallAutoScaleBtn->move(WaterfallAutoScaleBtn->x(), e->size().height()-115); Waterfall3DPlotDisplayFrame->resize(e->size().width()-4, e->size().height()-140); _waterfall3DDisplayPlot->resize( Waterfall3DPlotDisplayFrame->width()-4, e->size().height()-140); Waterfall3DMaximumIntensityLabel->move(width() - 5 - Waterfall3DMaximumIntensityLabel->width(), Waterfall3DMaximumIntensityLabel->y()); Waterfall3DMaximumIntensityWheel->resize(Waterfall3DMaximumIntensityLabel->x() - 5 - Waterfall3DMaximumIntensityWheel->x(), Waterfall3DMaximumIntensityWheel->height()); Waterfall3DMinimumIntensityLabel->move(width() - 5 - Waterfall3DMinimumIntensityLabel->width(), height() - 115); Waterfall3DMinimumIntensityWheel->resize(Waterfall3DMinimumIntensityLabel->x() - 5 - Waterfall3DMinimumIntensityWheel->x(), Waterfall3DMaximumIntensityWheel->height()); Waterfall3DMinimumIntensityWheel->move(Waterfall3DMinimumIntensityWheel->x(), height() - 115); Waterfall3DAutoScaleBtn->move(WaterfallAutoScaleBtn->x(), e->size().height()-115); TimeDomainDisplayFrame->resize(e->size().width()-4, e->size().height()-140); _timeDomainDisplayPlot->resize( TimeDomainDisplayFrame->width()-4, e->size().height()-140); ConstellationDisplayFrame->resize(e->size().width()-4, e->size().height()-140); _constellationDisplayPlot->resize( TimeDomainDisplayFrame->width()-4, e->size().height()-140); // Move the FFT Size Combobox and label FFTSizeComboBox->move(width() - 5 - FFTSizeComboBox->width(), height()-50); FFTSizeLabel->move(width() - 10 - FFTSizeComboBox->width() - FFTSizeLabel->width(), height()-50); // Move the lower check and combo boxes UseRFFrequenciesCheckBox->move(UseRFFrequenciesCheckBox->x(), height()-50); WindowLbl->move(WindowLbl->x(), height()-25); WindowComboBox->move(WindowComboBox->x(), height()-25); } void SpectrumDisplayForm::customEvent( QEvent * e) { if(e->type() == QEvent::User+3){ if(_systemSpecifiedFlag){ WindowComboBox->setCurrentIndex(_system->GetWindowType()); FFTSizeComboBox->setCurrentIndex(_system->GetFFTSizeIndex()); //FFTSizeComboBox->setCurrentIndex(1); PowerLineEdit_textChanged(PowerLineEdit->text()); } waterfallMinimumIntensityChangedCB(WaterfallMinimumIntensityWheel->value()); waterfallMaximumIntensityChangedCB(WaterfallMaximumIntensityWheel->value()); waterfall3DMinimumIntensityChangedCB(Waterfall3DMinimumIntensityWheel->value()); waterfall3DMaximumIntensityChangedCB(Waterfall3DMaximumIntensityWheel->value()); // If the video card doesn't support OpenGL then don't display the 3D Waterfall if(QGLFormat::hasOpenGL()){ // Check for Hardware Acceleration of the OpenGL if(!_waterfall3DDisplayPlot->format().directRendering()){ // Only ask this once while the program is running... if(_openGLWaterfall3DFlag == -1){ _openGLWaterfall3DFlag = 0; if(QMessageBox::warning(this, "OpenGL Direct Rendering NOT Supported", "
The system's video card hardware or current drivers do not support direct hardware rendering of the OpenGL modules.

Software rendering is VERY processor intensive.

Do you want to use software rendering?
", QMessageBox::Yes, QMessageBox::No | QMessageBox::Default | QMessageBox::Escape) == QMessageBox::Yes){ _openGLWaterfall3DFlag = 1; } } } else{ _openGLWaterfall3DFlag = 1; } } if(_openGLWaterfall3DFlag != 1){ ToggleTabWaterfall3D(false); } // Clear any previous display Reset(); } else if(e->type() == 10005){ SpectrumUpdateEvent* spectrumUpdateEvent = (SpectrumUpdateEvent*)e; newFrequencyData(spectrumUpdateEvent); } else if(e->type() == 10008){ setWindowTitle(((SpectrumWindowCaptionEvent*)e)->getLabel()); } else if(e->type() == 10009){ Reset(); if(_systemSpecifiedFlag){ _system->ResetPendingGUIUpdateEvents(); } } else if(e->type() == 10010){ _startFrequency = ((SpectrumFrequencyRangeEvent*)e)->GetStartFrequency(); _stopFrequency = ((SpectrumFrequencyRangeEvent*)e)->GetStopFrequency(); _centerFrequency = ((SpectrumFrequencyRangeEvent*)e)->GetCenterFrequency(); UseRFFrequenciesCB(UseRFFrequenciesCheckBox->isChecked()); } } void SpectrumDisplayForm::AvgLineEdit_textChanged( const QString &valueString ) { if(!valueString.isEmpty()){ int value = valueString.toInt(); if(value > 500){ value = 500; AvgLineEdit->setText("500"); } SetAverageCount(value); } } void SpectrumDisplayForm::MaxHoldCheckBox_toggled( bool newState ) { MaxHoldResetBtn->setEnabled(newState); _frequencyDisplayPlot->SetMaxFFTVisible(newState); MaxHoldResetBtn_clicked(); } void SpectrumDisplayForm::MinHoldCheckBox_toggled( bool newState ) { MinHoldResetBtn->setEnabled(newState); _frequencyDisplayPlot->SetMinFFTVisible(newState); MinHoldResetBtn_clicked(); } void SpectrumDisplayForm::MinHoldResetBtn_clicked() { _frequencyDisplayPlot->ClearMinData(); _frequencyDisplayPlot->replot(); } void SpectrumDisplayForm::MaxHoldResetBtn_clicked() { _frequencyDisplayPlot->ClearMaxData(); _frequencyDisplayPlot->replot(); } void SpectrumDisplayForm::PowerLineEdit_textChanged( const QString &valueString ) { if(_systemSpecifiedFlag){ if(!valueString.isEmpty()){ double value = valueString.toDouble(); if(value < 1.0){ value = 1.0; PowerLineEdit->setText("1"); } _system->SetPowerValue(value); } if(_system->GetPowerValue() > 1){ UseRFFrequenciesCheckBox->setChecked(false); UseRFFrequenciesCheckBox->setEnabled(false); UseRFFrequenciesCB(false); } else{ UseRFFrequenciesCheckBox->setEnabled(true); } } } void SpectrumDisplayForm::SetFrequencyRange(const double newStartFrequency, const double newStopFrequency, const double newCenterFrequency) { double fdiff = abs(newStartFrequency - newStopFrequency); if(fdiff > 0) { std::string strunits[4] = {"Hz", "kHz", "MHz", "GHz"}; double units10 = floor(log10(fdiff)); double units3 = floor(units10 / 3.0); double units = pow(10, units10); int iunit = static_cast(units3); _frequencyDisplayPlot->SetFrequencyRange(newStartFrequency, newStopFrequency, newCenterFrequency, UseRFFrequenciesCheckBox->isChecked(), units, strunits[iunit]); _waterfallDisplayPlot->SetFrequencyRange(newStartFrequency, newStopFrequency, newCenterFrequency, UseRFFrequenciesCheckBox->isChecked(), units, strunits[iunit]); _waterfall3DDisplayPlot->SetFrequencyRange(newStartFrequency, newStopFrequency, newCenterFrequency, UseRFFrequenciesCheckBox->isChecked(), units, strunits[iunit]); } } int SpectrumDisplayForm::GetAverageCount() { return _historyVector->size(); } void SpectrumDisplayForm::SetAverageCount(const int newCount) { if(newCount > -1){ if(newCount != static_cast(_historyVector->size())){ std::vector::iterator pos; while(newCount < static_cast(_historyVector->size())){ pos = _historyVector->begin(); delete[] (*pos); _historyVector->erase(pos); } while(newCount > static_cast(_historyVector->size())){ _historyVector->push_back(new double[_numRealDataPoints]); } AverageDataReset(); } } } void SpectrumDisplayForm::_AverageHistory(const double* newBuffer) { if(_numRealDataPoints > 0){ if(_historyVector->size() > 0){ memcpy(_historyVector->operator[](_historyEntry), newBuffer, _numRealDataPoints*sizeof(double)); // Increment the next location to store data _historyEntryCount++; if(_historyEntryCount > static_cast(_historyVector->size())){ _historyEntryCount = _historyVector->size(); } _historyEntry = (++_historyEntry)%_historyVector->size(); // Total up and then average the values double sum; for(uint64_t location = 0; location < _numRealDataPoints; location++){ sum = 0; for(int number = 0; number < _historyEntryCount; number++){ sum += _historyVector->operator[](number)[location]; } _averagedValues[location] = sum/static_cast(_historyEntryCount); } } else{ memcpy(_averagedValues, newBuffer, _numRealDataPoints*sizeof(double)); } } } void SpectrumDisplayForm::ResizeBuffers( const uint64_t numFFTDataPoints, const uint64_t /*numTimeDomainDataPoints*/ ) { // Convert from Complex to Real for certain Displays if(_numRealDataPoints != numFFTDataPoints){ _numRealDataPoints = numFFTDataPoints; delete[] _realFFTDataPoints; delete[] _averagedValues; _realFFTDataPoints = new double[_numRealDataPoints]; _averagedValues = new double[_numRealDataPoints]; memset(_realFFTDataPoints, 0x0, _numRealDataPoints*sizeof(double)); const int historySize = _historyVector->size(); SetAverageCount(0); // Clear the existing history SetAverageCount(historySize); Reset(); } } void SpectrumDisplayForm::Reset() { AverageDataReset(); _waterfallDisplayPlot->Reset(); _waterfall3DDisplayPlot->Reset(); } void SpectrumDisplayForm::AverageDataReset() { _historyEntry = 0; _historyEntryCount = 0; memset(_averagedValues, 0x0, _numRealDataPoints*sizeof(double)); MaxHoldResetBtn_clicked(); MinHoldResetBtn_clicked(); } void SpectrumDisplayForm::closeEvent( QCloseEvent *e ) { if(_systemSpecifiedFlag){ _system->SetWindowOpenFlag(false); } qApp->processEvents(); QWidget::closeEvent(e); } void SpectrumDisplayForm::WindowTypeChanged( int newItem ) { if(_systemSpecifiedFlag){ _system->SetWindowType(newItem); } } void SpectrumDisplayForm::UseRFFrequenciesCB( bool useRFFlag ) { if(useRFFlag){ SetFrequencyRange(_startFrequency, _stopFrequency, _centerFrequency); } else{ SetFrequencyRange(_startFrequency, _stopFrequency, 0.0 ); } } void SpectrumDisplayForm::waterfallMaximumIntensityChangedCB( double newValue ) { if(newValue > WaterfallMinimumIntensityWheel->value()){ WaterfallMaximumIntensityLabel->setText(QString("%1 dB").arg(newValue, 0, 'f', 0)); } else{ WaterfallMaximumIntensityWheel->setValue(WaterfallMinimumIntensityWheel->value()); } _waterfallDisplayPlot->SetIntensityRange(WaterfallMinimumIntensityWheel->value(), WaterfallMaximumIntensityWheel->value()); } void SpectrumDisplayForm::waterfallMinimumIntensityChangedCB( double newValue ) { if(newValue < WaterfallMaximumIntensityWheel->value()){ WaterfallMinimumIntensityLabel->setText(QString("%1 dB").arg(newValue, 0, 'f', 0)); } else{ WaterfallMinimumIntensityWheel->setValue(WaterfallMaximumIntensityWheel->value()); } _waterfallDisplayPlot->SetIntensityRange(WaterfallMinimumIntensityWheel->value(), WaterfallMaximumIntensityWheel->value()); } void SpectrumDisplayForm::waterfall3DMaximumIntensityChangedCB( double newValue ) { if(newValue > Waterfall3DMinimumIntensityWheel->value()){ Waterfall3DMaximumIntensityLabel->setText(QString("%1 dB").arg(newValue, 0, 'f', 0)); } else{ Waterfall3DMaximumIntensityWheel->setValue(Waterfall3DMinimumIntensityWheel->value()); } _waterfall3DDisplayPlot->SetIntensityRange(Waterfall3DMinimumIntensityWheel->value(), Waterfall3DMaximumIntensityWheel->value()); } void SpectrumDisplayForm::waterfall3DMinimumIntensityChangedCB( double newValue ) { if(newValue < Waterfall3DMaximumIntensityWheel->value()){ Waterfall3DMinimumIntensityLabel->setText(QString("%1 dB").arg(newValue, 0, 'f', 0)); } else{ Waterfall3DMinimumIntensityWheel->setValue(Waterfall3DMaximumIntensityWheel->value()); } _waterfall3DDisplayPlot->SetIntensityRange(Waterfall3DMinimumIntensityWheel->value(), Waterfall3DMaximumIntensityWheel->value()); } void SpectrumDisplayForm::FFTComboBoxSelectedCB( const QString &fftSizeString ) { if(_systemSpecifiedFlag){ _system->SetFFTSize(fftSizeString.toLong()); } } void SpectrumDisplayForm::WaterfallAutoScaleBtnCB() { double minimumIntensity = _noiseFloorAmplitude - 5; if(minimumIntensity < WaterfallMinimumIntensityWheel->minValue()){ minimumIntensity = WaterfallMinimumIntensityWheel->minValue(); } WaterfallMinimumIntensityWheel->setValue(minimumIntensity); double maximumIntensity = _peakAmplitude + 10; if(maximumIntensity > WaterfallMaximumIntensityWheel->maxValue()){ maximumIntensity = WaterfallMaximumIntensityWheel->maxValue(); } WaterfallMaximumIntensityWheel->setValue(maximumIntensity); waterfallMaximumIntensityChangedCB(maximumIntensity); } void SpectrumDisplayForm::Waterfall3DAutoScaleBtnCB() { double minimumIntensity = _noiseFloorAmplitude - 5; if(minimumIntensity < Waterfall3DMinimumIntensityWheel->minValue()){ minimumIntensity = Waterfall3DMinimumIntensityWheel->minValue(); } Waterfall3DMinimumIntensityWheel->setValue(minimumIntensity); double maximumIntensity = _peakAmplitude + 10; if(maximumIntensity > Waterfall3DMaximumIntensityWheel->maxValue()){ maximumIntensity = Waterfall3DMaximumIntensityWheel->maxValue(); } Waterfall3DMaximumIntensityWheel->setValue(maximumIntensity); waterfallMaximumIntensityChangedCB(maximumIntensity); } void SpectrumDisplayForm::WaterfallIntensityColorTypeChanged( int newType ) { QColor lowIntensityColor; QColor highIntensityColor; if(newType == WaterfallDisplayPlot::INTENSITY_COLOR_MAP_TYPE_USER_DEFINED){ // Select the Low Intensity Color lowIntensityColor = _waterfallDisplayPlot->GetUserDefinedLowIntensityColor(); if(!lowIntensityColor.isValid()){ lowIntensityColor = Qt::black; } QMessageBox::information(this, "Low Intensity Color Selection", "In the next window, select the low intensity color for the waterfall display", QMessageBox::Ok); lowIntensityColor = QColorDialog::getColor(lowIntensityColor, this); // Select the High Intensity Color highIntensityColor = _waterfallDisplayPlot->GetUserDefinedHighIntensityColor(); if(!highIntensityColor.isValid()){ highIntensityColor = Qt::white; } QMessageBox::information(this, "High Intensity Color Selection", "In the next window, select the high intensity color for the waterfall display", QMessageBox::Ok); highIntensityColor = QColorDialog::getColor(highIntensityColor, this); } _waterfallDisplayPlot->SetIntensityColorMapType(newType, lowIntensityColor, highIntensityColor); } void SpectrumDisplayForm::Waterfall3DIntensityColorTypeChanged( int newType ) { QColor lowIntensityColor; QColor highIntensityColor; if(newType == Waterfall3DDisplayPlot::INTENSITY_COLOR_MAP_TYPE_USER_DEFINED){ // Select the Low Intensity Color lowIntensityColor = _waterfallDisplayPlot->GetUserDefinedLowIntensityColor(); if(!lowIntensityColor.isValid()){ lowIntensityColor = Qt::black; } QMessageBox::information(this, "Low Intensity Color Selection", "In the next window, select the low intensity color for the waterfall display", QMessageBox::Ok); lowIntensityColor = QColorDialog::getColor(lowIntensityColor, this); // Select the High Intensity Color highIntensityColor = _waterfallDisplayPlot->GetUserDefinedHighIntensityColor(); if(!highIntensityColor.isValid()){ highIntensityColor = Qt::white; } QMessageBox::information(this, "High Intensity Color Selection", "In the next window, select the high intensity color for the waterfall display", QMessageBox::Ok); highIntensityColor = QColorDialog::getColor(highIntensityColor, this); } _waterfall3DDisplayPlot->SetIntensityColorMapType(newType, lowIntensityColor, highIntensityColor); } void SpectrumDisplayForm::ToggleTabFrequency(const bool state) { if(state == true) { if(d_plot_fft == -1) { SpectrumTypeTab->addTab(FrequencyPage, "Frequency Display"); d_plot_fft = SpectrumTypeTab->count()-1; } } else { SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(FrequencyPage)); d_plot_fft = -1; } } void SpectrumDisplayForm::ToggleTabWaterfall(const bool state) { if(state == true) { if(d_plot_waterfall == -1) { SpectrumTypeTab->addTab(WaterfallPage, "Waterfall Display"); d_plot_waterfall = SpectrumTypeTab->count()-1; } } else { SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(WaterfallPage)); d_plot_waterfall = -1; } } void SpectrumDisplayForm::ToggleTabWaterfall3D(const bool state) { if(state == true) { if(d_plot_waterfall3d == -1) { SpectrumTypeTab->addTab(Waterfall3DPage, "3D Waterfall Display"); d_plot_waterfall3d = SpectrumTypeTab->count()-1; } } else { SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(Waterfall3DPage)); d_plot_waterfall3d = -1; } } void SpectrumDisplayForm::ToggleTabTime(const bool state) { if(state == true) { if(d_plot_time == -1) { SpectrumTypeTab->addTab(TimeDomainPage, "Time Domain Display"); d_plot_time = SpectrumTypeTab->count()-1; } } else { SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(TimeDomainPage)); d_plot_time = -1; } } void SpectrumDisplayForm::ToggleTabConstellation(const bool state) { if(state == true) { if(d_plot_constellation == -1) { SpectrumTypeTab->addTab(ConstellationPage, "Constellation Display"); d_plot_constellation = SpectrumTypeTab->count()-1; } } else { SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(ConstellationPage)); d_plot_constellation = -1; } }