/* -*- c++ -*- */ /* * Copyright 2009 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include inline int signum(float f) { return f >= 0.0 ? 1 : -1; } noaa_hrpt_sync_fb_sptr noaa_make_hrpt_sync_fb(float alpha, float beta, float sps, float max_offset) { return gnuradio::get_initial_sptr(new noaa_hrpt_sync_fb(alpha, beta, sps, max_offset)); } noaa_hrpt_sync_fb::noaa_hrpt_sync_fb(float alpha, float beta, float sps, float max_offset) : gr_block("noaa_hrpt_sync_fb", gr_make_io_signature(1, 1, sizeof(float)), gr_make_io_signature(1, 1, sizeof(char))), d_alpha(alpha), d_beta(beta), d_sps(sps), d_max_offset(max_offset), d_phase(0.0), d_freq(1.0/sps), d_last_sign(1) { } int noaa_hrpt_sync_fb::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int ninputs = ninput_items[0]; const float *in = (const float *)input_items[0]; char *out = (char *)output_items[0]; int i = 0, j = 0; while (i < ninputs && j < noutput_items) { float sample = in[i++]; int sign = signum(sample); d_phase += d_freq; // Train on zero crossings in center region of symbol if (sign != d_last_sign) { float phase_err = 0.0; if (d_phase > 0.25 && d_phase < 0.75) phase_err = d_phase-0.5; else if (d_phase >= 0.75) phase_err = d_phase - 1.0; else phase_err = d_phase; d_phase -= phase_err*d_alpha; // 1st order phase adjustment d_freq -= phase_err*d_beta; // 2nd order frequency adjustment d_last_sign = sign; } if (d_phase > 1.0) { if (sample < 0.0) out[j++] = 1; else out[j++] = 0; d_phase -= 1.0; } } consume_each(i); return j; }